Properties

Label 126.4.f.a.43.3
Level $126$
Weight $4$
Character 126.43
Analytic conductor $7.434$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,4,Mod(43,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.43"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 126.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.43424066072\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 43.3
Root \(0.500000 - 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 126.43
Dual form 126.4.f.a.85.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(1.04944 - 5.08907i) q^{3} +(-2.00000 - 3.46410i) q^{4} +(-4.60507 - 7.97622i) q^{5} +(-7.76509 - 6.90676i) q^{6} +(-3.50000 + 6.06218i) q^{7} -8.00000 q^{8} +(-24.7973 - 10.6814i) q^{9} -18.4203 q^{10} +(6.63526 - 11.4926i) q^{11} +(-19.7280 + 6.54277i) q^{12} +(8.49862 + 14.7200i) q^{13} +(7.00000 + 12.1244i) q^{14} +(-45.4243 + 15.0650i) q^{15} +(-8.00000 + 13.8564i) q^{16} +16.3035 q^{17} +(-43.2980 + 32.2689i) q^{18} -26.2762 q^{19} +(-18.4203 + 31.9049i) q^{20} +(27.1778 + 24.1737i) q^{21} +(-13.2705 - 22.9852i) q^{22} +(-46.0617 - 79.7812i) q^{23} +(-8.39554 + 40.7126i) q^{24} +(20.0866 - 34.7910i) q^{25} +33.9945 q^{26} +(-80.3817 + 114.986i) q^{27} +28.0000 q^{28} +(87.6755 - 151.858i) q^{29} +(-19.3310 + 93.7422i) q^{30} +(2.55846 + 4.43139i) q^{31} +(16.0000 + 27.7128i) q^{32} +(-51.5234 - 45.8281i) q^{33} +(16.3035 - 28.2385i) q^{34} +64.4710 q^{35} +(12.5933 + 107.263i) q^{36} -284.652 q^{37} +(-26.2762 + 45.5117i) q^{38} +(83.8302 - 27.8023i) q^{39} +(36.8406 + 63.8098i) q^{40} +(7.78519 + 13.4843i) q^{41} +(69.0478 - 22.8997i) q^{42} +(146.918 - 254.470i) q^{43} -53.0821 q^{44} +(28.9966 + 246.978i) q^{45} -184.247 q^{46} +(309.331 - 535.777i) q^{47} +(62.1207 + 55.2541i) q^{48} +(-24.5000 - 42.4352i) q^{49} +(-40.1732 - 69.5820i) q^{50} +(17.1096 - 82.9698i) q^{51} +(33.9945 - 58.8802i) q^{52} +666.814 q^{53} +(118.780 + 254.211i) q^{54} -122.223 q^{55} +(28.0000 - 48.4974i) q^{56} +(-27.5753 + 133.721i) q^{57} +(-175.351 - 303.717i) q^{58} +(150.534 + 260.732i) q^{59} +(143.035 + 127.225i) q^{60} +(-69.3057 + 120.041i) q^{61} +10.2339 q^{62} +(151.543 - 112.941i) q^{63} +64.0000 q^{64} +(78.2736 - 135.574i) q^{65} +(-130.900 + 43.4130i) q^{66} +(102.582 + 177.677i) q^{67} +(-32.6070 - 56.4771i) q^{68} +(-454.351 + 150.686i) q^{69} +(64.4710 - 111.667i) q^{70} +953.646 q^{71} +(198.379 + 85.4510i) q^{72} -589.387 q^{73} +(-284.652 + 493.032i) q^{74} +(-155.974 - 138.733i) q^{75} +(52.5524 + 91.0234i) q^{76} +(46.4468 + 80.4482i) q^{77} +(35.6753 - 173.000i) q^{78} +(433.022 - 750.016i) q^{79} +147.362 q^{80} +(500.816 + 529.740i) q^{81} +31.1408 q^{82} +(-230.294 + 398.881i) q^{83} +(29.3844 - 142.494i) q^{84} +(-75.0789 - 130.041i) q^{85} +(-293.836 - 508.940i) q^{86} +(-680.809 - 605.554i) q^{87} +(-53.0821 + 91.9408i) q^{88} +138.382 q^{89} +(456.774 + 196.754i) q^{90} -118.981 q^{91} +(-184.247 + 319.125i) q^{92} +(25.2366 - 8.36972i) q^{93} +(-618.662 - 1071.55i) q^{94} +(121.004 + 209.585i) q^{95} +(157.824 - 52.3422i) q^{96} +(-448.941 + 777.589i) q^{97} -98.0000 q^{98} +(-287.294 + 214.112i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} - 12 q^{3} - 12 q^{4} - 9 q^{5} - 12 q^{6} - 21 q^{7} - 48 q^{8} - 36 q^{9} - 36 q^{10} - 48 q^{11} + 24 q^{12} + 57 q^{13} + 42 q^{14} - 63 q^{15} - 48 q^{16} + 48 q^{17} - 144 q^{18} - 282 q^{19}+ \cdots + 1512 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.353553 0.612372i
\(3\) 1.04944 5.08907i 0.201965 0.979393i
\(4\) −2.00000 3.46410i −0.250000 0.433013i
\(5\) −4.60507 7.97622i −0.411890 0.713415i 0.583206 0.812324i \(-0.301798\pi\)
−0.995096 + 0.0989092i \(0.968465\pi\)
\(6\) −7.76509 6.90676i −0.528348 0.469946i
\(7\) −3.50000 + 6.06218i −0.188982 + 0.327327i
\(8\) −8.00000 −0.353553
\(9\) −24.7973 10.6814i −0.918420 0.395607i
\(10\) −18.4203 −0.582501
\(11\) 6.63526 11.4926i 0.181873 0.315014i −0.760645 0.649168i \(-0.775117\pi\)
0.942518 + 0.334154i \(0.108451\pi\)
\(12\) −19.7280 + 6.54277i −0.474581 + 0.157395i
\(13\) 8.49862 + 14.7200i 0.181315 + 0.314047i 0.942329 0.334689i \(-0.108631\pi\)
−0.761014 + 0.648736i \(0.775298\pi\)
\(14\) 7.00000 + 12.1244i 0.133631 + 0.231455i
\(15\) −45.4243 + 15.0650i −0.781901 + 0.259317i
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) 16.3035 0.232599 0.116300 0.993214i \(-0.462897\pi\)
0.116300 + 0.993214i \(0.462897\pi\)
\(18\) −43.2980 + 32.2689i −0.566969 + 0.422547i
\(19\) −26.2762 −0.317272 −0.158636 0.987337i \(-0.550710\pi\)
−0.158636 + 0.987337i \(0.550710\pi\)
\(20\) −18.4203 + 31.9049i −0.205945 + 0.356708i
\(21\) 27.1778 + 24.1737i 0.282414 + 0.251196i
\(22\) −13.2705 22.9852i −0.128604 0.222748i
\(23\) −46.0617 79.7812i −0.417588 0.723283i 0.578108 0.815960i \(-0.303791\pi\)
−0.995696 + 0.0926765i \(0.970458\pi\)
\(24\) −8.39554 + 40.7126i −0.0714055 + 0.346268i
\(25\) 20.0866 34.7910i 0.160693 0.278328i
\(26\) 33.9945 0.256418
\(27\) −80.3817 + 114.986i −0.572943 + 0.819595i
\(28\) 28.0000 0.188982
\(29\) 87.6755 151.858i 0.561412 0.972394i −0.435962 0.899965i \(-0.643592\pi\)
0.997374 0.0724284i \(-0.0230749\pi\)
\(30\) −19.3310 + 93.7422i −0.117645 + 0.570497i
\(31\) 2.55846 + 4.43139i 0.0148230 + 0.0256742i 0.873342 0.487108i \(-0.161948\pi\)
−0.858519 + 0.512782i \(0.828615\pi\)
\(32\) 16.0000 + 27.7128i 0.0883883 + 0.153093i
\(33\) −51.5234 45.8281i −0.271790 0.241747i
\(34\) 16.3035 28.2385i 0.0822362 0.142437i
\(35\) 64.4710 0.311360
\(36\) 12.5933 + 107.263i 0.0583023 + 0.496589i
\(37\) −284.652 −1.26477 −0.632385 0.774654i \(-0.717924\pi\)
−0.632385 + 0.774654i \(0.717924\pi\)
\(38\) −26.2762 + 45.5117i −0.112173 + 0.194289i
\(39\) 83.8302 27.8023i 0.344194 0.114152i
\(40\) 36.8406 + 63.8098i 0.145625 + 0.252230i
\(41\) 7.78519 + 13.4843i 0.0296547 + 0.0513634i 0.880472 0.474098i \(-0.157226\pi\)
−0.850817 + 0.525462i \(0.823893\pi\)
\(42\) 69.0478 22.8997i 0.253674 0.0841310i
\(43\) 146.918 254.470i 0.521042 0.902472i −0.478658 0.878001i \(-0.658877\pi\)
0.999701 0.0244705i \(-0.00778998\pi\)
\(44\) −53.0821 −0.181873
\(45\) 28.9966 + 246.978i 0.0960567 + 0.818161i
\(46\) −184.247 −0.590558
\(47\) 309.331 535.777i 0.960011 1.66279i 0.237552 0.971375i \(-0.423655\pi\)
0.722459 0.691414i \(-0.243012\pi\)
\(48\) 62.1207 + 55.2541i 0.186799 + 0.166151i
\(49\) −24.5000 42.4352i −0.0714286 0.123718i
\(50\) −40.1732 69.5820i −0.113627 0.196808i
\(51\) 17.1096 82.9698i 0.0469769 0.227806i
\(52\) 33.9945 58.8802i 0.0906575 0.157023i
\(53\) 666.814 1.72819 0.864094 0.503330i \(-0.167892\pi\)
0.864094 + 0.503330i \(0.167892\pi\)
\(54\) 118.780 + 254.211i 0.299331 + 0.640625i
\(55\) −122.223 −0.299647
\(56\) 28.0000 48.4974i 0.0668153 0.115728i
\(57\) −27.5753 + 133.721i −0.0640779 + 0.310734i
\(58\) −175.351 303.717i −0.396978 0.687586i
\(59\) 150.534 + 260.732i 0.332167 + 0.575330i 0.982936 0.183946i \(-0.0588870\pi\)
−0.650770 + 0.759275i \(0.725554\pi\)
\(60\) 143.035 + 127.225i 0.307763 + 0.273744i
\(61\) −69.3057 + 120.041i −0.145470 + 0.251962i −0.929548 0.368700i \(-0.879803\pi\)
0.784078 + 0.620662i \(0.213136\pi\)
\(62\) 10.2339 0.0209629
\(63\) 151.543 112.941i 0.303058 0.225861i
\(64\) 64.0000 0.125000
\(65\) 78.2736 135.574i 0.149364 0.258706i
\(66\) −130.900 + 43.4130i −0.244132 + 0.0809662i
\(67\) 102.582 + 177.677i 0.187050 + 0.323980i 0.944265 0.329185i \(-0.106774\pi\)
−0.757215 + 0.653165i \(0.773441\pi\)
