Properties

Label 126.2.m.a.83.4
Level $126$
Weight $2$
Character 126.83
Analytic conductor $1.006$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 6 x^{14} + 9 x^{12} + 54 x^{10} - 288 x^{8} + 486 x^{6} + 729 x^{4} - 4374 x^{2} + 6561\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 83.4
Root \(-1.62181 - 0.608059i\) of defining polynomial
Character \(\chi\) \(=\) 126.83
Dual form 126.2.m.a.41.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.62181 + 0.608059i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.94556 - 3.36980i) q^{5} +(-1.10050 - 1.33750i) q^{6} +(2.09985 - 1.60954i) q^{7} -1.00000i q^{8} +(2.26053 + 1.97231i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.62181 + 0.608059i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.94556 - 3.36980i) q^{5} +(-1.10050 - 1.33750i) q^{6} +(2.09985 - 1.60954i) q^{7} -1.00000i q^{8} +(2.26053 + 1.97231i) q^{9} +3.89111i q^{10} +(3.41614 + 1.97231i) q^{11} +(0.284310 + 1.70856i) q^{12} +(-2.46687 + 1.42425i) q^{13} +(-2.62329 + 0.343982i) q^{14} +(-1.10628 - 6.64819i) q^{15} +(-0.500000 + 0.866025i) q^{16} -0.742117 q^{17} +(-0.971521 - 2.83834i) q^{18} -1.78474i q^{19} +(1.94556 - 3.36980i) q^{20} +(4.38425 - 1.33354i) q^{21} +(-1.97231 - 3.41614i) q^{22} +(-5.41535 + 3.12656i) q^{23} +(0.608059 - 1.62181i) q^{24} +(-5.07039 + 8.78217i) q^{25} +2.84849 q^{26} +(2.46687 + 4.57324i) q^{27} +(2.44383 + 1.01375i) q^{28} +(-2.50079 - 1.44383i) q^{29} +(-2.36603 + 6.31064i) q^{30} +(-3.04125 + 1.75587i) q^{31} +(0.866025 - 0.500000i) q^{32} +(4.34105 + 5.27592i) q^{33} +(0.642692 + 0.371058i) q^{34} +(-9.50923 - 3.94462i) q^{35} +(-0.577806 + 2.94383i) q^{36} +3.00158 q^{37} +(-0.892369 + 1.54563i) q^{38} +(-4.86681 + 0.809856i) q^{39} +(-3.36980 + 1.94556i) q^{40} +(5.24705 + 9.08816i) q^{41} +(-4.46364 - 1.03724i) q^{42} +(0.471521 - 0.816699i) q^{43} +3.94462i q^{44} +(2.24831 - 11.4548i) q^{45} +6.25311 q^{46} +(-1.09263 + 1.89248i) q^{47} +(-1.33750 + 1.10050i) q^{48} +(1.81873 - 6.75960i) q^{49} +(8.78217 - 5.07039i) q^{50} +(-1.20357 - 0.451251i) q^{51} +(-2.46687 - 1.42425i) q^{52} +(0.150252 - 5.19398i) q^{54} -15.3490i q^{55} +(-1.60954 - 2.09985i) q^{56} +(1.08523 - 2.89450i) q^{57} +(1.44383 + 2.50079i) q^{58} +(-0.0105673 - 0.0183031i) q^{59} +(5.20436 - 4.28217i) q^{60} +(2.13832 + 1.23456i) q^{61} +3.51174 q^{62} +(7.92129 + 0.503130i) q^{63} -1.00000 q^{64} +(9.59886 + 5.54191i) q^{65} +(-1.12150 - 6.73961i) q^{66} +(-6.72463 - 11.6474i) q^{67} +(-0.371058 - 0.642692i) q^{68} +(-10.6838 + 1.77782i) q^{69} +(6.26292 + 8.17075i) q^{70} +1.94304i q^{71} +(1.97231 - 2.26053i) q^{72} +4.85486i q^{73} +(-2.59944 - 1.50079i) q^{74} +(-13.5633 + 11.1599i) q^{75} +(1.54563 - 0.892369i) q^{76} +(10.3479 - 1.35688i) q^{77} +(4.61971 + 1.73205i) q^{78} +(-1.81806 + 3.14898i) q^{79} +3.89111 q^{80} +(1.21999 + 8.91693i) q^{81} -10.4941i q^{82} +(4.02998 - 6.98012i) q^{83} +(3.34701 + 3.13010i) q^{84} +(1.44383 + 2.50079i) q^{85} +(-0.816699 + 0.471521i) q^{86} +(-3.17787 - 3.86224i) q^{87} +(1.97231 - 3.41614i) q^{88} +9.26646 q^{89} +(-7.67448 + 8.79598i) q^{90} +(-2.88766 + 6.96124i) q^{91} +(-5.41535 - 3.12656i) q^{92} +(-6.00000 + 0.998423i) q^{93} +(1.89248 - 1.09263i) q^{94} +(-6.01422 + 3.47231i) q^{95} +(1.70856 - 0.284310i) q^{96} +(-16.2983 - 9.40980i) q^{97} +(-4.95487 + 4.94462i) q^{98} +(3.83228 + 11.1962i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 2 q^{7} + 12 q^{9} + O(q^{10}) \) \( 16 q + 8 q^{4} + 2 q^{7} + 12 q^{9} - 12 q^{11} - 6 q^{14} - 8 q^{16} - 12 q^{18} + 18 q^{21} - 48 q^{23} - 8 q^{25} + 4 q^{28} - 12 q^{29} - 24 q^{30} + 12 q^{36} - 8 q^{37} - 36 q^{39} - 12 q^{42} + 4 q^{43} + 24 q^{46} - 8 q^{49} + 60 q^{50} + 12 q^{51} - 6 q^{56} + 48 q^{57} - 12 q^{58} + 24 q^{60} + 24 q^{63} - 16 q^{64} + 84 q^{65} - 28 q^{67} + 36 q^{74} + 78 q^{77} - 24 q^{78} - 4 q^{79} + 36 q^{81} + 18 q^{84} - 12 q^{85} - 24 q^{86} + 24 q^{91} - 48 q^{92} - 96 q^{93} + 12 q^{95} - 72 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 1.62181 + 0.608059i 0.936352 + 0.351063i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −1.94556 3.36980i −0.870080 1.50702i −0.861913 0.507056i \(-0.830734\pi\)
