Defining parameters
| Level: | \( N \) | \(=\) | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 126.g (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(96\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(126, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 160 | 20 | 140 |
| Cusp forms | 128 | 20 | 108 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(126, [\chi])\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(126, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(126, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)