\(68\) −32.6070 56.4771i −0.0581498 0.100718i
\(69\) −454.351 + 150.686i −0.792717 + 0.262904i
\(70\) 64.4710 111.667i 0.110082 0.190668i
\(71\) 953.646 1.59404 0.797021 0.603952i \(-0.206408\pi\)
0.797021 + 0.603952i \(0.206408\pi\)
\(72\) 198.379 + 85.4510i 0.324711 + 0.139868i
\(73\) −589.387 −0.944967 −0.472483 0.881340i \(-0.656642\pi\)
−0.472483 + 0.881340i \(0.656642\pi\)
\(74\) −284.652 + 493.032i −0.447164 + 0.774510i
\(75\) −155.974 138.733i −0.240138 0.213594i
\(76\) 52.5524 + 91.0234i 0.0793180 + 0.137383i
\(77\) 46.4468 + 80.4482i 0.0687416 + 0.119064i
\(78\) 35.6753 173.000i 0.0517875 0.251134i
\(79\) 433.022 750.016i 0.616694 1.06814i −0.373391 0.927674i \(-0.621805\pi\)
0.990085 0.140471i \(-0.0448616\pi\)
\(80\) 147.362 0.205945
\(81\) 500.816 + 529.740i 0.686991 + 0.726666i
\(82\) 31.1408 0.0419381
\(83\) −230.294 + 398.881i −0.304555 + 0.527505i −0.977162 0.212495i \(-0.931841\pi\)
0.672607 + 0.740000i \(0.265174\pi\)
\(84\) 29.3844 142.494i 0.0381678 0.185088i
\(85\) −75.0789 130.041i −0.0958053 0.165940i
\(86\) −293.836 508.940i −0.368433 0.638144i
\(87\) −680.809 605.554i −0.838969 0.746232i
\(88\) −53.0821 + 91.9408i −0.0643019 + 0.111374i
\(89\) 138.382 0.164814 0.0824072 0.996599i \(-0.473739\pi\)
0.0824072 + 0.996599i \(0.473739\pi\)
\(90\) 456.774 + 196.754i 0.534981 + 0.230441i
\(91\) −118.981 −0.137061
\(92\) −184.247 + 319.125i −0.208794 + 0.361642i
\(93\) 25.2366 8.36972i 0.0281389 0.00933226i
\(94\) −618.662 1071.55i −0.678831 1.17577i
\(95\) 121.004 + 209.585i 0.130681 + 0.226347i
\(96\) 157.824 52.3422i 0.167790 0.0556474i
\(97\) −448.941 + 777.589i −0.469929 + 0.813941i −0.999409 0.0343818i \(-0.989054\pi\)
0.529480 + 0.848322i \(0.322387\pi\)
\(98\) −98.0000 −0.101015
\(99\) −287.294 + 214.112i −0.291658 + 0.217365i
\(100\) −160.693 −0.160693
\(101\) −603.468 + 1045.24i −0.594527 + 1.02975i 0.399086 + 0.916914i \(0.369328\pi\)
−0.993613 + 0.112838i \(0.964006\pi\)
\(102\) −126.598 112.605i −0.122893 0.109309i
\(103\) 197.662 + 342.361i 0.189090 + 0.327513i 0.944947 0.327223i \(-0.106113\pi\)
−0.755857 + 0.654736i \(0.772780\pi\)
\(104\) −67.9890 117.760i −0.0641045 0.111032i
\(105\) 67.6586 328.098i 0.0628839 0.304944i
\(106\) 666.814 1154.96i 0.611007 1.05830i
\(107\) −50.7643 −0.0458652 −0.0229326 0.999737i \(-0.507300\pi\)
−0.0229326 + 0.999737i \(0.507300\pi\)
\(108\) 559.087 + 48.4783i 0.498131 + 0.0431929i
\(109\) −2191.18 −1.92548 −0.962738 0.270437i \(-0.912832\pi\)
−0.962738 + 0.270437i \(0.912832\pi\)
\(110\) −122.223 + 211.697i −0.105941 + 0.183496i
\(111\) −298.726 + 1448.61i −0.255440 + 1.23871i
\(112\) −56.0000 96.9948i −0.0472456 0.0818317i
\(113\) −352.980 611.380i −0.293855 0.508971i 0.680863 0.732411i \(-0.261605\pi\)
−0.974718 + 0.223439i \(0.928272\pi\)
\(114\) 204.037 + 181.483i 0.167630 + 0.149101i
\(115\) −424.235 + 734.796i −0.344001 + 0.595827i
\(116\) −701.404 −0.561412
\(117\) −53.5129 455.795i −0.0422843 0.360156i
\(118\) 602.135 0.469755
\(119\) −57.0623 + 98.8349i −0.0439571 + 0.0761359i
\(120\) 363.395 120.520i 0.276444 0.0916825i
\(121\) 577.447 + 1000.17i 0.433844 + 0.751440i
\(122\) 138.611 + 240.082i 0.102863 + 0.178164i
\(123\) 76.7930 25.4684i 0.0562942 0.0186700i
\(124\) 10.2339 17.7256i 0.00741151 0.0128371i
\(125\) −1521.27 −1.08853
\(126\) −44.0766 375.421i −0.0311639 0.265438i
\(127\) 825.927 0.577080 0.288540 0.957468i \(-0.406830\pi\)
0.288540 + 0.957468i \(0.406830\pi\)
\(128\) 64.0000 110.851i 0.0441942 0.0765466i
\(129\) −1140.83 1014.73i −0.778642 0.692573i
\(130\) −156.547 271.148i −0.105616 0.182932i
\(131\) −629.241 1089.88i −0.419672 0.726893i 0.576235 0.817284i \(-0.304521\pi\)
−0.995906 + 0.0903915i \(0.971188\pi\)
\(132\) −55.7066 + 270.139i −0.0367321 + 0.178125i
\(133\) 91.9666 159.291i 0.0599588 0.103852i
\(134\) 410.327 0.264529
\(135\) 1287.32 + 111.623i 0.820701 + 0.0711629i
\(136\) −130.428 −0.0822362
\(137\) 310.413 537.651i 0.193579 0.335289i −0.752855 0.658187i \(-0.771324\pi\)
0.946434 + 0.322898i \(0.104657\pi\)
\(138\) −193.356 + 937.645i −0.119272 + 0.578389i
\(139\) 1259.41 + 2181.36i 0.768501 + 1.33108i 0.938376 + 0.345617i \(0.112330\pi\)
−0.169874 + 0.985466i \(0.554336\pi\)
\(140\) −128.942 223.334i −0.0778400 0.134823i
\(141\) −2401.98 2136.47i −1.43463 1.27605i
\(142\) 953.646 1651.76i 0.563579 0.976147i
\(143\) 225.562 0.131905
\(144\) 346.384 258.151i 0.200454 0.149393i
\(145\) −1615.01 −0.924960
\(146\) −589.387 + 1020.85i −0.334096 + 0.578672i
\(147\) −241.667 + 80.1490i −0.135595 + 0.0449699i
\(148\) 569.304 + 986.063i 0.316193 + 0.547662i
\(149\) −657.564 1138.93i −0.361542 0.626209i 0.626673 0.779282i \(-0.284416\pi\)
−0.988215 + 0.153074i \(0.951083\pi\)
\(150\) −396.267 + 131.422i −0.215701 + 0.0715370i
\(151\) −519.646 + 900.054i −0.280055 + 0.485069i −0.971398 0.237458i \(-0.923686\pi\)
0.691343 + 0.722526i \(0.257019\pi\)
\(152\) 210.209 0.112173
\(153\) −404.284 174.144i −0.213624 0.0920177i
\(154\) 185.787 0.0972153
\(155\) 23.5638 40.8137i 0.0122109 0.0211499i
\(156\) −263.970 234.792i −0.135478 0.120503i
\(157\) 1402.48 + 2429.17i 0.712932 + 1.23483i 0.963752 + 0.266801i \(0.0859665\pi\)
−0.250820 + 0.968034i \(0.580700\pi\)
\(158\) −866.044 1500.03i −0.436068 0.755292i
\(159\) 699.783 3393.47i 0.349034 1.69258i
\(160\) 147.362 255.239i 0.0728126 0.126115i
\(161\) 644.863 0.315667
\(162\) 1418.35 337.700i 0.687878 0.163779i
\(163\) 4016.56 1.93007 0.965035 0.262120i \(-0.0844218\pi\)
0.965035 + 0.262120i \(0.0844218\pi\)
\(164\) 31.1408 53.9374i 0.0148274 0.0256817i
\(165\) −128.266 + 622.004i −0.0605184 + 0.293472i
\(166\) 460.588 + 797.762i 0.215353 + 0.373002i
\(167\) 1541.79 + 2670.46i 0.714415 + 1.23740i 0.963185 + 0.268840i \(0.0866403\pi\)
−0.248770 + 0.968563i \(0.580026\pi\)
\(168\) −217.423 193.389i −0.0998483 0.0888114i
\(169\) 954.047 1652.46i 0.434250 0.752143i
\(170\) −300.316 −0.135489
\(171\) 651.579 + 280.666i 0.291389 + 0.125515i
\(172\) −1175.35 −0.521042
\(173\) 920.469 1594.30i 0.404520 0.700649i −0.589745 0.807589i \(-0.700772\pi\)
0.994265 + 0.106940i \(0.0341053\pi\)
\(174\) −1729.66 + 573.641i −0.753593 + 0.249929i
\(175\) 140.606 + 243.537i 0.0607361 + 0.105198i
\(176\) 106.164 + 183.882i 0.0454683 + 0.0787534i
\(177\) 1484.86 492.454i 0.630560 0.209125i
\(178\) 138.382 239.685i 0.0582707 0.100928i
\(179\) −655.758 −0.273819 −0.136910 0.990584i \(-0.543717\pi\)
−0.136910 + 0.990584i \(0.543717\pi\)
\(180\) 797.563 594.402i 0.330260 0.246134i
\(181\) −380.429 −0.156227 −0.0781134 0.996944i \(-0.524890\pi\)
−0.0781134 + 0.996944i \(0.524890\pi\)
\(182\) −118.981 + 206.081i −0.0484584 + 0.0839325i
\(183\) 538.165 + 478.678i 0.217390 + 0.193360i
\(184\) 368.493 + 638.249i 0.147640 + 0.255719i
\(185\) 1310.84 + 2270.45i 0.520947 + 0.902306i
\(186\) 10.7398 52.0808i 0.00423378 0.0205309i
\(187\) 108.178 187.370i 0.0423036 0.0732719i
\(188\) −2474.65 −0.960011
\(189\) −415.730 889.739i −0.159999 0.342429i
\(190\) 484.015 0.184811
\(191\) 1400.19 2425.20i 0.530440 0.918750i −0.468929 0.883236i \(-0.655360\pi\)
0.999369 0.0355138i \(-0.0113068\pi\)
\(192\) 67.1643 325.701i 0.0252457 0.122424i
\(193\) 2259.67 + 3913.87i 0.842771 + 1.45972i 0.887543 + 0.460726i \(0.152411\pi\)
−0.0447712 + 0.998997i \(0.514256\pi\)
\(194\) 897.883 + 1555.18i 0.332290 + 0.575543i
\(195\) −607.802 540.617i −0.223208 0.198535i
\(196\) −98.0000 + 169.741i −0.0357143 + 0.0618590i