−0.00816625 0.999967i \(-0.502599\pi\)
\(6\) −1.10050 1.33750i −0.449277 0.546032i
\(7\) 2.09985 1.60954i 0.793668 0.608351i
\(8\) 1.00000i 0.353553i
\(9\) 2.26053 + 1.97231i 0.753510 + 0.657437i
\(10\) 3.89111i 1.23048i
\(11\) 3.41614 + 1.97231i 1.03001 + 0.594674i 0.916986 0.398919i \(-0.130615\pi\)
0.113019 + 0.993593i \(0.463948\pi\)
\(12\) 0.284310 + 1.70856i 0.0820733 + 0.493218i
\(13\) −2.46687 + 1.42425i −0.684186 + 0.395015i −0.801430 0.598088i \(-0.795927\pi\)
0.117244 + 0.993103i \(0.462594\pi\)
\(14\) −2.62329 + 0.343982i −0.701105 + 0.0919330i
\(15\) −1.10628 6.64819i −0.285641 1.71656i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.742117 −0.179990 −0.0899949 0.995942i \(-0.528685\pi\)
−0.0899949 + 0.995942i \(0.528685\pi\)
\(18\) −0.971521 2.83834i −0.228990 0.669002i
\(19\) 1.78474i 0.409447i −0.978820 0.204723i \(-0.934370\pi\)
0.978820 0.204723i \(-0.0656295\pi\)
\(20\) 1.94556 3.36980i 0.435040 0.753511i
\(21\) 4.38425 1.33354i 0.956722 0.291003i
\(22\) −1.97231 3.41614i −0.420498 0.728324i
\(23\) −5.41535 + 3.12656i −1.12918 + 0.651932i −0.943728 0.330722i \(-0.892708\pi\)
−0.185451 + 0.982654i \(0.559374\pi\)
\(24\) 0.608059 1.62181i 0.124119 0.331050i
\(25\) −5.07039 + 8.78217i −1.01408 + 1.75643i
\(26\) 2.84849 0.558636
\(27\) 2.46687 + 4.57324i 0.474749 + 0.880121i
\(28\) 2.44383 + 1.01375i 0.461841 + 0.191581i
\(29\) −2.50079 1.44383i −0.464385 0.268113i 0.249501 0.968374i \(-0.419733\pi\)
−0.713886 + 0.700262i \(0.753067\pi\)
\(30\) −2.36603 + 6.31064i −0.431975 + 1.15216i
\(31\) −3.04125 + 1.75587i −0.546225 + 0.315363i −0.747598 0.664152i \(-0.768793\pi\)
0.201373 + 0.979515i \(0.435460\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 4.34105 + 5.27592i 0.755680 + 0.918420i
\(34\) 0.642692 + 0.371058i 0.110221 + 0.0636360i
\(35\) −9.50923 3.94462i −1.60735 0.666762i
\(36\) −0.577806 + 2.94383i −0.0963009 + 0.490638i
\(37\) 3.00158 0.493456 0.246728 0.969085i \(-0.420645\pi\)
0.246728 + 0.969085i \(0.420645\pi\)
\(38\) −0.892369 + 1.54563i −0.144761 + 0.250734i
\(39\) −4.86681 + 0.809856i −0.779314 + 0.129681i
\(40\) −3.36980 + 1.94556i −0.532813 + 0.307620i
\(41\) 5.24705 + 9.08816i 0.819452 + 1.41933i 0.906087 + 0.423092i \(0.139055\pi\)
−0.0866345 + 0.996240i \(0.527611\pi\)
\(42\) −4.46364 1.03724i −0.688755 0.160050i
\(43\) 0.471521 0.816699i 0.0719063 0.124545i −0.827830 0.560978i \(-0.810425\pi\)
0.899737 + 0.436433i \(0.143758\pi\)
\(44\) 3.94462i 0.594674i
\(45\) 2.24831 11.4548i 0.335158 1.70758i
\(46\) 6.25311 0.921971
\(47\) −1.09263 + 1.89248i −0.159376 + 0.276047i −0.934644 0.355585i \(-0.884282\pi\)
0.775268 + 0.631633i \(0.217615\pi\)
\(48\) −1.33750 + 1.10050i −0.193051 + 0.158843i
\(49\) 1.81873 6.75960i 0.259819 0.965657i
\(50\) 8.78217 5.07039i 1.24199 0.717061i
\(51\) −1.20357 0.451251i −0.168534 0.0631877i
\(52\) −2.46687 1.42425i −0.342093 0.197507i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0.150252 5.19398i 0.0204467 0.706811i
\(55\) 15.3490i 2.06965i
\(56\) −1.60954 2.09985i −0.215084 0.280604i
\(57\) 1.08523 2.89450i 0.143742 0.383386i
\(58\) 1.44383 + 2.50079i 0.189584 + 0.328370i
\(59\) −0.0105673 0.0183031i −0.00137575 0.00238286i 0.865337 0.501191i \(-0.167105\pi\)
