Properties

Label 126.3.n
Level $126$
Weight $3$
Character orbit 126.n
Rep. character $\chi_{126}(19,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $12$
Newform subspaces $3$
Sturm bound $72$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(72\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(126, [\chi])\).

Total New Old
Modular forms 112 12 100
Cusp forms 80 12 68
Eisenstein series 32 0 32

Trace form

\( 12q - 12q^{4} - 6q^{5} + 12q^{7} + O(q^{10}) \) \( 12q - 12q^{4} - 6q^{5} + 12q^{7} - 24q^{10} - 6q^{11} + 12q^{14} - 24q^{16} + 78q^{17} + 66q^{19} - 72q^{22} - 54q^{23} + 24q^{25} - 120q^{26} - 36q^{28} - 48q^{29} + 18q^{31} + 150q^{35} + 54q^{37} - 12q^{38} + 48q^{40} + 144q^{43} - 12q^{44} - 12q^{46} - 42q^{47} - 120q^{49} + 288q^{50} - 48q^{52} - 42q^{53} + 24q^{58} + 102q^{59} - 402q^{61} + 96q^{64} - 96q^{65} + 114q^{67} - 156q^{68} + 180q^{70} - 288q^{71} - 30q^{73} - 48q^{74} - 246q^{77} + 18q^{79} + 24q^{80} + 264q^{82} - 420q^{85} + 72q^{88} + 450q^{89} - 156q^{91} + 216q^{92} + 372q^{94} + 162q^{95} + 120q^{98} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(126, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
126.3.n.a \(4\) \(3.433\) \(\Q(\sqrt{2}, \sqrt{-3})\) None \(0\) \(0\) \(-12\) \(-10\) \(q+\beta _{1}q^{2}+2\beta _{2}q^{4}+(-2+2\beta _{1}+2\beta _{2}+\cdots)q^{5}+\cdots\)
126.3.n.b \(4\) \(3.433\) \(\Q(\sqrt{2}, \sqrt{-3})\) None \(0\) \(0\) \(0\) \(14\) \(q+\beta _{1}q^{2}+2\beta _{2}q^{4}+(2\beta _{1}+4\beta _{3})q^{5}+\cdots\)
126.3.n.c \(4\) \(3.433\) \(\Q(\sqrt{2}, \sqrt{-3})\) None \(0\) \(0\) \(6\) \(8\) \(q+\beta _{1}q^{2}+2\beta _{2}q^{4}+(1-2\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(126, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(126, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)