\(197\) −895.383 −0.323824 −0.161912 0.986805i \(-0.551766\pi\)
−0.161912 + 0.986805i \(0.551766\pi\)
\(198\) 83.5598 + 711.719i 0.0299916 + 0.255453i
\(199\) 4115.94 1.46619 0.733094 0.680127i \(-0.238075\pi\)
0.733094 + 0.680127i \(0.238075\pi\)
\(200\) −160.693 + 278.328i −0.0568134 + 0.0984038i
\(201\) 1011.86 335.584i 0.355081 0.117763i
\(202\) 1206.94 + 2090.47i 0.420394 + 0.728144i
\(203\) 613.729 + 1063.01i 0.212194 + 0.367530i
\(204\) −321.635 + 106.670i −0.110387 + 0.0366099i
\(205\) 71.7028 124.193i 0.0244290 0.0423122i
\(206\) 790.649 0.267413
\(207\) 290.034 + 2470.36i 0.0973854 + 0.829479i
\(208\) −271.956 −0.0906575
\(209\) −174.349 + 301.982i −0.0577033 + 0.0999450i
\(210\) −500.624 445.286i −0.164506 0.146322i
\(211\) −189.903 328.922i −0.0619596 0.107317i 0.833382 0.552698i \(-0.186402\pi\)
−0.895341 + 0.445381i \(0.853068\pi\)
\(212\) −1333.63 2309.91i −0.432047 0.748328i
\(213\) 1000.80 4853.17i 0.321941 1.56119i
\(214\) −50.7643 + 87.9264i −0.0162158 + 0.0280866i
\(215\) −2706.28 −0.858449
\(216\) 643.054 919.888i 0.202566 0.289771i
\(217\) −35.8185 −0.0112051
\(218\) −2191.18 + 3795.23i −0.680758 + 1.17911i
\(219\) −618.528 + 2999.44i −0.190850 + 0.925493i
\(220\) 244.447 + 423.394i 0.0749118 + 0.129751i
\(221\) 138.557 + 239.989i 0.0421737 + 0.0730470i
\(222\) 2210.35 + 1966.02i 0.668238 + 0.594373i
\(223\) 2593.64 4492.32i 0.778849 1.34901i −0.153757 0.988109i \(-0.549137\pi\)
0.932606 0.360897i \(-0.117529\pi\)
\(224\) −224.000 −0.0668153
\(225\) −869.709 + 648.171i −0.257692 + 0.192051i
\(226\) −1411.92 −0.415573
\(227\) −853.663 + 1478.59i −0.249602 + 0.432323i −0.963415 0.268013i \(-0.913633\pi\)
0.713814 + 0.700336i \(0.246966\pi\)
\(228\) 518.375 171.919i 0.150571 0.0499369i
\(229\) −2443.45 4232.17i −0.705098 1.22127i −0.966656 0.256078i \(-0.917570\pi\)
0.261558 0.965188i \(-0.415764\pi\)
\(230\) 848.470 + 1469.59i 0.243245 + 0.421313i
\(231\) 458.150 151.945i 0.130494 0.0432783i
\(232\) −701.404 + 1214.87i −0.198489 + 0.343793i
\(233\) −3829.40 −1.07671 −0.538353 0.842720i \(-0.680953\pi\)
−0.538353 + 0.842720i \(0.680953\pi\)
\(234\) −842.973 363.108i −0.235499 0.101441i
\(235\) −5697.97 −1.58168
\(236\) 602.135 1042.93i 0.166083 0.287665i
\(237\) −3362.46 2990.78i −0.921582 0.819713i
\(238\) 114.125 + 197.670i 0.0310824 + 0.0538362i
\(239\) −2241.09 3881.68i −0.606544 1.05057i −0.991805 0.127758i \(-0.959222\pi\)
0.385261 0.922808i \(-0.374111\pi\)
\(240\) 154.648 749.938i 0.0415938 0.201701i
\(241\) 1029.02 1782.32i 0.275042 0.476386i −0.695104 0.718909i \(-0.744642\pi\)
0.970146 + 0.242523i \(0.0779750\pi\)
\(242\) 2309.79 0.613548
\(243\) 3221.46 1992.76i 0.850440 0.526073i
\(244\) 554.446 0.145470
\(245\) −225.649 + 390.835i −0.0588415 + 0.101916i
\(246\) 32.6804 158.478i 0.00847003 0.0410738i
\(247\) −223.311 386.787i −0.0575262 0.0996382i
\(248\) −20.4677 35.4511i −0.00524073 0.00907721i
\(249\) 1788.25 + 1590.59i 0.455125 + 0.404816i
\(250\) −1521.27 + 2634.92i −0.384854 + 0.666587i
\(251\) −5910.35 −1.48629 −0.743143 0.669132i \(-0.766666\pi\)
−0.743143 + 0.669132i \(0.766666\pi\)
\(252\) −694.326 299.079i −0.173565 0.0747626i
\(253\) −1222.52 −0.303792
\(254\) 825.927 1430.55i 0.204029 0.353388i
\(255\) −740.577 + 245.612i −0.181869 + 0.0603170i
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 3280.82 + 5682.54i 0.796310 + 1.37925i 0.922004 + 0.387180i \(0.126551\pi\)
−0.125694 + 0.992069i \(0.540116\pi\)
\(258\) −2898.40 + 961.253i −0.699404 + 0.231957i
\(259\) 996.282 1725.61i 0.239019 0.413993i
\(260\) −626.189 −0.149364
\(261\) −3796.18 + 2829.19i −0.900297 + 0.670968i
\(262\) −2516.96 −0.593506
\(263\) 3540.83 6132.90i 0.830179 1.43791i −0.0677175 0.997705i \(-0.521572\pi\)
0.897896 0.440207i \(-0.145095\pi\)
\(264\) 412.187 + 366.625i 0.0960923 + 0.0854705i
\(265\) −3070.73 5318.66i −0.711824 1.23292i
\(266\) −183.933 318.582i −0.0423973 0.0734342i
\(267\) 145.224 704.237i 0.0332868 0.161418i
\(268\) 410.327 710.707i 0.0935250 0.161990i
\(269\) 2665.66 0.604193 0.302097 0.953277i \(-0.402313\pi\)
0.302097 + 0.953277i \(0.402313\pi\)
\(270\) 1480.65 2118.08i 0.333740 0.477415i
\(271\) −7097.49 −1.59093 −0.795465 0.606000i \(-0.792773\pi\)
−0.795465 + 0.606000i \(0.792773\pi\)
\(272\) −130.428 + 225.908i −0.0290749 + 0.0503592i
\(273\) −124.863 + 605.502i −0.0276816 + 0.134237i
\(274\) −620.826 1075.30i −0.136881 0.237085i
\(275\) −266.559 461.694i −0.0584514 0.101241i
\(276\) 1430.69 + 1272.55i 0.312020 + 0.277530i
\(277\) −2627.29 + 4550.60i −0.569886 + 0.987072i 0.426690 + 0.904398i \(0.359679\pi\)
−0.996577 + 0.0826743i \(0.973654\pi\)
\(278\) 5037.63 1.08682
\(279\) −16.1098 137.215i −0.00345687 0.0294438i
\(280\) −515.768 −0.110082
\(281\) −680.160 + 1178.07i −0.144395 + 0.250099i −0.929147 0.369711i \(-0.879457\pi\)
0.784752 + 0.619810i \(0.212790\pi\)
\(282\) −6102.46 + 2023.88i −1.28864 + 0.427377i
\(283\) 13.1963 + 22.8567i 0.00277188 + 0.00480103i 0.867408 0.497598i \(-0.165784\pi\)
−0.864636 + 0.502399i \(0.832451\pi\)
\(284\) −1907.29 3303.53i −0.398510 0.690240i
\(285\) 1193.58 395.850i 0.248075 0.0822742i
\(286\) 225.562 390.685i 0.0466356 0.0807752i
\(287\) −108.993 −0.0224168
\(288\) −100.746 858.106i −0.0206130 0.175571i
\(289\) −4647.20 −0.945898
\(290\) −1615.01 + 2797.28i −0.327023 + 0.566420i
\(291\) 3486.07 + 3100.73i 0.702258 + 0.624633i
\(292\) 1178.77 + 2041.70i 0.236242 + 0.409183i
\(293\) 1987.12 + 3441.79i 0.396207 + 0.686250i 0.993254 0.115955i \(-0.0369930\pi\)
−0.597048 + 0.802206i \(0.703660\pi\)
\(294\) −102.845 + 498.729i −0.0204016 + 0.0989336i
\(295\) 1386.44 2401.38i 0.273633 0.473945i
\(296\) 2277.22 0.447164
\(297\) 788.135 + 1686.76i 0.153981 + 0.329547i
\(298\) −2630.25 −0.511297
\(299\) 782.921 1356.06i 0.151430 0.262284i
\(300\) −168.638 + 817.777i −0.0324543 + 0.157381i
\(301\) 1028.43 + 1781.29i 0.196936 + 0.341102i
\(302\) 1039.29 + 1800.11i 0.198028 + 0.342995i
\(303\) 4685.98 + 4168.01i 0.888457 + 0.790250i
\(304\) 210.209 364.093i 0.0396590 0.0686914i
\(305\) 1276.63 0.239671
\(306\) −705.910 + 526.096i −0.131877 + 0.0982841i
\(307\) 4596.06 0.854434 0.427217 0.904149i \(-0.359494\pi\)
0.427217 + 0.904149i \(0.359494\pi\)
\(308\) 185.787 321.793i 0.0343708 0.0595320i
\(309\) 1949.74 646.630i 0.358953 0.119047i
\(310\) −47.1277 81.6275i −0.00863442 0.0149553i
\(311\) 784.679 + 1359.10i 0.143071 + 0.247806i 0.928652 0.370953i \(-0.120969\pi\)
−0.785581 + 0.618759i \(0.787636\pi\)
\(312\) −670.642 + 222.418i −0.121691 + 0.0403588i
\(313\) −1619.60 + 2805.23i −0.292477 + 0.506585i −0.974395 0.224844i \(-0.927813\pi\)
0.681918 + 0.731429i \(0.261146\pi\)
\(314\) 5609.93 1.00824
\(315\) −1598.71 688.640i −0.285959 0.123176i
\(316\) −3464.18 −0.616694
\(317\) −1646.40 + 2851.66i −0.291708 + 0.505252i −0.974214 0.225628i \(-0.927557\pi\)
0.682506 + 0.730880i \(0.260890\pi\)
\(318\) −5177.88 4605.53i −0.913084 0.812155i
\(319\) −1163.50 2015.24i −0.204212 0.353705i
\(320\) −294.725 510.478i −0.0514863 0.0891769i
\(321\) −53.2742 + 258.343i −0.00926317 + 0.0449200i
\(322\) 644.863 1116.94i 0.111605 0.193306i
\(323\) −428.394 −0.0737972
\(324\) 833.439 2794.36i 0.142908 0.479142i
\(325\) 682.833 0.116544
\(326\) 4016.56 6956.89i 0.682383 1.18192i
\(327\) −2299.51 + 11151.1i −0.388879 + 1.88580i
\(328\) −62.2815 107.875i −0.0104845 0.0181597i
\(329\) 2165.32 + 3750.44i 0.362850 + 0.628475i
