Properties

Label 126.4.g
Level $126$
Weight $4$
Character orbit 126.g
Rep. character $\chi_{126}(37,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $20$
Newform subspaces $7$
Sturm bound $96$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 7 \)
Sturm bound: \(96\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(126, [\chi])\).

Total New Old
Modular forms 160 20 140
Cusp forms 128 20 108
Eisenstein series 32 0 32

Trace form

\( 20 q - 40 q^{4} - 18 q^{5} - 8 q^{7} + 8 q^{10} + 6 q^{11} - 192 q^{13} - 72 q^{14} - 160 q^{16} - 150 q^{17} + 46 q^{19} + 144 q^{20} + 256 q^{22} + 210 q^{23} - 68 q^{25} - 120 q^{26} + 40 q^{28} - 336 q^{29}+ \cdots + 2880 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(126, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
126.4.g.a 126.g 7.c $2$ $7.434$ \(\Q(\sqrt{-3}) \) None 42.4.e.b \(-2\) \(0\) \(-15\) \(35\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{2}-4\zeta_{6}q^{4}+(-15+\cdots)q^{5}+\cdots\)
126.4.g.b 126.g 7.c $2$ $7.434$ \(\Q(\sqrt{-3}) \) None 42.4.e.a \(-2\) \(0\) \(-6\) \(-7\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{2}-4\zeta_{6}q^{4}+(-6+6\zeta_{6})q^{5}+\cdots\)
126.4.g.c 126.g 7.c $2$ $7.434$ \(\Q(\sqrt{-3}) \) None 14.4.c.b \(-2\) \(0\) \(7\) \(-20\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{2}-4\zeta_{6}q^{4}+(7-7\zeta_{6})q^{5}+\cdots\)
126.4.g.d 126.g 7.c $2$ $7.434$ \(\Q(\sqrt{-3}) \) None 14.4.c.a \(2\) \(0\) \(-9\) \(-28\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{2}-4\zeta_{6}q^{4}+(-9+9\zeta_{6})q^{5}+\cdots\)
126.4.g.e 126.g 7.c $4$ $7.434$ \(\Q(\sqrt{-3}, \sqrt{193})\) None 126.4.g.e \(-4\) \(0\) \(7\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q-2\beta _{2}q^{2}+(-4+4\beta _{2})q^{4}+(\beta _{1}+3\beta _{2}+\cdots)q^{5}+\cdots\)
126.4.g.f 126.g 7.c $4$ $7.434$ \(\Q(\sqrt{-3}, \sqrt{193})\) None 126.4.g.e \(4\) \(0\) \(-7\) \(6\) $\mathrm{SU}(2)[C_{3}]$ \(q+2\beta _{2}q^{2}+(-4+4\beta _{2})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)
126.4.g.g 126.g 7.c $4$ $7.434$ \(\Q(\sqrt{-3}, \sqrt{1345})\) None 42.4.e.c \(4\) \(0\) \(5\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+2\beta _{2}q^{2}+(-4+4\beta _{2})q^{4}+(\beta _{1}+2\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(126, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(126, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)