−0.866712 + 0.498808i \(0.833771\pi\)
\(60\) 5.20436 4.28217i 0.671880 0.552825i
\(61\) 2.13832 + 1.23456i 0.273783 + 0.158069i 0.630606 0.776103i \(-0.282807\pi\)
−0.356822 + 0.934172i \(0.616140\pi\)
\(62\) 3.51174 0.445991
\(63\) 7.92129 + 0.503130i 0.997989 + 0.0633885i
\(64\) −1.00000 −0.125000
\(65\) 9.59886 + 5.54191i 1.19059 + 0.687389i
\(66\) −1.12150 6.73961i −0.138047 0.829588i
\(67\) −6.72463 11.6474i −0.821544 1.42296i −0.904532 0.426406i \(-0.859779\pi\)
0.0829874 0.996551i \(-0.473554\pi\)
\(68\) −0.371058 0.642692i −0.0449974 0.0779379i
\(69\) −10.6838 + 1.77782i −1.28618 + 0.214025i
\(70\) 6.26292 + 8.17075i 0.748562 + 0.976592i
\(71\) 1.94304i 0.230597i 0.993331 + 0.115298i \(0.0367824\pi\)
−0.993331 + 0.115298i \(0.963218\pi\)
\(72\) 1.97231 2.26053i 0.232439 0.266406i
\(73\) 4.85486i 0.568218i 0.958792 + 0.284109i \(0.0916978\pi\)
−0.958792 + 0.284109i \(0.908302\pi\)
\(74\) −2.59944 1.50079i −0.302179 0.174463i
\(75\) −13.5633 + 11.1599i −1.56615 + 1.28863i
\(76\) 1.54563 0.892369i 0.177296 0.102362i
\(77\) 10.3479 1.35688i 1.17925 0.154630i
\(78\) 4.61971 + 1.73205i 0.523079 + 0.196116i
\(79\) −1.81806 + 3.14898i −0.204548 + 0.354288i −0.949989 0.312284i \(-0.898906\pi\)
0.745440 + 0.666572i \(0.232239\pi\)
\(80\) 3.89111 0.435040
\(81\) 1.21999 + 8.91693i 0.135554 + 0.990770i
\(82\) 10.4941i 1.15888i
\(83\) 4.02998 6.98012i 0.442347 0.766168i −0.555516 0.831506i \(-0.687479\pi\)
0.997863 + 0.0653378i \(0.0208125\pi\)
\(84\) 3.34701 + 3.13010i 0.365188 + 0.341522i
\(85\) 1.44383 + 2.50079i 0.156605 + 0.271249i
\(86\) −0.816699 + 0.471521i −0.0880669 + 0.0508454i
\(87\) −3.17787 3.86224i −0.340703 0.414076i
\(88\) 1.97231 3.41614i 0.210249 0.364162i
\(89\) 9.26646 0.982243 0.491122 0.871091i \(-0.336587\pi\)
0.491122 + 0.871091i \(0.336587\pi\)
\(90\) −7.67448 + 8.79598i −0.808962 + 0.927178i
\(91\) −2.88766 + 6.96124i −0.302709 + 0.729736i
\(92\) −5.41535 3.12656i −0.564589 0.325966i
\(93\) −6.00000 + 0.998423i −0.622171 + 0.103532i
\(94\) 1.89248 1.09263i 0.195195 0.112696i
\(95\) −6.01422 + 3.47231i −0.617046 + 0.356251i
\(96\) 1.70856 0.284310i 0.174379 0.0290173i
\(97\) −16.2983 9.40980i −1.65484 0.955421i −0.975043 0.222018i \(-0.928736\pi\)
−0.679794 0.733403i \(-0.737931\pi\)
\(98\) −4.95487 + 4.94462i −0.500517 + 0.499482i
\(99\) 3.83228 + 11.1962i 0.385159 + 1.12526i
\(100\) −10.1408 −1.01408
\(101\) −4.14079 + 7.17206i −0.412024 + 0.713647i −0.995111 0.0987631i \(-0.968511\pi\)
0.583087 + 0.812410i \(0.301845\pi\)
\(102\) 0.816699 + 0.992580i 0.0808652 + 0.0982801i
\(103\) 14.7646 8.52435i 1.45480 0.839929i 0.456051 0.889953i \(-0.349263\pi\)
0.998748 + 0.0500247i \(0.0159300\pi\)
\(104\) 1.42425 + 2.46687i 0.139659 + 0.241896i
\(105\) −13.0236 12.1796i −1.27097 1.18861i
\(106\) 0 0
\(107\) 14.3369i 1.38600i −0.720936 0.693001i \(-0.756288\pi\)
0.720936 0.693001i \(-0.243712\pi\)
\(108\) −2.72711 + 4.42299i −0.262416 + 0.425603i
\(109\) 11.2800 1.08042 0.540212 0.841529i \(-0.318344\pi\)
0.540212 + 0.841529i \(0.318344\pi\)
\(110\) −7.67448 + 13.2926i −0.731733 + 1.26740i
\(111\) 4.86799 + 1.82513i 0.462049 + 0.173234i
\(112\) 0.343982 + 2.62329i 0.0325032 + 0.247878i
\(113\) −8.51501 + 4.91614i −0.801024 + 0.462472i −0.843829 0.536612i \(-0.819704\pi\)
0.0428049 + 0.999083i \(0.486371\pi\)
\(114\) −2.38708 + 1.96410i −0.223571 + 0.183955i
\(115\) 21.0718 + 12.1658i 1.96495 + 1.13447i
\(116\) 2.88766i 0.268113i
\(117\) −8.38548 1.64588i −0.775238 0.152161i
\(118\) 0.0211346i 0.00194560i
\(119\) −1.55833 + 1.19447i −0.142852 + 0.109497i
\(120\) −6.64819 + 1.10628i −0.606894 + 0.100989i
\(121\) 2.28001 + 3.94910i 0.207274 + 0.359009i
\(122\) −1.23456 2.13832i −0.111772 0.193594i