\(330\) 949.076 + 844.168i 0.158318 + 0.140818i
\(331\) −1445.06 + 2502.92i −0.239963 + 0.415628i −0.960703 0.277577i \(-0.910469\pi\)
0.720741 + 0.693205i \(0.243802\pi\)
\(332\) 1842.35 0.304555
\(333\) 7058.61 + 3040.48i 1.16159 + 0.500351i
\(334\) 6167.16 1.01033
\(335\) 944.793 1636.43i 0.154088 0.266889i
\(336\) −552.383 + 183.198i −0.0896873 + 0.0297448i
\(337\) 2587.21 + 4481.17i 0.418202 + 0.724347i 0.995759 0.0920033i \(-0.0293270\pi\)
−0.577557 + 0.816351i \(0.695994\pi\)
\(338\) −1908.09 3304.92i −0.307061 0.531845i
\(339\) −3481.79 + 1154.73i −0.557831 + 0.185005i
\(340\) −300.316 + 520.162i −0.0479027 + 0.0829699i
\(341\) 67.9043 0.0107836
\(342\) 1137.71 847.903i 0.179883 0.134062i
\(343\) 343.000 0.0539949
\(344\) −1175.35 + 2035.76i −0.184216 + 0.319072i
\(345\) 3294.22 + 2930.09i 0.514072 + 0.457248i
\(346\) −1840.94 3188.60i −0.286039 0.495434i
\(347\) −3055.70 5292.63i −0.472734 0.818800i 0.526779 0.850002i \(-0.323400\pi\)
−0.999513 + 0.0312028i \(0.990066\pi\)
\(348\) −736.083 + 3569.50i −0.113386 + 0.549842i
\(349\) 5398.38 9350.27i 0.827990 1.43412i −0.0716218 0.997432i \(-0.522817\pi\)
0.899612 0.436690i \(-0.143849\pi\)
\(350\) 562.424 0.0858938
\(351\) −2375.73 206.000i −0.361274 0.0313260i
\(352\) 424.657 0.0643019
\(353\) 438.245 759.062i 0.0660776 0.114450i −0.831094 0.556132i \(-0.812285\pi\)
0.897172 + 0.441682i \(0.145618\pi\)
\(354\) 631.906 3064.31i 0.0948741 0.460074i
\(355\) −4391.61 7606.49i −0.656570 1.13721i
\(356\) −276.764 479.370i −0.0412036 0.0713668i
\(357\) 443.094 + 394.116i 0.0656892 + 0.0584281i
\(358\) −655.758 + 1135.81i −0.0968097 + 0.167679i
\(359\) 3013.12 0.442970 0.221485 0.975164i \(-0.428910\pi\)
0.221485 + 0.975164i \(0.428910\pi\)
\(360\) −231.972 1975.82i −0.0339612 0.289264i
\(361\) −6168.56 −0.899338
\(362\) −380.429 + 658.922i −0.0552345 + 0.0956690i
\(363\) 5695.92 1889.05i 0.823577 0.273139i
\(364\) 237.961 + 412.161i 0.0342653 + 0.0593492i
\(365\) 2714.17 + 4701.08i 0.389223 + 0.674153i
\(366\) 1367.26 453.452i 0.195267 0.0647604i
\(367\) 2513.15 4352.90i 0.357453 0.619127i −0.630081 0.776529i \(-0.716978\pi\)
0.987535 + 0.157402i \(0.0503118\pi\)
\(368\) 1473.97 0.208794
\(369\) −49.0207 417.533i −0.00691575 0.0589048i
\(370\) 5243.37 0.736730
\(371\) −2333.85 + 4042.35i −0.326597 + 0.565683i
\(372\) −79.4668 70.6828i −0.0110757 0.00985143i
\(373\) −2696.02 4669.64i −0.374248 0.648217i 0.615966 0.787773i \(-0.288766\pi\)
−0.990214 + 0.139556i \(0.955433\pi\)
\(374\) −216.356 374.740i −0.0299131 0.0518111i
\(375\) −1596.48 + 7741.85i −0.219846 + 1.06610i
\(376\) −2474.65 + 4286.21i −0.339415 + 0.587885i
\(377\) 2980.49 0.407169
\(378\) −1956.80 169.674i −0.266262 0.0230876i
\(379\) 10989.7 1.48945 0.744724 0.667373i \(-0.232581\pi\)
0.744724 + 0.667373i \(0.232581\pi\)
\(380\) 484.015 838.339i 0.0653407 0.113173i
\(381\) 866.763 4203.20i 0.116550 0.565188i
\(382\) −2800.38 4850.40i −0.375078 0.649654i
\(383\) −6943.29 12026.1i −0.926333 1.60446i −0.789404 0.613874i \(-0.789610\pi\)
−0.136929 0.990581i \(-0.543723\pi\)
\(384\) −496.966 442.033i −0.0660434 0.0587432i
\(385\) 427.782 740.940i 0.0566280 0.0980826i
\(386\) 9038.70 1.19186
\(387\) −6361.27 + 4740.89i −0.835560 + 0.622720i
\(388\) 3591.53 0.469929
\(389\) 7095.63 12290.0i 0.924840 1.60187i 0.133021 0.991113i \(-0.457532\pi\)
0.791819 0.610756i \(-0.209135\pi\)
\(390\) −1544.18 + 512.126i −0.200493 + 0.0664936i
\(391\) −750.967 1300.71i −0.0971306 0.168235i
\(392\) 196.000 + 339.482i 0.0252538 + 0.0437409i
\(393\) −6206.81 + 2058.49i −0.796673 + 0.264216i
\(394\) −895.383 + 1550.85i −0.114489 + 0.198301i
\(395\) −7976.40 −1.01604
\(396\) 1316.29 + 566.990i 0.167036 + 0.0719502i
\(397\) −2502.53 −0.316369 −0.158185 0.987410i \(-0.550564\pi\)
−0.158185 + 0.987410i \(0.550564\pi\)
\(398\) 4115.94 7129.02i 0.518376 0.897853i
\(399\) −714.129 635.192i −0.0896020 0.0796976i
\(400\) 321.385 + 556.656i 0.0401732 + 0.0695820i
\(401\) 2826.36 + 4895.39i 0.351974 + 0.609636i 0.986595 0.163187i \(-0.0521773\pi\)
−0.634621 + 0.772823i \(0.718844\pi\)
\(402\) 430.614 2088.18i 0.0534256 0.259077i
\(403\) −43.4868 + 75.3214i −0.00537527 + 0.00931024i
\(404\) 4827.74 0.594527
\(405\) 1919.02 6434.11i 0.235450 0.789416i
\(406\) 2454.91 0.300087
\(407\) −1888.74 + 3271.39i −0.230028 + 0.398420i
\(408\) −136.877 + 663.759i −0.0166089 + 0.0805415i
\(409\) −453.580 785.623i −0.0548364 0.0949794i 0.837304 0.546737i \(-0.184130\pi\)
−0.892141 + 0.451758i \(0.850797\pi\)
\(410\) −143.406 248.386i −0.0172739 0.0299193i
\(411\) −2410.39 2143.95i −0.289284 0.257307i
\(412\) 790.649 1369.44i 0.0945449 0.163757i
\(413\) −2107.47 −0.251094
\(414\) 4568.83 + 1968.01i 0.542381 + 0.233629i
\(415\) 4242.09 0.501773
\(416\) −271.956 + 471.041i −0.0320523 + 0.0555161i
\(417\) 12422.8 4120.01i 1.45886 0.483832i
\(418\) 348.698 + 603.963i 0.0408024 + 0.0706718i
\(419\) 4203.95 + 7281.45i 0.490158 + 0.848978i 0.999936 0.0113276i \(-0.00360576\pi\)
−0.509778 + 0.860306i \(0.670272\pi\)
\(420\) −1271.88 + 421.819i −0.147765 + 0.0490064i
\(421\) −2876.51 + 4982.27i −0.332999 + 0.576772i −0.983098 0.183078i \(-0.941394\pi\)
0.650099 + 0.759849i \(0.274727\pi\)
\(422\) −759.613 −0.0876242
\(423\) −13393.4 + 9981.76i −1.53950 + 1.14735i
\(424\) −5334.52 −0.611007
\(425\) 327.482 567.216i 0.0373770 0.0647388i
\(426\) −7405.15 6586.60i −0.842208 0.749113i
\(427\) −485.140 840.287i −0.0549826 0.0952327i
\(428\) 101.529 + 175.853i 0.0114663 + 0.0198602i
\(429\) 236.715 1147.90i 0.0266403 0.129187i
\(430\) −2706.28 + 4687.41i −0.303508 + 0.525691i
\(431\) −2151.82 −0.240486 −0.120243 0.992744i \(-0.538367\pi\)
−0.120243 + 0.992744i \(0.538367\pi\)
\(432\) −950.239 2033.69i −0.105830 0.226495i
\(433\) 10561.9 1.17222 0.586112 0.810230i \(-0.300658\pi\)
0.586112 + 0.810230i \(0.300658\pi\)
\(434\) −35.8185 + 62.0394i −0.00396162 + 0.00686172i
\(435\) −1694.86 + 8218.90i −0.186810 + 0.905899i
\(436\) 4382.36 + 7590.46i 0.481369 + 0.833755i
\(437\) 1210.32 + 2096.34i 0.132489 + 0.229478i
\(438\) 4576.65 + 4070.76i 0.499271 + 0.444083i
\(439\) −5085.89 + 8809.02i −0.552930 + 0.957703i 0.445131 + 0.895465i \(0.353157\pi\)
−0.998061 + 0.0622376i \(0.980176\pi\)
\(440\) 977.787 0.105941
\(441\) 154.268 + 1313.98i 0.0166578 + 0.141883i
\(442\) 554.230 0.0596426
\(443\) −4425.62 + 7665.40i −0.474645 + 0.822109i −0.999578 0.0290345i \(-0.990757\pi\)
0.524934 + 0.851143i \(0.324090\pi\)
\(444\) 5615.60 1862.41i 0.600236 0.199068i
\(445\) −637.260 1103.77i −0.0678855 0.117581i
\(446\) −5187.29 8984.64i −0.550729 0.953891i
\(447\) −6486.19 + 2151.14i −0.686323 + 0.227619i
\(448\) −224.000 + 387.979i −0.0236228 + 0.0409159i
\(449\) 171.152 0.0179893 0.00899463 0.999960i \(-0.497137\pi\)
0.00899463 + 0.999960i \(0.497137\pi\)
\(450\) 252.956 + 2154.55i 0.0264989 + 0.225703i
\(451\) 206.627 0.0215736
\(452\) −1411.92 + 2445.52i −0.146927 + 0.254486i
\(453\) 4035.10 + 3589.07i 0.418511 + 0.372250i
\(454\) 1707.33 + 2957.17i 0.176495 + 0.305698i
\(455\) 547.915 + 949.017i 0.0564542 + 0.0977815i
\(456\) 220.603 1069.77i 0.0226550 0.109861i
\(457\) −7882.57 + 13653.0i −0.806851 + 1.39751i 0.108183 + 0.994131i \(0.465497\pi\)
−0.915034 + 0.403377i \(0.867836\pi\)
\(458\) −9773.79 −0.997160
\(459\) −1310.50 + 1874.68i −0.133266 + 0.190637i
\(460\) 3393.88 0.344001
\(461\) 3597.48 6231.02i 0.363452 0.629518i −0.625074 0.780565i \(-0.714931\pi\)
0.988527 + 0.151047i \(0.0482646\pi\)
