Properties

Label 126.3.n.c
Level $126$
Weight $3$
Character orbit 126.n
Analytic conductor $3.433$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} + 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} + 2 \beta_{2} q^{4} + ( 1 - 2 \beta_{1} - \beta_{2} - 4 \beta_{3} ) q^{5} + ( 3 - 4 \beta_{1} + 2 \beta_{2} - 5 \beta_{3} ) q^{7} + 2 \beta_{3} q^{8} +O(q^{10})\) \( q + \beta_{1} q^{2} + 2 \beta_{2} q^{4} + ( 1 - 2 \beta_{1} - \beta_{2} - 4 \beta_{3} ) q^{5} + ( 3 - 4 \beta_{1} + 2 \beta_{2} - 5 \beta_{3} ) q^{7} + 2 \beta_{3} q^{8} + ( 8 + \beta_{1} + 4 \beta_{2} - \beta_{3} ) q^{10} + ( -3 \beta_{1} + 9 \beta_{2} - 3 \beta_{3} ) q^{11} + ( 6 + 4 \beta_{1} + 12 \beta_{2} + 2 \beta_{3} ) q^{13} + ( 10 + 3 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{14} + ( -4 - 4 \beta_{2} ) q^{16} + ( 10 - 2 \beta_{1} + 5 \beta_{2} + 2 \beta_{3} ) q^{17} + ( 1 - \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{19} + ( 2 + 8 \beta_{1} + 4 \beta_{2} + 4 \beta_{3} ) q^{20} + ( 6 + 9 \beta_{3} ) q^{22} + ( -15 - 9 \beta_{1} - 15 \beta_{2} ) q^{23} + ( -12 \beta_{1} - 2 \beta_{2} - 12 \beta_{3} ) q^{25} + ( -4 + 6 \beta_{1} + 4 \beta_{2} + 12 \beta_{3} ) q^{26} + ( -4 + 10 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{28} + ( -12 - 6 \beta_{3} ) q^{29} + ( -14 - 15 \beta_{1} - 7 \beta_{2} + 15 \beta_{3} ) q^{31} + ( -4 \beta_{1} - 4 \beta_{3} ) q^{32} + ( -4 + 10 \beta_{1} - 8 \beta_{2} + 5 \beta_{3} ) q^{34} + ( -7 - 7 \beta_{1} - 35 \beta_{2} - 14 \beta_{3} ) q^{35} + ( -31 + 24 \beta_{1} - 31 \beta_{2} ) q^{37} + ( 4 + \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{38} + ( -8 + 2 \beta_{1} + 8 \beta_{2} + 4 \beta_{3} ) q^{40} + ( 2 + 20 \beta_{1} + 4 \beta_{2} + 10 \beta_{3} ) q^{41} + ( -2 + 6 \beta_{3} ) q^{43} + ( -18 + 6 \beta_{1} - 18 \beta_{2} ) q^{44} + ( -15 \beta_{1} - 18 \beta_{2} - 15 \beta_{3} ) q^{46} + ( -29 + \beta_{1} + 29 \beta_{2} + 2 \beta_{3} ) q^{47} + ( -25 - 4 \beta_{1} - 40 \beta_{2} - 26 \beta_{3} ) q^{49} + ( 24 - 2 \beta_{3} ) q^{50} + ( -24 - 4 \beta_{1} - 12 \beta_{2} + 4 \beta_{3} ) q^{52} + ( -12 \beta_{1} - 39 \beta_{2} - 12 \beta_{3} ) q^{53} + ( -3 + 30 \beta_{1} - 6 \beta_{2} + 15 \beta_{3} ) q^{55} + ( -4 - 4 \beta_{1} + 16 \beta_{2} + 2 \beta_{3} ) q^{56} + ( 12 - 12 \beta_{1} + 12 \beta_{2} ) q^{58} + ( 26 - 25 \beta_{1} + 13 \beta_{2} + 25 \beta_{3} ) q^{59} + ( -7 + 32 \beta_{1} + 7 \beta_{2} + 64 \beta_{3} ) q^{61} + ( -30 - 14 \beta_{1} - 60 \beta_{2} - 7 \beta_{3} ) q^{62} + 8 q^{64} + ( 42 + 42 \beta_{1} + 42 \beta_{2} ) q^{65} + ( -45 \beta_{1} + 29 \beta_{2} - 45 \beta_{3} ) q^{67} + ( -10 - 4 \beta_{1} + 10 \beta_{2} - 8 \beta_{3} ) q^{68} + ( 28 - 7 \beta_{1} + 14 \beta_{2} - 35 \beta_{3} ) q^{70} + ( 6 + 30 \beta_{3} ) q^{71} + ( 