\(123\) 2.98358 + 17.9298i 0.269021 + 1.61667i
\(124\) −3.04125 1.75587i −0.273112 0.157682i
\(125\) 20.0033 1.78915
\(126\) −6.60847 4.39637i −0.588730 0.391660i
\(127\) 2.94462 0.261293 0.130646 0.991429i \(-0.458295\pi\)
0.130646 + 0.991429i \(0.458295\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 1.26132 1.03782i 0.111053 0.0913747i
\(130\) −5.54191 9.59886i −0.486057 0.841876i
\(131\) −7.53255 13.0468i −0.658122 1.13990i −0.981101 0.193495i \(-0.938018\pi\)
0.322979 0.946406i \(-0.395316\pi\)
\(132\) −2.39856 + 6.39742i −0.208768 + 0.556824i
\(133\) −2.87261 3.74768i −0.249087 0.324965i
\(134\) 13.4493i 1.16184i
\(135\) 10.6115 17.2104i 0.913293 1.48123i
\(136\) 0.742117i 0.0636360i
\(137\) −13.6139 7.85997i −1.16311 0.671523i −0.211064 0.977472i \(-0.567693\pi\)
−0.952048 + 0.305950i \(0.901026\pi\)
\(138\) 10.1414 + 3.80226i 0.863289 + 0.323670i
\(139\) −2.86373 + 1.65337i −0.242898 + 0.140237i −0.616508 0.787349i \(-0.711453\pi\)
0.373610 + 0.927586i \(0.378120\pi\)
\(140\) −1.33847 10.2075i −0.113122 0.862695i
\(141\) −2.92277 + 2.40487i −0.246142 + 0.202526i
\(142\) 0.971521 1.68272i 0.0815282 0.141211i
\(143\) −11.2362 −0.939620
\(144\) −2.83834 + 0.971521i −0.236528 + 0.0809601i
\(145\) 11.2362i 0.933118i
\(146\) 2.42743 4.20443i 0.200896 0.347961i
\(147\) 7.05987 9.85689i 0.582288 0.812982i
\(148\) 1.50079 + 2.59944i 0.123364 + 0.213673i
\(149\) 9.52765 5.50079i 0.780535 0.450642i −0.0560848 0.998426i \(-0.517862\pi\)
0.836620 + 0.547784i \(0.184528\pi\)
\(150\) 17.3261 2.88313i 1.41467 0.235406i
\(151\) 0.719988 1.24706i 0.0585918 0.101484i −0.835242 0.549883i \(-0.814672\pi\)
0.893834 + 0.448399i \(0.148006\pi\)
\(152\) −1.78474 −0.144761
\(153\) −1.67758 1.46368i −0.135624 0.118332i
\(154\) −9.63998 3.99886i −0.776812 0.322237i
\(155\) 11.8339 + 6.83228i 0.950518 + 0.548782i
\(156\) −3.13476 3.80986i −0.250982 0.305033i
\(157\) −14.3822 + 8.30354i −1.14782 + 0.662695i −0.948355 0.317210i \(-0.897254\pi\)
−0.199465 + 0.979905i \(0.563921\pi\)
\(158\) 3.14898 1.81806i 0.250519 0.144637i
\(159\) 0 0
\(160\) −3.36980 1.94556i −0.266406 0.153810i
\(161\) −6.33909 + 15.2815i −0.499591 + 1.20435i
\(162\) 3.40192 8.33228i 0.267280 0.654646i
\(163\) −12.3955 −0.970887 −0.485444 0.874268i \(-0.661342\pi\)
−0.485444 + 0.874268i \(0.661342\pi\)
\(164\) −5.24705 + 9.08816i −0.409726 + 0.709666i
\(165\) 9.33307 24.8931i 0.726579 1.93792i
\(166\) −6.98012 + 4.02998i −0.541763 + 0.312787i
\(167\) 5.86087 + 10.1513i 0.453528 + 0.785534i 0.998602 0.0528541i \(-0.0168318\pi\)
−0.545074 + 0.838388i \(0.683498\pi\)
\(168\) −1.33354 4.38425i −0.102885 0.338252i
\(169\) −2.44304 + 4.23147i −0.187926 + 0.325498i
\(170\) 2.88766i 0.221474i
\(171\) 3.52006 4.03445i 0.269185 0.308522i
\(172\) 0.943042 0.0719063
\(173\) 8.38548 14.5241i 0.637536 1.10425i −0.348435 0.937333i \(-0.613287\pi\)
0.985972 0.166913i \(-0.0533798\pi\)
\(174\) 0.820992 + 4.93374i 0.0622393 + 0.374026i
\(175\) 3.48824 + 26.6022i 0.263686 + 2.01094i
\(176\) −3.41614 + 1.97231i −0.257501 + 0.148668i
\(177\) −0.00600879 0.0361097i −0.000451648 0.00271417i
\(178\) −8.02499 4.63323i −0.601499 0.347275i
\(179\) 5.77532i 0.431668i 0.976430 + 0.215834i \(0.0692470\pi\)
−0.976430 + 0.215834i \(0.930753\pi\)
\(180\) 11.0443 3.78030i 0.823193 0.281767i
\(181\) 5.53310i 0.411272i 0.978629 + 0.205636i \(0.0659263\pi\)
−0.978629 + 0.205636i \(0.934074\pi\)
\(182\) 5.98141 4.58478i 0.443371 0.339846i
\(183\) 2.71726 + 3.30244i 0.200865 + 0.244123i
\(184\) 3.12656 + 5.41535i 0.230493 + 0.399225i
\(185\) −5.83974 10.1147i −0.429346 0.743649i
\(186\) 5.69536 + 2.13534i 0.417604 + 0.156571i
\(187\) −2.53518 1.46368i −0.185390 0.107035i
\(188\) −2.18525 −0.159376