\(462\) 194.973 945.485i 0.0196341 0.0952120i
\(463\) 2213.67 + 3834.20i 0.222199 + 0.384860i 0.955475 0.295071i \(-0.0953432\pi\)
−0.733276 + 0.679931i \(0.762010\pi\)
\(464\) 1402.81 + 2429.74i 0.140353 + 0.243098i
\(465\) −182.975 162.750i −0.0182479 0.0162308i
\(466\) −3829.40 + 6632.72i −0.380673 + 0.659345i
\(467\) −4861.63 −0.481733 −0.240866 0.970558i \(-0.577432\pi\)
−0.240866 + 0.970558i \(0.577432\pi\)
\(468\) −1471.89 + 1096.96i −0.145381 + 0.108349i
\(469\) −1436.14 −0.141397
\(470\) −5697.97 + 9869.17i −0.559208 + 0.968576i
\(471\) 13834.1 4588.06i 1.35338 0.448847i
\(472\) −1204.27 2085.86i −0.117439 0.203410i
\(473\) −1949.68 3376.95i −0.189527 0.328271i
\(474\) −8542.64 + 2833.17i −0.827798 + 0.274539i
\(475\) −527.799 + 914.174i −0.0509833 + 0.0883056i
\(476\) 456.499 0.0439571
\(477\) −16535.2 7122.50i −1.58720 0.683683i
\(478\) −8964.36 −0.857783
\(479\) −1762.81 + 3053.27i −0.168152 + 0.291247i −0.937770 0.347257i \(-0.887113\pi\)
0.769618 + 0.638504i \(0.220447\pi\)
\(480\) −1144.28 1017.80i −0.108811 0.0967830i
\(481\) −2419.15 4190.09i −0.229322 0.397197i
\(482\) −2058.04 3564.63i −0.194484 0.336856i
\(483\) 676.747 3281.76i 0.0637537 0.309162i
\(484\) 2309.79 4000.67i 0.216922 0.375720i
\(485\) 8269.64 0.774237
\(486\) −230.101 7572.50i −0.0214765 0.706781i
\(487\) −238.866 −0.0222259 −0.0111130 0.999938i \(-0.503537\pi\)
−0.0111130 + 0.999938i \(0.503537\pi\)
\(488\) 554.446 960.329i 0.0514315 0.0890820i
\(489\) 4215.15 20440.6i 0.389807 1.89030i
\(490\) 451.297 + 781.670i 0.0416072 + 0.0720658i
\(491\) −6393.92 11074.6i −0.587685 1.01790i −0.994535 0.104406i \(-0.966706\pi\)
0.406849 0.913495i \(-0.366627\pi\)
\(492\) −241.811 215.082i −0.0221579 0.0197086i
\(493\) 1429.42 2475.83i 0.130584 0.226178i
\(494\) −893.245 −0.0813543
\(495\) 3030.82 + 1305.51i 0.275202 + 0.118542i
\(496\) −81.8708 −0.00741151
\(497\) −3337.76 + 5781.17i −0.301245 + 0.521772i
\(498\) 4543.23 1506.76i 0.408809 0.135582i
\(499\) −2826.45 4895.56i −0.253566 0.439189i 0.710939 0.703254i \(-0.248270\pi\)
−0.964505 + 0.264064i \(0.914937\pi\)
\(500\) 3042.54 + 5269.83i 0.272133 + 0.471348i
\(501\) 15208.2 5043.79i 1.35619 0.449780i
\(502\) −5910.35 + 10237.0i −0.525482 + 0.910161i
\(503\) −14539.3 −1.28882 −0.644411 0.764679i \(-0.722897\pi\)
−0.644411 + 0.764679i \(0.722897\pi\)
\(504\) −1212.34 + 903.529i −0.107147 + 0.0798539i
\(505\) 11116.1 0.979520
\(506\) −1222.52 + 2117.47i −0.107407 + 0.186034i
\(507\) −7408.26 6589.37i −0.648940 0.577208i
\(508\) −1651.85 2861.10i −0.144270 0.249883i
\(509\) −2087.08 3614.94i −0.181745 0.314792i 0.760730 0.649069i \(-0.224841\pi\)
−0.942475 + 0.334277i \(0.891508\pi\)
\(510\) −315.164 + 1528.33i −0.0273641 + 0.132697i
\(511\) 2062.86 3572.97i 0.178582 0.309313i
\(512\) −512.000 −0.0441942
\(513\) 2112.12 3021.39i 0.181779 0.260035i
\(514\) 13123.3 1.12615
\(515\) 1820.50 3153.20i 0.155769 0.269799i
\(516\) −1233.46 + 5981.42i −0.105232 + 0.510305i
\(517\) −4104.98 7110.03i −0.349201 0.604833i
\(518\) −1992.56 3451.22i −0.169012 0.292737i
\(519\) −7147.53 6357.46i −0.604512 0.537691i
\(520\) −626.189 + 1084.59i −0.0528081 + 0.0914662i
\(521\) 1279.75 0.107614 0.0538068 0.998551i \(-0.482864\pi\)
0.0538068 + 0.998551i \(0.482864\pi\)
\(522\) 1104.12 + 9404.36i 0.0925790 + 0.788540i
\(523\) 17049.4 1.42547 0.712734 0.701435i \(-0.247457\pi\)
0.712734 + 0.701435i \(0.247457\pi\)
\(524\) −2516.96 + 4359.51i −0.209836 + 0.363446i
\(525\) 1386.93 459.977i 0.115297 0.0382382i
\(526\) −7081.66 12265.8i −0.587025 1.01676i
\(527\) 41.7120 + 72.2473i 0.00344782 + 0.00597180i
\(528\) 1047.20 347.304i 0.0863135 0.0286259i
\(529\) 1840.15 3187.23i 0.151241 0.261957i
\(530\) −12282.9 −1.00667
\(531\) −947.859 8073.38i −0.0774644 0.659802i
\(532\) −735.733 −0.0599588
\(533\) −132.327 + 229.197i −0.0107537 + 0.0186259i
\(534\) −1074.55 955.773i −0.0870793 0.0774538i
\(535\) 233.774 + 404.908i 0.0188914 + 0.0327209i
\(536\) −820.654 1421.41i −0.0661322 0.114544i
\(537\) −688.180 + 3337.20i −0.0553020 + 0.268176i
\(538\) 2665.66 4617.05i 0.213615 0.369991i
\(539\) −650.255 −0.0519638
\(540\) −2187.96 4682.65i −0.174361 0.373165i
\(541\) −21420.3 −1.70227 −0.851137 0.524943i \(-0.824087\pi\)
−0.851137 + 0.524943i \(0.824087\pi\)
\(542\) −7097.49 + 12293.2i −0.562478 + 0.974241i
\(543\) −399.238 + 1936.03i −0.0315524 + 0.153007i
\(544\) 260.856 + 451.816i 0.0205591 + 0.0356093i
\(545\) 10090.5 + 17477.3i 0.793085 + 1.37366i
\(546\) 923.896 + 821.771i 0.0724159 + 0.0644113i
\(547\) −3018.69 + 5228.52i −0.235959 + 0.408693i −0.959551 0.281535i \(-0.909157\pi\)
0.723592 + 0.690228i \(0.242490\pi\)
\(548\) −2483.30 −0.193579
\(549\) 3000.80 2236.42i 0.233281 0.173858i
\(550\) −1066.24 −0.0826627
\(551\) −2303.78 + 3990.26i −0.178120 + 0.308513i
\(552\) 3634.81 1205.48i 0.280268 0.0929507i
\(553\) 3031.15 + 5250.11i 0.233088 + 0.403721i
\(554\) 5254.58 + 9101.20i 0.402971 + 0.697965i
\(555\) 12930.1 4288.28i 0.988925 0.327977i
\(556\) 5037.63 8725.44i 0.384251 0.665541i
\(557\) −13190.0 −1.00337 −0.501684 0.865051i \(-0.667286\pi\)
−0.501684 + 0.865051i \(0.667286\pi\)
\(558\) −253.772 109.312i −0.0192528 0.00829307i
\(559\) 4994.41 0.377891
\(560\) −515.768 + 893.337i −0.0389200 + 0.0674114i
\(561\) −840.013 747.160i −0.0632181 0.0562302i
\(562\) 1360.32 + 2356.14i 0.102103 + 0.176847i
\(563\) −2034.55 3523.94i −0.152302 0.263794i 0.779771 0.626064i \(-0.215335\pi\)
−0.932073 + 0.362270i \(0.882002\pi\)
\(564\) −2597.00 + 12593.7i −0.193889 + 0.940228i
\(565\) −3251.00 + 5630.90i −0.242072 + 0.419281i
\(566\) 52.7854 0.00392003
\(567\) −4964.23 + 1181.95i −0.367686 + 0.0875436i
\(568\) −7629.17 −0.563579
\(569\) −3579.01 + 6199.03i −0.263691 + 0.456726i −0.967220 0.253941i \(-0.918273\pi\)
0.703529 + 0.710666i \(0.251606\pi\)
\(570\) 507.946 2463.19i 0.0373255 0.181003i
\(571\) 5038.25 + 8726.50i 0.369254 + 0.639567i 0.989449 0.144881i \(-0.0462798\pi\)
−0.620195 + 0.784448i \(0.712947\pi\)
\(572\) −451.124 781.370i −0.0329763 0.0571167i
\(573\) −10872.6 9670.77i −0.792686 0.705065i
\(574\) −108.993 + 188.781i −0.00792555 + 0.0137275i
\(575\) −3700.89 −0.268413
\(576\) −1587.03 683.608i −0.114803 0.0494508i
\(577\) 18349.2 1.32390 0.661948 0.749549i \(-0.269730\pi\)
0.661948 + 0.749549i \(0.269730\pi\)
\(578\) −4647.20 + 8049.18i −0.334425 + 0.579242i
\(579\) 22289.4 7392.27i 1.59985 0.530591i
\(580\) 3230.02 + 5594.56i 0.231240 + 0.400520i
\(581\) −1612.06 2792.17i −0.115111 0.199378i
\(582\) 8856.70 2937.32i 0.630794 0.209203i
\(583\) 4424.49 7663.43i 0.314311 0.544403i
\(584\) 4715.10 0.334096
\(585\) −3389.09 + 2525.80i −0.239524 + 0.178511i
\(586\) 7948.47 0.560321
\(587\) −12274.1 + 21259.4i −0.863045 + 1.49484i 0.00593027 + 0.999982i \(0.498112\pi\)
−0.868975 + 0.494855i \(0.835221\pi\)
\(588\) 760.979 + 676.863i 0.0533712 + 0.0474717i
\(589\) −67.2266 116.440i −0.00470293 0.00814571i
\(590\) −2772.88 4802.77i −0.193487 0.335130i
\(591\) −939.653 + 4556.67i −0.0654013 + 0.317151i
\(592\) 2277.22 3944.25i 0.158096 0.273831i
\(593\) 21383.6 1.48081 0.740404 0.672162i \(-0.234634\pi\)
0.740404 + 0.672162i \(0.234634\pi\)
\(594\) 3709.68 + 321.666i 0.256246 + 0.0222191i
\(595\) 1051.11 0.0724220
\(596\) −2630.25 + 4555.73i −0.180771 + 0.313104i
\(597\) 4319.44 20946.3i 0.296119 1.43597i
\(598\) −1565.84 2712.12i −0.107077 0.185463i