106 - 16 \beta_{1} + 53 \beta_{2} + 16 \beta_{3} ) q^{73} + ( -31 \beta_{1} + 48 \beta_{2} - 31 \beta_{3} ) q^{74} + ( 2 + 4 \beta_{1} + 4 \beta_{2} + 2 \beta_{3} ) q^{76} + ( -42 + 42 \beta_{1} - 21 \beta_{2} ) q^{77} + ( 55 - 15 \beta_{1} + 55 \beta_{2} ) q^{79} + ( -8 - 8 \beta_{1} - 4 \beta_{2} + 8 \beta_{3} ) q^{80} + ( -20 + 2 \beta_{1} + 20 \beta_{2} + 4 \beta_{3} ) q^{82} + ( 68 + 8 \beta_{1} + 136 \beta_{2} + 4 \beta_{3} ) q^{83} + ( -9 - 24 \beta_{3} ) q^{85} + ( -12 - 2 \beta_{1} - 12 \beta_{2} ) q^{86} + ( -18 \beta_{1} + 12 \beta_{2} - 18 \beta_{3} ) q^{88} + ( 63 + 24 \beta_{1} - 63 \beta_{2} + 48 \beta_{3} ) q^{89} + ( 30 + 44 \beta_{1} + 48 \beta_{2} - 8 \beta_{3} ) q^{91} + ( 30 - 18 \beta_{3} ) q^{92} + ( -4 - 29 \beta_{1} - 2 \beta_{2} + 29 \beta_{3} ) q^{94} + ( -9 \beta_{1} - 15 \beta_{2} - 9 \beta_{3} ) q^{95} + ( 22 + 52 \beta_{1} + 44 \beta_{2} + 26 \beta_{3} ) q^{97} + ( 52 - 25 \beta_{1} + 44 \beta_{2} - 40 \beta_{3} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 6 q^{5} + 8 q^{7} + O(q^{10}) \) \( 4 q - 4 q^{4} + 6 q^{5} + 8 q^{7} + 24 q^{10} - 18 q^{11} + 36 q^{14} - 8 q^{16} + 30 q^{17} + 6 q^{19} + 24 q^{22} - 30 q^{23} + 4 q^{25} - 24 q^{26} - 20 q^{28} - 48 q^{29} - 42 q^{31} + 42 q^{35} - 62 q^{37} + 12 q^{38} - 48 q^{40} - 8 q^{43} - 36 q^{44} + 36 q^{46} - 174 q^{47} - 20 q^{49} + 96 q^{50} - 72 q^{52} + 78 q^{53} - 48 q^{56} + 24 q^{58} + 78 q^{59} - 42 q^{61} + 32 q^{64} + 84 q^{65} - 58 q^{67} - 60 q^{68} + 84 q^{70} + 24 q^{71} + 318 q^{73} - 96 q^{74} - 126 q^{77} + 110 q^{79} - 24 q^{80} - 120 q^{82} - 36 q^{85} - 24 q^{86} - 24 q^{88} + 378 q^{89} + 24 q^{91} + 120 q^{92} - 12 q^{94} + 30 q^{95} + 120 q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 2 x^{2} + 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} \)\(/2\)
\(\beta_{3}\)\(=\)\( \nu^{3} \)\(/2\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(2 \beta_{2}\)
\(\nu^{3}\)\(=\)\(2 \beta_{3}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(1 + \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
−0.707107 + 1.22474i 0 −1.00000 1.73205i −2.74264 1.58346i 0 −2.24264 6.63103i 2.82843 0 3.87868 2.23936i
19.2 0.707107 1.22474i 0 −1.00000 1.73205i 5.74264 + 3.31552i 0 6.24264 + 3.16693i −2.82843 0 8.12132 4.68885i
73.1 −0.707107 1.22474i 0 −1.00000 + 1.73205i −2.74264 + 1.58346i 0 −2.24264 + 6.63103i 2.82843 0 3.87868 + 2.23936i
73.2 0.707107 + 1.22474i 0 −1.00000 + 1.73205i 5.74264 3.31552i 0 6.24264 3.16693i −2.82843 0 8.12132 + 4.68885i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.3.n.c 4
3.b odd 2 1 14.3.d.a 4
4.b odd 2 1 1008.3.cg.l 4
7.b odd 2 1 882.3.n.b 4
7.c even 3 1 882.3.c.f 4
7.c even 3 1 882.3.n.b 4
7.d odd 6 1 inner 126.3.n.c 4
7.d odd 6 1 882.3.c.f 4