\(189\) 12.5409 + 5.63259i 0.912216 + 0.409711i
\(190\) 6.94462 0.503816
\(191\) −5.38124 3.10686i −0.389373 0.224805i 0.292515 0.956261i \(-0.405508\pi\)
−0.681888 + 0.731456i \(0.738841\pi\)
\(192\) −1.62181 0.608059i −0.117044 0.0438828i
\(193\) 3.90271 + 6.75970i 0.280923 + 0.486574i 0.971612 0.236578i \(-0.0760260\pi\)
−0.690689 + 0.723152i \(0.742693\pi\)
\(194\) 9.40980 + 16.2983i 0.675584 + 1.17015i
\(195\) 12.1977 + 14.8246i 0.873497 + 1.06161i
\(196\) 6.76335 1.80473i 0.483097 0.128909i
\(197\) 12.7737i 0.910092i −0.890468 0.455046i \(-0.849623\pi\)
0.890468 0.455046i \(-0.150377\pi\)
\(198\) 2.27922 11.6123i 0.161977 0.825250i
\(199\) 1.81201i 0.128450i 0.997935 + 0.0642250i \(0.0204575\pi\)
−0.997935 + 0.0642250i \(0.979542\pi\)
\(200\) 8.78217 + 5.07039i 0.620993 + 0.358530i
\(201\) −3.82377 22.9788i −0.269708 1.62080i
\(202\) 7.17206 4.14079i 0.504624 0.291345i
\(203\) −7.57519 + 0.993303i −0.531674 + 0.0697162i
\(204\) −0.210992 1.26795i −0.0147724 0.0887742i
\(205\) 20.4169 35.3631i 1.42598 2.46986i
\(206\) −17.0487 −1.18784
\(207\) −18.4081 3.61308i −1.27945 0.251127i
\(208\) 2.84849i 0.197507i
\(209\) 3.52006 6.09692i 0.243487 0.421732i
\(210\) 5.18897 + 17.0596i 0.358073 + 1.17723i
\(211\) −1.88766 3.26953i −0.129952 0.225083i 0.793706 0.608302i \(-0.208149\pi\)
−0.923658 + 0.383218i \(0.874816\pi\)
\(212\) 0 0
\(213\) −1.18148 + 3.15124i −0.0809539 + 0.215920i
\(214\) −7.16846 + 12.4161i −0.490026 + 0.848750i
\(215\) −3.66949 −0.250257
\(216\) 4.57324 2.46687i 0.311170 0.167849i
\(217\) −3.56002 + 8.58209i −0.241670 + 0.582590i
\(218\) −9.76874 5.63998i −0.661622 0.381988i
\(219\) −2.95204 + 7.87366i −0.199480 + 0.532052i
\(220\) 13.2926 7.67448i 0.896187 0.517414i
\(221\) 1.83070 1.05696i 0.123146 0.0710987i
\(222\) −3.30323 4.01461i −0.221698 0.269443i
\(223\) −11.0662 6.38910i −0.741051 0.427846i 0.0814006 0.996681i \(-0.474061\pi\)
−0.822451 + 0.568836i \(0.807394\pi\)
\(224\) 1.01375 2.44383i 0.0677341 0.163285i
\(225\) −28.7829 + 9.85197i −1.91886 + 0.656798i
\(226\) 9.83228 0.654034
\(227\) 9.99110 17.3051i 0.663133 1.14858i −0.316655 0.948541i \(-0.602560\pi\)
0.979788 0.200039i \(-0.0641068\pi\)
\(228\) 3.04933 0.507420i 0.201947 0.0336047i
\(229\) −8.77402 + 5.06568i −0.579804 + 0.334750i −0.761055 0.648687i \(-0.775318\pi\)
0.181252 + 0.983437i \(0.441985\pi\)
\(230\) −12.1658 21.0718i −0.802188 1.38943i
\(231\) 17.6074 + 4.09153i 1.15848 + 0.269203i
\(232\) −1.44383 + 2.50079i −0.0947921 + 0.164185i
\(233\) 7.31007i 0.478898i −0.970909 0.239449i \(-0.923033\pi\)
0.970909 0.239449i \(-0.0769669\pi\)
\(234\) 6.43910 + 5.61811i 0.420937 + 0.367267i
\(235\) 8.50307 0.554679
\(236\) 0.0105673 0.0183031i 0.000687873 0.00119143i
\(237\) −4.86332 + 4.00156i −0.315906 + 0.259929i
\(238\) 1.94679 0.255275i 0.126192 0.0165470i
\(239\) 7.28317 4.20494i 0.471109 0.271995i −0.245595 0.969373i \(-0.578983\pi\)
0.716704 + 0.697378i \(0.245650\pi\)
\(240\) 6.31064 + 2.36603i 0.407350 + 0.152726i
\(241\) 7.75277 + 4.47607i 0.499400 + 0.288329i 0.728466 0.685082i \(-0.240234\pi\)
−0.229066 + 0.973411i \(0.573567\pi\)
\(242\) 4.56002i 0.293129i
\(243\) −3.44343 + 15.2034i −0.220896 + 0.975297i
\(244\) 2.46911i 0.158069i
\(245\) −26.3170 + 7.02242i −1.68133 + 0.448646i
\(246\) 6.38103 17.0194i 0.406840 1.08512i
\(247\) 2.54191 + 4.40271i 0.161738 + 0.280138i
\(248\) 1.75587 + 3.04125i 0.111498 + 0.193120i
\(249\) 10.7802 8.86997i 0.683166 0.562111i
\(250\) −17.3234 10.0017i −1.09563 0.632561i
\(251\) −12.6432 −0.798033 −0.399017 0.916944i \(-0.630648\pi\)
−0.399017 + 0.916944i \(0.630648\pi\)
\(252\) 3.52492 + 7.11160i 0.222049 + 0.447989i
\(253\) −24.6661 −1.55075
\(254\) −2.55012 1.47231i −0.160008 0.0923809i