\(599\) −3700.86 6410.08i −0.252443 0.437244i 0.711755 0.702428i \(-0.247901\pi\)
−0.964198 + 0.265184i \(0.914567\pi\)
\(600\) 1247.79 + 1109.87i 0.0849016 + 0.0755168i
\(601\) −12051.6 + 20874.1i −0.817965 + 1.41676i 0.0892149 + 0.996012i \(0.471564\pi\)
−0.907179 + 0.420744i \(0.861769\pi\)
\(602\) 4113.71 0.278509
\(603\) −645.922 5501.63i −0.0436218 0.371548i
\(604\) 4157.17 0.280055
\(605\) 5318.37 9211.69i 0.357393 0.619022i
\(606\) 11905.2 3948.35i 0.798044 0.264671i
\(607\) 3136.92 + 5433.31i 0.209759 + 0.363313i 0.951639 0.307220i \(-0.0993987\pi\)
−0.741880 + 0.670533i \(0.766065\pi\)
\(608\) −420.419 728.187i −0.0280432 0.0485722i
\(609\) 6053.81 2007.74i 0.402812 0.133593i
\(610\) 1276.63 2211.19i 0.0847366 0.146768i
\(611\) 10515.5 0.696258
\(612\) 205.315 + 1748.77i 0.0135611 + 0.115506i
\(613\) −7269.75 −0.478992 −0.239496 0.970897i \(-0.576982\pi\)
−0.239496 + 0.970897i \(0.576982\pi\)
\(614\) 4596.06 7960.62i 0.302088 0.523232i
\(615\) −556.779 495.234i −0.0365065 0.0324712i
\(616\) −371.574 643.586i −0.0243038 0.0420955i
\(617\) 5956.71 + 10317.3i 0.388668 + 0.673193i 0.992271 0.124093i \(-0.0396020\pi\)
−0.603603 + 0.797285i \(0.706269\pi\)
\(618\) 829.741 4023.67i 0.0540082 0.261903i
\(619\) 9802.19 16977.9i 0.636483 1.10242i −0.349715 0.936856i \(-0.613722\pi\)
0.986199 0.165566i \(-0.0529450\pi\)
\(620\) −188.511 −0.0122109
\(621\) 12876.2 + 1116.50i 0.832054 + 0.0721473i
\(622\) 3138.72 0.202333
\(623\) −484.338 + 838.898i −0.0311470 + 0.0539482i
\(624\) −285.402 + 1384.00i −0.0183097 + 0.0887892i
\(625\) 4494.74 + 7785.11i 0.287663 + 0.498247i
\(626\) 3239.20 + 5610.46i 0.206812 + 0.358209i
\(627\) 1353.84 + 1204.19i 0.0862314 + 0.0766996i
\(628\) 5609.93 9716.69i 0.356466 0.617417i
\(629\) −4640.83 −0.294184
\(630\) −2791.47 + 2080.41i −0.176531 + 0.131564i
\(631\) 19282.8 1.21654 0.608269 0.793731i \(-0.291864\pi\)
0.608269 + 0.793731i \(0.291864\pi\)
\(632\) −3464.18 + 6000.13i −0.218034 + 0.377646i
\(633\) −1873.20 + 621.247i −0.117619 + 0.0390085i
\(634\) 3292.81 + 5703.31i 0.206268 + 0.357267i
\(635\) −3803.46 6587.78i −0.237694 0.411698i
\(636\) −13154.9 + 4362.82i −0.820165 + 0.272008i
\(637\) 416.433 721.282i 0.0259021 0.0448638i
\(638\) −4654.00 −0.288799
\(639\) −23647.9 10186.3i −1.46400 0.630613i
\(640\) −1178.90 −0.0728126
\(641\) 12089.1 20938.9i 0.744914 1.29023i −0.205321 0.978695i \(-0.565824\pi\)
0.950235 0.311535i \(-0.100843\pi\)
\(642\) 394.190 + 350.617i 0.0242328 + 0.0215541i
\(643\) −1526.21 2643.47i −0.0936047 0.162128i 0.815421 0.578869i \(-0.196506\pi\)
−0.909025 + 0.416741i \(0.863172\pi\)
\(644\) −1289.73 2233.87i −0.0789167 0.136688i
\(645\) −2840.08 + 13772.4i −0.173377 + 0.840759i
\(646\) −428.394 + 742.001i −0.0260913 + 0.0451914i
\(647\) 9110.78 0.553604 0.276802 0.960927i \(-0.410725\pi\)
0.276802 + 0.960927i \(0.410725\pi\)
\(648\) −4006.53 4237.92i −0.242888 0.256915i
\(649\) 3995.32 0.241649
\(650\) 682.833 1182.70i 0.0412045 0.0713683i
\(651\) −37.5894 + 182.283i −0.00226305 + 0.0109742i
\(652\) −8033.13 13913.8i −0.482518 0.835745i
\(653\) −6388.35 11064.9i −0.382841 0.663100i 0.608626 0.793457i \(-0.291721\pi\)
−0.991467 + 0.130357i \(0.958388\pi\)
\(654\) 17014.7 + 15133.9i 1.01732 + 0.904869i
\(655\) −5795.40 + 10037.9i −0.345718 + 0.598800i
\(656\) −249.126 −0.0148274
\(657\) 14615.2 + 6295.47i 0.867876 + 0.373835i
\(658\) 8661.26 0.513148
\(659\) 7580.50 13129.8i 0.448095 0.776123i −0.550167 0.835054i \(-0.685436\pi\)
0.998262 + 0.0589316i \(0.0187694\pi\)
\(660\) 2411.22 799.680i 0.142207 0.0471629i
\(661\) 12031.5 + 20839.3i 0.707977 + 1.22625i 0.965606 + 0.260009i \(0.0837254\pi\)
−0.257629 + 0.966244i \(0.582941\pi\)
\(662\) 2890.12 + 5005.84i 0.169679 + 0.293893i
\(663\) 1366.73 453.275i 0.0800593 0.0265517i
\(664\) 1842.35 3191.05i 0.107676 0.186501i
\(665\) −1694.05 −0.0987858
\(666\) 12324.9 9185.40i 0.717086 0.534425i
\(667\) −16153.9 −0.937755
\(668\) 6167.16 10681.8i 0.357207 0.618701i
\(669\) −20139.9 17913.7i −1.16391 1.03525i
\(670\) −1889.59 3272.86i −0.108957 0.188719i
\(671\) 919.723 + 1593.01i 0.0529143 + 0.0916503i
\(672\) −235.075 + 1139.95i −0.0134944 + 0.0654384i
\(673\) −8484.28 + 14695.2i −0.485951 + 0.841692i −0.999870 0.0161472i \(-0.994860\pi\)
0.513919 + 0.857839i \(0.328193\pi\)
\(674\) 10348.8 0.591427
\(675\) 2385.88 + 5106.23i 0.136048 + 0.291169i
\(676\) −7632.37 −0.434250
\(677\) −7891.34 + 13668.2i −0.447990 + 0.775941i −0.998255 0.0590489i \(-0.981193\pi\)
0.550265 + 0.834990i \(0.314527\pi\)
\(678\) −1481.73 + 7185.37i −0.0839314 + 0.407009i
\(679\) −3142.59 5443.13i −0.177616 0.307641i
\(680\) 600.631 + 1040.32i 0.0338723 + 0.0586686i
\(681\) 6628.77 + 5896.04i 0.373003 + 0.331772i
\(682\) 67.9043 117.614i 0.00381259 0.00660361i
\(683\) 11169.1 0.625728 0.312864 0.949798i \(-0.398712\pi\)
0.312864 + 0.949798i \(0.398712\pi\)
\(684\) −330.904 2818.47i −0.0184977 0.157554i
\(685\) −5717.90 −0.318934
\(686\) 343.000 594.093i 0.0190901 0.0330650i
\(687\) −24102.1 + 7993.46i −1.33850 + 0.443915i
\(688\) 2350.69 + 4071.52i 0.130261 + 0.225618i
\(689\) 5667.00 + 9815.54i 0.313346 + 0.542732i
\(690\) 8369.28 2775.67i 0.461758 0.153142i
\(691\) −5052.70 + 8751.53i −0.278167 + 0.481800i −0.970929 0.239366i \(-0.923060\pi\)
0.692762 + 0.721166i \(0.256394\pi\)
\(692\) −7363.75 −0.404520
\(693\) −292.459 2491.02i −0.0160312 0.136545i
\(694\) −12222.8 −0.668547
\(695\) 11599.3 20090.6i 0.633076 1.09652i
\(696\) 5446.47 + 4844.43i 0.296620 + 0.263833i
\(697\) 126.926 + 219.842i 0.00689766 + 0.0119471i
\(698\) −10796.8 18700.5i −0.585478 1.01408i
\(699\) −4018.73 + 19488.1i −0.217457 + 1.05452i
\(700\) 562.424 974.147i 0.0303681 0.0525990i
\(701\) 16988.8 0.915347 0.457673 0.889120i \(-0.348683\pi\)
0.457673 + 0.889120i \(0.348683\pi\)
\(702\) −2732.53 + 3908.89i −0.146913 + 0.210159i
\(703\) 7479.57 0.401276
\(704\) 424.657 735.527i 0.0227342 0.0393767i
\(705\) −5979.69 + 28997.4i −0.319444 + 1.54908i
\(706\) −876.489 1518.12i −0.0467239 0.0809283i
\(707\) −4224.27 7316.66i −0.224710 0.389210i
\(708\) −4675.64 4158.80i −0.248194 0.220759i
\(709\) −1246.94 + 2159.76i −0.0660504 + 0.114403i −0.897159 0.441707i \(-0.854373\pi\)
0.831109 + 0.556110i \(0.187706\pi\)
\(710\) −17566.4 −0.928531
\(711\) −18749.0 + 13973.1i −0.988949 + 0.737037i
\(712\) −1107.06 −0.0582707
\(713\) 235.694 408.234i 0.0123798 0.0214425i
\(714\) 1125.72 373.346i 0.0590044 0.0195688i
\(715\) −1038.73 1799.13i −0.0543305 0.0941032i
\(716\) 1311.52 + 2271.61i 0.0684548 + 0.118567i
\(717\) −22106.1 + 7331.47i −1.15142 + 0.381867i
\(718\) 3013.12 5218.87i 0.156614 0.271263i
\(719\) 4036.74 0.209381 0.104691 0.994505i \(-0.466615\pi\)
0.104691 + 0.994505i \(0.466615\pi\)
\(720\) −3654.20 1574.03i −0.189144 0.0814733i
\(721\) −2767.27 −0.142938
\(722\) −6168.56 + 10684.3i −0.317964 + 0.550730i
\(723\) −7990.44 7107.20i −0.411020 0.365587i
\(724\) 760.858 + 1317.84i 0.0390567 + 0.0676482i
\(725\) −3522.20 6100.64i −0.180429 0.312513i
\(726\) 2423.99 11754.7i 0.123915 0.600905i
\(727\) −14478.6 + 25077.6i −0.738624 + 1.27933i 0.214491 + 0.976726i \(0.431191\pi\)
−0.953115 + 0.302609i \(0.902143\pi\)
\(728\) 951.846 0.0484584
\(729\) −6760.57 18485.5i −0.343472 0.939163i
\(730\) 10856.7 0.550444
\(731\) 2395.28 4148.76i 0.121194 0.209914i
\(732\) 581.859 2821.62i 0.0293800 0.142473i
\(733\) −17611.3 30503.6i −0.887431 1.53708i −0.842902 0.538068i \(-0.819155\pi\)