12.b even 2 1 112.3.s.b 4
15.d odd 2 1 350.3.k.a 4
15.e even 4 2 350.3.i.a 8
21.c even 2 1 98.3.d.a 4
21.g even 6 1 14.3.d.a 4
21.g even 6 1 98.3.b.b 4
21.h odd 6 1 98.3.b.b 4
21.h odd 6 1 98.3.d.a 4
24.f even 2 1 448.3.s.c 4
24.h odd 2 1 448.3.s.d 4
28.f even 6 1 1008.3.cg.l 4
84.h odd 2 1 784.3.s.c 4
84.j odd 6 1 112.3.s.b 4
84.j odd 6 1 784.3.c.e 4
84.n even 6 1 784.3.c.e 4
84.n even 6 1 784.3.s.c 4
105.p even 6 1 350.3.k.a 4
105.w odd 12 2 350.3.i.a 8
168.ba even 6 1 448.3.s.d 4
168.be odd 6 1 448.3.s.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.3.d.a 4 3.b odd 2 1
14.3.d.a 4 21.g even 6 1
98.3.b.b 4 21.g even 6 1
98.3.b.b 4 21.h odd 6 1
98.3.d.a 4 21.c even 2 1
98.3.d.a 4 21.h odd 6 1
112.3.s.b 4 12.b even 2 1
112.3.s.b 4 84.j odd 6 1
126.3.n.c 4 1.a even 1 1 trivial
126.3.n.c 4 7.d odd 6 1 inner
350.3.i.a 8 15.e even 4 2
350.3.i.a 8 105.w odd 12 2
350.3.k.a 4 15.d odd 2 1
350.3.k.a 4 105.p even 6 1
448.3.s.c 4 24.f even 2 1
448.3.s.c 4 168.be odd 6 1
448.3.s.d 4 24.h odd 2 1
448.3.s.d 4 168.ba even 6 1
784.3.c.e 4 84.j odd 6 1
784.3.c.e 4 84.n even 6 1
784.3.s.c 4 84.h odd 2 1
784.3.s.c 4 84.n even 6 1
882.3.c.f 4 7.c even 3 1
882.3.c.f 4 7.d odd 6 1
882.3.n.b 4 7.b odd 2 1
882.3.n.b 4 7.c even 3 1
1008.3.cg.l 4 4.b odd 2 1
1008.3.cg.l 4 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 6 T_{5}^{3} - 9 T_{5}^{2} + 126 T_{5} + 441 \) acting on \(S_{3}^{\mathrm{new}}(126, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 4 + 2 T^{2} + T^{4} \)
$3$ \( T^{4} \)
$5$ \( 441 + 126 T - 9 T^{2} - 6 T^{3} + T^{4} \)
$7$ \( 2401 - 392 T + 42 T^{2} - 8 T^{3} + T^{4} \)
$11$ \( 3969 + 1134 T + 261 T^{2} + 18 T^{3} + T^{4} \)
$13$ \( 7056 + 264 T^{2} + T^{4} \)
$17$ \( 2601 - 1530 T + 351 T^{2} - 30 T^{3} + T^{4} \)
$19$ \( 9 + 18 T + 9 T^{2} - 6 T^{3} + T^{4} \)
$23$ \( 3969 + 1890 T + 837 T^{2} + 30 T^{3} + T^{4} \)
$29$ \( ( 72 + 24 T + T^{2} )^{2} \)
$31$ \( 1447209 - 50526 T - 615 T^{2} + 42 T^{3} + T^{4} \)
$37$ \( 36481 - 11842 T + 4035 T^{2} + 62 T^{3} + T^{4} \)
$41$ \( 345744 + 1224 T^{2} + T^{4} \)
$43$ \( ( -68 + 4 T + T^{2} )^{2} \)
$47$ \( 6335289 + 437958 T + 12609 T^{2} + 174 T^{3} + T^{4} \)
$53$ \( 1520289 - 96174 T + 4851 T^{2} - 78 T^{3} + T^{4} \)
$59$ \( 10517049 + 252954 T - 1215 T^{2} - 78 T^{3} + T^{4} \)
$61$ \( 35964009 - 251874 T - 5409 T^{2} + 42 T^{3} + T^{4} \)
$67$ \( 10297681 - 186122 T + 6573 T^{2} + 58 T^{3} + T^{4} \)
$71$ \( ( -1764 - 12 T + T^{2} )^{2} \)
$73$ \( 47485881 - 2191338 T + 40599 T^{2} - 318 T^{3} + T^{4} \)
$79$ \( 6630625 - 283250 T + 9525 T^{2} - 110 T^{3} + T^{4} \)
$83$ \( 189778176 + 27936 T^{2} + T^{4} \)
$89$ \( 71419401 - 3194478 T + 56079 T^{2} - 378 T^{3} + T^{4} \)
$97$ \( 6780816 + 11016 T^{2} + T^{4} \)
show more
show less