\(255\) 0.820992 + 4.93374i 0.0514125 + 0.308962i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 8.15329 + 14.1219i 0.508588 + 0.880900i 0.999951 + 0.00994523i \(0.00316572\pi\)
−0.491362 + 0.870955i \(0.663501\pi\)
\(258\) −1.61124 + 0.268117i −0.100312 + 0.0166922i
\(259\) 6.30286 4.83117i 0.391641 0.300194i
\(260\) 11.0838i 0.687389i
\(261\) −2.80542 8.19615i −0.173651 0.507329i
\(262\) 15.0651i 0.930725i
\(263\) 20.5434 + 11.8608i 1.26676 + 0.731366i 0.974374 0.224934i \(-0.0722166\pi\)
0.292389 + 0.956300i \(0.405550\pi\)
\(264\) 5.27592 4.34105i 0.324711 0.267173i
\(265\) 0 0
\(266\) 0.613917 + 4.68189i 0.0376417 + 0.287065i
\(267\) 15.0284 + 5.63455i 0.919725 + 0.344829i
\(268\) 6.72463 11.6474i 0.410772 0.711478i
\(269\) −7.28288 −0.444045 −0.222022 0.975042i \(-0.571266\pi\)
−0.222022 + 0.975042i \(0.571266\pi\)
\(270\) −17.7950 + 9.59886i −1.08297 + 0.584168i
\(271\) 22.6879i 1.37819i 0.724669 + 0.689097i \(0.241993\pi\)
−0.724669 + 0.689097i \(0.758007\pi\)
\(272\) 0.371058 0.642692i 0.0224987 0.0389689i
\(273\) −8.91608 + 9.53393i −0.539625 + 0.577020i
\(274\) 7.85997 + 13.6139i 0.474838 + 0.822444i
\(275\) −34.6423 + 20.0007i −2.08901 + 1.20609i
\(276\) −6.88154 8.36353i −0.414220 0.503425i
\(277\) −12.0838 + 20.9298i −0.726046 + 1.25755i 0.232496 + 0.972597i \(0.425311\pi\)
−0.958542 + 0.284951i \(0.908023\pi\)
\(278\) 3.30675 0.198326
\(279\) −10.3380 2.02910i −0.618917 0.121479i
\(280\) −3.94462 + 9.50923i −0.235736 + 0.568285i
\(281\) −4.11229 2.37423i −0.245319 0.141635i 0.372300 0.928112i \(-0.378569\pi\)
−0.617619 + 0.786478i \(0.711903\pi\)
\(282\) 3.73363 0.621290i 0.222334 0.0369973i
\(283\) 25.4484 14.6926i 1.51275 0.873387i 0.512861 0.858471i \(-0.328585\pi\)
0.999889 0.0149153i \(-0.00474785\pi\)
\(284\) −1.68272 + 0.971521i −0.0998513 + 0.0576492i
\(285\) −11.8653 + 1.97443i −0.702838 + 0.116955i
\(286\) 9.73085 + 5.61811i 0.575398 + 0.332206i
\(287\) 25.6458 + 10.6384i 1.51382 + 0.627965i
\(288\) 2.94383 + 0.577806i 0.173467 + 0.0340475i
\(289\) −16.4493 −0.967604
\(290\) 5.61811 9.73085i 0.329907 0.571415i
\(291\) −20.7109 25.1712i −1.21410 1.47556i
\(292\) −4.20443 + 2.42743i −0.246046 + 0.142055i
\(293\) −3.31206 5.73666i −0.193493 0.335139i 0.752913 0.658121i \(-0.228648\pi\)
−0.946405 + 0.322981i \(0.895315\pi\)
\(294\) −11.0425 + 5.00638i −0.644010 + 0.291978i
\(295\) −0.0411186 + 0.0712195i −0.00239402 + 0.00414656i
\(296\) 3.00158i 0.174463i
\(297\) −0.592687 + 20.4883i −0.0343912 + 1.18885i
\(298\) −11.0016 −0.637304
\(299\) 8.90597 15.4256i 0.515046 0.892085i
\(300\) −16.4464 6.16618i −0.949533 0.356005i
\(301\) −0.324389 2.47388i −0.0186975 0.142592i
\(302\) −1.24706 + 0.719988i −0.0717600 + 0.0414307i
\(303\) −11.0766 + 9.11387i −0.636334 + 0.523578i
\(304\) 1.54563 + 0.892369i 0.0886479 + 0.0511809i
\(305\) 9.60761i 0.550130i
\(306\) 0.720982 + 2.10638i 0.0412158 + 0.120414i
\(307\) 21.7242i 1.23987i −0.784655 0.619933i \(-0.787160\pi\)
0.784655 0.619933i \(-0.212840\pi\)
\(308\) 6.34904 + 8.28311i 0.361770 + 0.471974i
\(309\) 29.1287 4.84712i 1.65707 0.275743i
\(310\) −6.83228 11.8339i −0.388048 0.672118i
\(311\) −3.14900 5.45422i −0.178563 0.309281i 0.762825 0.646605i \(-0.223812\pi\)
−0.941389 + 0.337324i \(0.890478\pi\)
\(312\) 0.809856 + 4.86681i 0.0458491 + 0.275529i
\(313\) 19.2423 + 11.1095i 1.08764 + 0.627948i 0.932946 0.360015i \(-0.117229\pi\)
0.154691 + 0.987963i \(0.450562\pi\)
\(314\) 16.6071 0.937192
\(315\) −13.7159 27.6721i −0.772802 1.55914i
\(316\) −3.63613 −0.204548
\(317\) 13.5632 + 7.83070i 0.761784 + 0.439816i 0.829936 0.557859i \(-0.188377\pi\)
−0.0681519 + 0.997675i \(0.521710\pi\)
\(318\) 0 0
\(319\) −5.69536 9.86466i −0.318879 0.552315i