−0.0445293 0.999008i \(-0.514179\pi\)
\(734\) −5026.30 8705.81i −0.252758 0.437789i
\(735\) 1752.18 + 1558.50i 0.0879323 + 0.0782125i
\(736\) 1473.97 2553.00i 0.0738198 0.127860i
\(737\) 2722.62 0.136078
\(738\) −772.208 332.626i −0.0385168 0.0165910i
\(739\) −11455.8 −0.570241 −0.285121 0.958492i \(-0.592034\pi\)
−0.285121 + 0.958492i \(0.592034\pi\)
\(740\) 5243.37 9081.79i 0.260473 0.451153i
\(741\) −2202.74 + 730.538i −0.109203 + 0.0362172i
\(742\) 4667.70 + 8084.70i 0.230939 + 0.399998i
\(743\) −69.2081 119.872i −0.00341723 0.00591881i 0.864312 0.502956i \(-0.167754\pi\)
−0.867729 + 0.497038i \(0.834421\pi\)
\(744\) −201.893 + 66.9578i −0.00994860 + 0.00329945i
\(745\) −6056.26 + 10489.7i −0.297831 + 0.515859i
\(746\) −10784.1 −0.529267
\(747\) 9971.28 7431.33i 0.488394 0.363987i
\(748\) −865.425 −0.0423036
\(749\) 177.675 307.742i 0.00866770 0.0150129i
\(750\) 11812.8 + 10507.0i 0.575123 + 0.511551i
\(751\) −5802.38 10050.0i −0.281933 0.488323i 0.689928 0.723878i \(-0.257642\pi\)
−0.971861 + 0.235556i \(0.924309\pi\)
\(752\) 4949.29 + 8572.43i 0.240003 + 0.415697i
\(753\) −6202.57 + 30078.2i −0.300178 + 1.45566i
\(754\) 2980.49 5162.35i 0.143956 0.249339i
\(755\) 9572.04 0.461407
\(756\) −2250.69 + 3219.61i −0.108276 + 0.154889i
\(757\) 10192.7 0.489377 0.244689 0.969602i \(-0.421314\pi\)
0.244689 + 0.969602i \(0.421314\pi\)
\(758\) 10989.7 19034.6i 0.526599 0.912097i
\(759\) −1282.97 + 6221.52i −0.0613555 + 0.297532i
\(760\) −968.030 1676.68i −0.0462028 0.0800256i
\(761\) 14615.8 + 25315.4i 0.696220 + 1.20589i 0.969768 + 0.244030i \(0.0784696\pi\)
−0.273548 + 0.961858i \(0.588197\pi\)
\(762\) −6413.40 5704.48i −0.304899 0.271196i
\(763\) 7669.12 13283.3i 0.363881 0.630260i
\(764\) −11201.5 −0.530440
\(765\) 472.746 + 4026.61i 0.0223427 + 0.190304i
\(766\) −27773.2 −1.31003
\(767\) −2558.66 + 4431.73i −0.120454 + 0.208632i
\(768\) −1262.59 + 418.737i −0.0593226 + 0.0196743i
\(769\) −6290.17 10894.9i −0.294967 0.510897i 0.680011 0.733202i \(-0.261975\pi\)
−0.974977 + 0.222305i \(0.928642\pi\)
\(770\) −855.564 1481.88i −0.0400421 0.0693549i
\(771\) 32361.9 10732.8i 1.51165 0.501340i
\(772\) 9038.70 15655.5i 0.421386 0.729861i
\(773\) −16234.1 −0.755369 −0.377685 0.925934i \(-0.623280\pi\)
−0.377685 + 0.925934i \(0.623280\pi\)
\(774\) 1850.19 + 15758.9i 0.0859219 + 0.731839i
\(775\) 205.563 0.00952780
\(776\) 3591.53 6220.72i 0.166145 0.287771i
\(777\) −7736.22 6881.08i −0.357188 0.317706i
\(778\) −14191.3 24580.0i −0.653961 1.13269i
\(779\) −204.565 354.317i −0.00940861 0.0162962i
\(780\) −657.149 + 3186.72i −0.0301663 + 0.146286i
\(781\) 6327.69 10959.9i 0.289913 0.502145i
\(782\) −3003.87 −0.137363
\(783\) 10414.1 + 22288.1i 0.475312 + 1.01726i
\(784\) 784.000 0.0357143
\(785\) 12917.1 22373.0i 0.587300 1.01723i
\(786\) −2641.41 + 12809.0i −0.119867 + 0.581275i
\(787\) 2893.33 + 5011.39i 0.131050 + 0.226985i 0.924081 0.382196i \(-0.124832\pi\)
−0.793032 + 0.609180i \(0.791499\pi\)
\(788\) 1790.77 + 3101.70i 0.0809561 + 0.140220i
\(789\) −27494.9 24455.7i −1.24061 1.10348i
\(790\) −7976.40 + 13815.5i −0.359225 + 0.622195i
\(791\) 4941.72 0.222133
\(792\) 2298.35 1712.90i 0.103117 0.0768500i
\(793\) −2356.01 −0.105504
\(794\) −2502.53 + 4334.52i −0.111853 + 0.193736i
\(795\) −30289.6 + 10045.5i −1.35127 + 0.448149i
\(796\) −8231.89 14258.0i −0.366547 0.634878i
\(797\) 11539.7 + 19987.3i 0.512868 + 0.888314i 0.999889 + 0.0149231i \(0.00475036\pi\)
−0.487021 + 0.873391i \(0.661916\pi\)
\(798\) −1814.31 + 601.717i −0.0804837 + 0.0266924i
\(799\) 5043.18 8735.05i 0.223298 0.386763i
\(800\) 1285.54 0.0568134
\(801\) −3431.51 1478.11i −0.151369 0.0652017i
\(802\) 11305.4 0.497766
\(803\) −3910.74 + 6773.60i −0.171864 + 0.297677i
\(804\) −3186.23 2834.03i −0.139763 0.124314i
\(805\) −2969.64 5143.57i −0.130020 0.225201i
\(806\) 86.9737 + 150.643i 0.00380089 + 0.00658333i
\(807\) 2797.45 13565.7i 0.122026 0.591742i
\(808\) 4827.74 8361.89i 0.210197 0.364072i
\(809\) −19604.2 −0.851973 −0.425986 0.904730i \(-0.640073\pi\)
−0.425986 + 0.904730i \(0.640073\pi\)
\(810\) −9225.19 9757.96i −0.400173 0.423284i
\(811\) −37188.0 −1.61017 −0.805086 0.593159i \(-0.797881\pi\)
−0.805086 + 0.593159i \(0.797881\pi\)
\(812\) 2454.91 4252.04i 0.106097 0.183765i
\(813\) −7448.41 + 36119.7i −0.321312 + 1.55814i
\(814\) 3777.48 + 6542.79i 0.162654 + 0.281725i
\(815\) −18496.6 32037.0i −0.794977 1.37694i
\(816\) 1012.79 + 900.836i 0.0434493 + 0.0386465i
\(817\) −3860.45 + 6686.50i −0.165312 + 0.286329i
\(818\) −1814.32 −0.0775503
\(819\) 2950.41 + 1270.88i 0.125880 + 0.0542223i
\(820\) −573.622 −0.0244290
\(821\) −7747.41 + 13418.9i −0.329338 + 0.570430i −0.982381 0.186891i \(-0.940159\pi\)
0.653043 + 0.757321i \(0.273492\pi\)
\(822\) −6123.81 + 2030.96i −0.259845 + 0.0861775i
\(823\) 20445.9 + 35413.3i 0.865975 + 1.49991i 0.866076 + 0.499913i \(0.166635\pi\)
−0.000100432 1.00000i \(0.500032\pi\)
\(824\) −1581.30 2738.89i −0.0668533 0.115793i
\(825\) −2629.33 + 872.019i −0.110960 + 0.0367997i
\(826\) −2107.47 + 3650.25i −0.0887753 + 0.153763i
\(827\) 11679.5 0.491095 0.245548 0.969385i \(-0.421032\pi\)
0.245548 + 0.969385i \(0.421032\pi\)
\(828\) 7977.52 5945.43i 0.334828 0.249539i
\(829\) −32752.5 −1.37219 −0.686093 0.727514i \(-0.740676\pi\)
−0.686093 + 0.727514i \(0.740676\pi\)
\(830\) 4242.09 7347.51i 0.177404 0.307272i
\(831\) 20401.1 + 18146.1i 0.851634 + 0.757497i
\(832\) 543.912 + 942.083i 0.0226644 + 0.0392558i
\(833\) −399.436 691.844i −0.0166142 0.0287767i
\(834\) 5286.71 25636.9i 0.219501 1.06443i
\(835\) 14200.1 24595.3i 0.588521 1.01935i
\(836\) 1394.79 0.0577033
\(837\) −715.201 62.0150i −0.0295352 0.00256100i
\(838\) 16815.8 0.693188
\(839\) −3791.12 + 6566.40i −0.156000 + 0.270200i −0.933423 0.358779i \(-0.883193\pi\)
0.777423 + 0.628978i \(0.216527\pi\)
\(840\) −541.269 + 2624.78i −0.0222328 + 0.107814i
\(841\) −3179.50 5507.05i −0.130366 0.225801i
\(842\) 5753.03 + 9964.53i 0.235466 + 0.407839i
\(843\) 5281.50 + 4697.70i 0.215783 + 0.191931i
\(844\) −759.613 + 1315.69i −0.0309798 + 0.0536586i
\(845\) −17573.8 −0.715453
\(846\) 3895.50 + 33179.8i 0.158310 + 1.34840i
\(847\) −8084.25 −0.327955
\(848\) −5334.52 + 9239.65i −0.216024 + 0.374164i
\(849\) 130.168 43.1703i 0.00526192 0.00174511i
\(850\) −654.964 1134.43i −0.0264295 0.0457773i
\(851\) 13111.5 + 22709.9i 0.528153 + 0.914787i
\(852\) −18813.5 + 6239.49i −0.756501 + 0.250894i
\(853\) 9768.24 16919.1i 0.392096 0.679131i −0.600629 0.799528i \(-0.705083\pi\)
0.992726 + 0.120397i \(0.0384166\pi\)
\(854\) −1940.56 −0.0777572
\(855\) −761.919 6489.63i −0.0304761 0.259580i
\(856\) 406.115 0.0162158
\(857\) 15657.5 27119.5i 0.624094 1.08096i −0.364621 0.931156i \(-0.618801\pi\)
0.988715 0.149807i \(-0.0478652\pi\)
\(858\) −1751.51 1557.90i −0.0696919 0.0619883i
\(859\) −9550.43 16541.8i −0.379344 0.657043i 0.611623 0.791149i \(-0.290517\pi\)
−0.990967 + 0.134106i \(0.957184\pi\)
\(860\) 5412.56 + 9374.82i 0.214612 + 0.371719i
\(861\) −114.382 + 554.672i −0.00452742 + 0.0219549i
\(862\) −2151.82 + 3727.06i −0.0850247 + 0.147267i
\(863\) 34822.8 1.37356 0.686779 0.726866i \(-0.259024\pi\)
0.686779 + 0.726866i \(0.259024\pi\)
\(864\) −4472.69 387.827i −0.176116 0.0152710i
\(865\) −16955.3 −0.666472
\(866\) 10561.9 18293.8i 0.414444 0.717838i
\(867\) −4876.96 + 23649.9i −0.191038 + 0.926405i
\(868\) 71.6370 + 124.079i 0.00280129 + 0.00485197i
\(869\) −5746.43 9953.10i −0.224320 0.388534i
