Properties

Label 126.3.c.a
Level $126$
Weight $3$
Character orbit 126.c
Analytic conductor $3.433$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,3,Mod(55,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.55"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 126.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,8,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.43325133094\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-33})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 32x^{2} + 289 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + 2 q^{4} - \beta_{2} q^{5} + (\beta_{3} - 4) q^{7} + 2 \beta_1 q^{8} + 2 \beta_{3} q^{10} + 9 \beta_1 q^{11} - 4 \beta_{3} q^{13} + ( - \beta_{2} - 4 \beta_1) q^{14} + 4 q^{16} - \beta_{2} q^{17}+ \cdots + (8 \beta_{2} - 17 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} - 16 q^{7} + 16 q^{16} + 72 q^{22} - 164 q^{25} - 32 q^{28} + 64 q^{37} + 208 q^{43} + 120 q^{46} - 68 q^{49} - 192 q^{58} + 32 q^{64} - 208 q^{67} - 264 q^{70} + 416 q^{79} - 264 q^{85} + 144 q^{88}+ \cdots + 528 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 32x^{2} + 289 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 15\nu ) / 17 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 49\nu ) / 17 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 16 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -15\beta_{2} + 49\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
0.707107 + 4.06202i
0.707107 4.06202i
−0.707107 + 4.06202i
−0.707107 4.06202i
−1.41421 0 2.00000 8.12404i 0 −4.00000 + 5.74456i −2.82843 0 11.4891i
55.2 −1.41421 0 2.00000 8.12404i 0 −4.00000 5.74456i −2.82843 0 11.4891i
55.3 1.41421 0 2.00000 8.12404i 0 −4.00000 5.74456i 2.82843 0 11.4891i
55.4 1.41421 0 2.00000 8.12404i 0 −4.00000 + 5.74456i 2.82843 0 11.4891i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.3.c.a 4
3.b odd 2 1 inner 126.3.c.a 4
4.b odd 2 1 1008.3.f.i 4
7.b odd 2 1 inner 126.3.c.a 4
7.c even 3 2 882.3.n.i 8
7.d odd 6 2 882.3.n.i 8
12.b even 2 1 1008.3.f.i 4
21.c even 2 1 inner 126.3.c.a 4
21.g even 6 2 882.3.n.i 8
21.h odd 6 2 882.3.n.i 8
28.d even 2 1 1008.3.f.i 4
84.h odd 2 1 1008.3.f.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.3.c.a 4 1.a even 1 1 trivial
126.3.c.a 4 3.b odd 2 1 inner
126.3.c.a 4 7.b odd 2 1 inner
126.3.c.a 4 21.c even 2 1 inner
882.3.n.i 8 7.c even 3 2
882.3.n.i 8 7.d odd 6 2
882.3.n.i 8 21.g even 6 2
882.3.n.i 8 21.h odd 6 2
1008.3.f.i 4 4.b odd 2 1
1008.3.f.i 4 12.b even 2 1
1008.3.f.i 4 28.d even 2 1
1008.3.f.i 4 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 66 \) acting on \(S_{3}^{\mathrm{new}}(126, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 66)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 8 T + 49)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 162)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 528)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 66)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 132)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 450)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 1152)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( (T - 16)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 3234)^{2} \) Copy content Toggle raw display
$43$ \( (T - 52)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 1056)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 288)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 1056)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 528)^{2} \) Copy content Toggle raw display
$67$ \( (T + 52)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 7938)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 2112)^{2} \) Copy content Toggle raw display
$79$ \( (T - 104)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 26400)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 5346)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 8448)^{2} \) Copy content Toggle raw display
show more
show less