\(320\) 1.94556 + 3.36980i 0.108760 + 0.188378i
\(321\) 8.71769 23.2518i 0.486574 1.29779i
\(322\) 13.1306 10.0647i 0.731739 0.560881i
\(323\) 1.32448i 0.0736963i
\(324\) −7.11229 + 5.51501i −0.395127 + 0.306389i
\(325\) 28.8859i 1.60230i
\(326\) 10.7348 + 6.19773i 0.594545 + 0.343260i
\(327\) 18.2940 + 6.85888i 1.01166 + 0.379297i
\(328\) 9.08816 5.24705i 0.501810 0.289720i
\(329\) 0.751687 + 5.73256i 0.0414418 + 0.316046i
\(330\) −20.5292 + 16.8915i −1.13010 + 0.929847i
\(331\) −0.636129 + 1.10181i −0.0349648 + 0.0605608i −0.882978 0.469414i \(-0.844465\pi\)
0.848013 + 0.529975i \(0.177799\pi\)
\(332\) 8.05995 0.442347
\(333\) 6.78515 + 5.92004i 0.371824 + 0.324416i
\(334\) 11.7217i 0.641386i
\(335\) −26.1663 + 45.3214i −1.42962 + 2.47617i
\(336\) −1.03724 + 4.46364i −0.0565863 + 0.243512i
\(337\) −3.78001 6.54717i −0.205910 0.356647i 0.744512 0.667609i \(-0.232682\pi\)
−0.950422 + 0.310962i \(0.899349\pi\)
\(338\) 4.23147 2.44304i 0.230162 0.132884i
\(339\) −16.7990 + 2.79542i −0.912397 + 0.151826i
\(340\) −1.44383 + 2.50079i −0.0783027 + 0.135624i
\(341\) −13.8525 −0.750153
\(342\) −5.06568 + 1.73391i −0.273921 + 0.0937592i
\(343\) −7.06081 17.1215i −0.381248 0.924473i
\(344\) −0.816699 0.471521i −0.0440334 0.0254227i
\(345\) 26.7769 + 32.5434i 1.44162 + 1.75208i
\(346\) −14.5241 + 8.38548i −0.780820 + 0.450806i
\(347\) 19.1470 11.0545i 1.02787 0.593439i 0.111494 0.993765i \(-0.464436\pi\)
0.916373 + 0.400326i \(0.131103\pi\)
\(348\) 1.75587 4.68324i 0.0941244 0.251048i
\(349\) 12.7682 + 7.37173i 0.683467 + 0.394600i 0.801160 0.598450i \(-0.204217\pi\)
−0.117693 + 0.993050i \(0.537550\pi\)
\(350\) 10.2802 24.7823i 0.549501 1.32467i
\(351\) −12.5989 7.76816i −0.672478 0.414634i
\(352\) 3.94462 0.210249
\(353\) −8.63881 + 14.9629i −0.459798 + 0.796393i −0.998950 0.0458154i \(-0.985411\pi\)
0.539152 + 0.842208i \(0.318745\pi\)
\(354\) −0.0128511 + 0.0342763i −0.000683027 + 0.00182176i
\(355\) 6.54767 3.78030i 0.347514 0.200638i
\(356\) 4.63323 + 8.02499i 0.245561 + 0.425324i
\(357\) −3.25363 + 0.989644i −0.172200 + 0.0523775i
\(358\) 2.88766 5.00158i 0.152618 0.264342i
\(359\) 10.9129i 0.575963i −0.957636 0.287982i \(-0.907016\pi\)
0.957636 0.287982i \(-0.0929842\pi\)
\(360\) −11.4548 2.24831i −0.603720 0.118496i
\(361\) 15.8147 0.832353
\(362\) 2.76655 4.79180i 0.145407 0.251852i
\(363\) 1.29646 + 7.79106i 0.0680466 + 0.408925i
\(364\) −7.47244 + 0.979830i −0.391662 + 0.0513570i
\(365\) 16.3599 9.44541i 0.856318 0.494395i
\(366\) −0.701995 4.21862i −0.0366939 0.220511i
\(367\) −30.9407 17.8636i −1.61509 0.932472i −0.988166 0.153391i \(-0.950981\pi\)
−0.626923 0.779081i \(-0.715686\pi\)
\(368\) 6.25311i 0.325966i
\(369\) −6.06355 + 30.8929i −0.315656 + 1.60822i
\(370\) 11.6795i 0.607187i
\(371\) 0 0
\(372\) −3.86466 4.69694i −0.200373 0.243525i
\(373\) 16.0300 + 27.7648i 0.830003 + 1.43761i 0.898035 + 0.439923i \(0.144994\pi\)
−0.0680328 + 0.997683i \(0.521672\pi\)
\(374\) 1.46368 + 2.53518i 0.0756853 + 0.131091i
\(375\) 32.4416 + 12.1632i 1.67528 + 0.628105i
\(376\) 1.89248 + 1.09263i 0.0975974 + 0.0563479i
\(377\) 8.22549 0.423634
\(378\) −8.04443 11.1484i −0.413761 0.573412i
\(379\) 34.8891 1.79214 0.896068 0.443918i \(-0.146412\pi\)
0.896068 + 0.443918i \(0.146412\pi\)
\(380\) −6.01422 3.47231i −0.308523 0.178126i
\(381\) 4.77561 + 1.79050i 0.244662 + 0.0917301i
\(382\) 3.10686 + 5.38124i 0.158961 + 0.275328i
\(383\) 8.76711 + 15.1851i 0.447978 + 0.775921i 0.998254 0.0590616i \(-0.0188108\pi\)
−0.550276 + 0.834983i \(0.685477\pi\)
\(384\) 1.10050 + 1.33750i 0.0561596 + 0.0682539i
\(385\) −24.7048 32.2305i −1.25908 1.64262i
\(386\) 7.80542i 0.397286i
\(387\) 2.67667 0.916186i 0.136063 0.0465723i
\(388\) 18.8196i 0.955421i