\(870\) 12540.7 + 11154.5i 0.488700 + 0.434681i
\(871\) −1743.61 + 3020.02i −0.0678299 + 0.117485i
\(872\) 17529.4 0.680758
\(873\) 19438.3 14486.8i 0.753592 0.561633i
\(874\) 4841.30 0.187368
\(875\) 5324.44 9222.21i 0.205713 0.356306i
\(876\) 11627.4 3856.23i 0.448463 0.148733i
\(877\) 5648.90 + 9784.19i 0.217503 + 0.376726i 0.954044 0.299667i \(-0.0968756\pi\)
−0.736541 + 0.676393i \(0.763542\pi\)
\(878\) 10171.8 + 17618.0i 0.390981 + 0.677198i
\(879\) 19600.9 6500.63i 0.752129 0.249443i
\(880\) 977.787 1693.58i 0.0374559 0.0648756i
\(881\) 3346.43 0.127973 0.0639864 0.997951i \(-0.479619\pi\)
0.0639864 + 0.997951i \(0.479619\pi\)
\(882\) 2430.14 + 1046.78i 0.0927744 + 0.0399623i
\(883\) 14001.0 0.533603 0.266801 0.963752i \(-0.414033\pi\)
0.266801 + 0.963752i \(0.414033\pi\)
\(884\) 554.230 959.954i 0.0210868 0.0365235i
\(885\) −10765.8 9575.80i −0.408914 0.363714i
\(886\) 8851.24 + 15330.8i 0.335624 + 0.581319i
\(887\) 5947.09 + 10300.7i 0.225123 + 0.389924i 0.956356 0.292203i \(-0.0943884\pi\)
−0.731234 + 0.682127i \(0.761055\pi\)
\(888\) 2389.81 11588.9i 0.0903115 0.437949i
\(889\) −2890.74 + 5006.92i −0.109058 + 0.188894i
\(890\) −2549.04 −0.0960046
\(891\) 9411.13 2240.73i 0.353855 0.0842504i
\(892\) −20749.1 −0.778849
\(893\) −8128.03 + 14078.2i −0.304585 + 0.527556i
\(894\) −2760.30 + 13385.6i −0.103264 + 0.500761i
\(895\) 3019.81 + 5230.47i 0.112783 + 0.195347i
\(896\) 448.000 + 775.959i 0.0167038 + 0.0289319i
\(897\) −6079.46 5407.45i −0.226296 0.201282i
\(898\) 171.152 296.444i 0.00636016 0.0110161i
\(899\) 897.259 0.0332873
\(900\) 3984.75 + 1716.42i 0.147583 + 0.0635711i
\(901\) 10871.4 0.401975
\(902\) 206.627 357.889i 0.00762741 0.0132111i
\(903\) 10144.4 3364.38i 0.373847 0.123986i
\(904\) 2823.84 + 4891.04i 0.103893 + 0.179949i
\(905\) 1751.90 + 3034.39i 0.0643483 + 0.111455i
\(906\) 10251.6 3399.93i 0.375922 0.124674i
\(907\) 16776.1 29057.1i 0.614158 1.06375i −0.376373 0.926468i \(-0.622829\pi\)
0.990532 0.137286i \(-0.0438378\pi\)
\(908\) 6829.30 0.249602
\(909\) 26129.0 19473.2i 0.953402 0.710546i
\(910\) 2191.66 0.0798383
\(911\) 27055.7 46861.9i 0.983969 1.70428i 0.337538 0.941312i \(-0.390406\pi\)
0.646431 0.762972i \(-0.276261\pi\)
\(912\) −1632.30 1451.87i −0.0592661 0.0527150i
\(913\) 3056.12 + 5293.36i 0.110781 + 0.191878i
\(914\) 15765.1 + 27306.0i 0.570530 + 0.988187i
\(915\) 1339.75 6496.88i 0.0484053 0.234732i
\(916\) −9773.79 + 16928.7i −0.352549 + 0.610633i
\(917\) 8809.37 0.317242
\(918\) 1936.53 + 4144.54i 0.0696242 + 0.149009i
\(919\) 662.276 0.0237720 0.0118860 0.999929i \(-0.496216\pi\)
0.0118860 + 0.999929i \(0.496216\pi\)
\(920\) 3393.88 5878.37i 0.121623 0.210657i
\(921\) 4823.30 23389.7i 0.172566 0.836826i
\(922\) −7194.97 12462.0i −0.257000 0.445136i
\(923\) 8104.68 + 14037.7i 0.289023 + 0.500603i
\(924\) −1442.65 1283.19i −0.0513635 0.0456859i
\(925\) −5717.69 + 9903.32i −0.203239 + 0.352021i
\(926\) 8854.70 0.314237
\(927\) −1244.61 10601.0i −0.0440975 0.375600i
\(928\) 5611.23 0.198489
\(929\) −23513.5 + 40726.5i −0.830411 + 1.43831i 0.0673014 + 0.997733i \(0.478561\pi\)
−0.897713 + 0.440582i \(0.854772\pi\)
\(930\) −464.866 + 154.173i −0.0163909 + 0.00543605i
\(931\) 643.766 + 1115.04i 0.0226623 + 0.0392522i
\(932\) 7658.80 + 13265.4i 0.269176 + 0.466227i
\(933\) 7740.05 2566.99i 0.271595 0.0900744i
\(934\) −4861.63 + 8420.58i −0.170318 + 0.295000i
\(935\) −1992.67 −0.0696977
\(936\) 428.103 + 3646.36i 0.0149498 + 0.127334i
\(937\) 17852.7 0.622437 0.311218 0.950338i \(-0.399263\pi\)
0.311218 + 0.950338i \(0.399263\pi\)
\(938\) −1436.14 + 2487.47i −0.0499912 + 0.0865873i
\(939\) 12576.3 + 11186.2i 0.437075 + 0.388762i
\(940\) 11395.9 + 19738.3i 0.395419 + 0.684887i
\(941\) −18652.4 32306.9i −0.646175 1.11921i −0.984029 0.178010i \(-0.943034\pi\)
0.337853 0.941199i \(-0.390299\pi\)
\(942\) 5887.30 28549.4i 0.203629 0.987461i
\(943\) 717.198 1242.22i 0.0247669 0.0428975i
\(944\) −4817.08 −0.166083
\(945\) −5182.29 + 7413.27i −0.178391 + 0.255189i
\(946\) −7798.72 −0.268032
\(947\) −17476.9 + 30270.8i −0.599706 + 1.03872i 0.393158 + 0.919471i \(0.371383\pi\)
−0.992864 + 0.119251i \(0.961951\pi\)
\(948\) −3635.45 + 17629.5i −0.124551 + 0.603985i
\(949\) −5008.98 8675.81i −0.171337 0.296764i
\(950\) 1055.60 + 1828.35i 0.0360506 + 0.0624415i
\(951\) 12784.5 + 11371.3i 0.435926 + 0.387740i
\(952\) 456.499 790.679i 0.0155412 0.0269181i
\(953\) −19162.4 −0.651343 −0.325671 0.945483i \(-0.605590\pi\)
−0.325671 + 0.945483i \(0.605590\pi\)
\(954\) −28871.8 + 21517.4i −0.979830 + 0.730241i
\(955\) −25791.9 −0.873933
\(956\) −8964.36 + 15526.7i −0.303272 + 0.525283i
\(957\) −11476.7 + 3806.26i −0.387659 + 0.128567i
\(958\) 3525.61 + 6106.54i 0.118901 + 0.205943i
\(959\) 2172.89 + 3763.56i 0.0731661 + 0.126727i
\(960\) −2907.16 + 964.159i −0.0977376 + 0.0324147i
\(961\) 14882.4 25777.1i 0.499561 0.865264i
\(962\) −9676.60 −0.324310
\(963\) 1258.82 + 542.233i 0.0421235 + 0.0181446i
\(964\) −8232.16 −0.275042
\(965\) 20811.9 36047.3i 0.694259 1.20249i
\(966\) −5007.42 4453.92i −0.166782 0.148346i
\(967\) 8822.46 + 15280.9i 0.293393 + 0.508172i 0.974610 0.223910i \(-0.0718822\pi\)
−0.681217 + 0.732082i \(0.738549\pi\)
\(968\) −4619.57 8001.34i −0.153387 0.265674i
\(969\) −449.575 + 2180.13i −0.0149045 + 0.0722764i
\(970\) 8269.64 14323.4i 0.273734 0.474121i
\(971\) 48568.3 1.60518 0.802590 0.596530i \(-0.203454\pi\)
0.802590 + 0.596530i \(0.203454\pi\)
\(972\) −13346.0 7173.95i −0.440406 0.236733i
\(973\) −17631.7 −0.580932
\(974\) −238.866 + 413.727i −0.00785805 + 0.0136105i
\(975\) 716.594 3474.99i 0.0235378 0.114142i
\(976\) −1108.89 1920.66i −0.0363676 0.0629905i
\(977\) 4478.17 + 7756.41i 0.146642 + 0.253991i 0.929984 0.367599i \(-0.119820\pi\)
−0.783342 + 0.621591i \(0.786487\pi\)
\(978\) −31189.0 27741.4i −1.01975 0.907028i
\(979\) 918.202 1590.37i 0.0299753 0.0519188i
\(980\) 1805.19 0.0588415
\(981\) 54335.4 + 23404.8i 1.76840 + 0.761731i
\(982\) −25575.7 −0.831113
\(983\) −26235.8 + 45441.8i −0.851264 + 1.47443i 0.0288038 + 0.999585i \(0.490830\pi\)
−0.880068 + 0.474848i \(0.842503\pi\)
\(984\) −614.344 + 203.747i −0.0199030 + 0.00660083i
\(985\) 4123.31 + 7141.78i 0.133380 + 0.231021i
\(986\) −2858.84 4951.66i −0.0923367 0.159932i
\(987\) 21358.6 7083.58i 0.688807 0.228443i
\(988\) −893.245 + 1547.15i −0.0287631 + 0.0498191i
\(989\) −27069.2 −0.870324
\(990\) 5292.03 3944.01i 0.169891 0.126615i
\(991\) 8829.03 0.283010 0.141505 0.989938i \(-0.454806\pi\)
0.141505 + 0.989938i \(0.454806\pi\)
\(992\) −81.8708 + 141.804i −0.00262036 + 0.00453860i
\(993\) 11221.0 + 9980.68i 0.358599 + 0.318960i
\(994\) 6675.52 + 11562.3i 0.213013 + 0.368949i
\(995\) −18954.2 32829.7i −0.603909 1.04600i
\(996\) 1933.44 9375.87i 0.0615095 0.298279i
\(997\) 19800.7 34295.9i 0.628983 1.08943i −0.358774 0.933425i \(-0.616805\pi\)
0.987756 0.156005i \(-0.0498617\pi\)
\(998\) −11305.8 −0.358597
\(999\) 22880.8 32731.0i 0.724641 1.03660i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.4.f.a.43.3 6
3.2 odd 2 378.4.f.a.127.3 6
9.2 odd 6 1134.4.a.h.1.1 3
9.4 even 3 inner 126.4.f.a.85.3 yes 6
9.5 odd 6 378.4.f.a.253.3 6
9.7 even 3 1134.4.a.g.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.4.f.a.43.3 6 1.1 even 1 trivial
126.4.f.a.85.3 yes 6 9.4 even 3 inner
378.4.f.a.127.3 6 3.2 odd 2
378.4.f.a.253.3 6 9.5 odd 6
1134.4.a.g.1.3 3 9.7 even 3
1134.4.a.h.1.1 3 9.2 odd 6