\(389\) −6.60060 3.81086i −0.334664 0.193218i 0.323246 0.946315i \(-0.395226\pi\)
−0.657910 + 0.753097i \(0.728559\pi\)
\(390\) −3.15124 18.9373i −0.159569 0.958929i
\(391\) 4.01882 2.32027i 0.203241 0.117341i
\(392\) −6.75960 1.81873i −0.341411 0.0918599i
\(393\) −4.28317 25.7396i −0.216057 1.29839i
\(394\) −6.38687 + 11.0624i −0.321766 + 0.557315i
\(395\) 14.1486 0.711893
\(396\) −7.78001 + 8.91693i −0.390960 + 0.448093i
\(397\) 37.6469i 1.88944i −0.327873 0.944722i \(-0.606332\pi\)
0.327873 0.944722i \(-0.393668\pi\)
\(398\) 0.906005 1.56925i 0.0454139 0.0786592i
\(399\) −2.38002 7.82474i −0.119150 0.391727i
\(400\) −5.07039 8.78217i −0.253519 0.439108i
\(401\) 18.5689 10.7207i 0.927284 0.535368i 0.0413326 0.999145i \(-0.486840\pi\)
0.885952 + 0.463778i \(0.153506\pi\)
\(402\) −8.17794 + 21.8121i −0.407879 + 1.08789i
\(403\) 5.00158 8.66299i 0.249146 0.431534i
\(404\) −8.28158 −0.412024
\(405\) 27.6747 21.4595i 1.37517 1.06633i
\(406\) 7.05696 + 2.92737i 0.350231 + 0.145283i
\(407\) 10.2538 + 5.92004i 0.508262 + 0.293445i
\(408\) −0.451251 + 1.20357i −0.0223402 + 0.0595857i
\(409\) 25.6086 14.7851i 1.26627 0.731079i 0.291986 0.956423i \(-0.405684\pi\)
0.974279 + 0.225344i \(0.0723506\pi\)
\(410\) −35.3631 + 20.4169i −1.74646 + 1.00832i
\(411\) −17.2998 21.0254i −0.853335 1.03711i
\(412\) 14.7646 + 8.52435i 0.727400 + 0.419964i
\(413\) −0.0516494 0.0214252i −0.00254150 0.00105427i
\(414\) 14.1353 + 12.3331i 0.694714 + 0.606137i
\(415\) −31.3622 −1.53951
\(416\) −1.42425 + 2.46687i −0.0698294 + 0.120948i
\(417\) −5.64977 + 0.940143i −0.276670 + 0.0460390i
\(418\) −6.09692 + 3.52006i −0.298210 + 0.172172i
\(419\) −3.56481 6.17443i −0.174152 0.301641i 0.765715 0.643180i \(-0.222385\pi\)
−0.939868 + 0.341539i \(0.889052\pi\)
\(420\) 4.03604 17.3686i 0.196938 0.847499i
\(421\) −2.31007 + 4.00115i −0.112586 + 0.195004i −0.916812 0.399319i \(-0.869247\pi\)
0.804226 + 0.594323i \(0.202580\pi\)
\(422\) 3.77532i 0.183780i
\(423\) −6.20248 + 2.12302i −0.301575 + 0.103225i
\(424\) 0 0
\(425\) 3.76282 6.51739i 0.182524 0.316140i
\(426\) 2.59882 2.13832i 0.125913 0.103602i
\(427\) 6.47721 0.849330i 0.313454 0.0411020i
\(428\) 12.4161 7.16846i 0.600157 0.346501i
\(429\) −18.2230 6.83228i −0.879815 0.329866i
\(430\) 3.17787 + 1.83474i 0.153250 + 0.0884792i
\(431\) 4.00771i 0.193045i 0.995331 + 0.0965223i \(0.0307719\pi\)
−0.995331 + 0.0965223i \(0.969228\pi\)
\(432\) −5.19398 0.150252i −0.249895 0.00722900i
\(433\) 29.4125i 1.41348i 0.707475 + 0.706738i \(0.249834\pi\)
−0.707475 + 0.706738i \(0.750166\pi\)
\(434\) 7.37411 5.65229i 0.353969 0.271319i
\(435\) −6.83228 + 18.2230i −0.327583 + 0.873726i
\(436\) 5.63998 + 9.76874i 0.270106 + 0.467838i
\(437\) 5.58008 + 9.66498i 0.266931 + 0.462339i
\(438\) 6.49337 5.34277i 0.310265 0.255287i
\(439\) −18.5130 10.6885i −0.883575 0.510133i −0.0117398 0.999931i \(-0.503737\pi\)
−0.871836 + 0.489799i \(0.837070\pi\)
\(440\) −15.3490 −0.731733
\(441\) 17.4433 11.6932i 0.830635 0.556818i
\(442\) −2.11392 −0.100549
\(443\) 5.05227 + 2.91693i 0.240041 + 0.138587i 0.615195 0.788375i \(-0.289077\pi\)
−0.375155 + 0.926962i \(0.622410\pi\)
\(444\) 0.853380 + 5.12837i 0.0404996 + 0.243381i
\(445\) −18.0284 31.2262i −0.854630 1.48026i
\(446\) 6.38910 + 11.0662i 0.302533 + 0.524002i
\(447\) 18.7968 3.12786i 0.889059 0.147943i
\(448\) −2.09985 + 1.60954i −0.0992086 + 0.0760438i
\(449\) 22.5823i 1.06573i 0.846202 + 0.532863i \(0.178884\pi\)
−0.846202 + 0.532863i \(0.821116\pi\)
\(450\) 29.8527 + 5.85939i 1.40727 + 0.276215i
\(451\) 41.3953i 1.94923i
\(452\) −8.51501 4.91614i −0.400512 0.231236i
\(453\) 1.92597 1.58469i 0.0904898 0.0744553i
\(454\) −17.3051 + 9.99110i −0.812168 + 0.468906i
\(455\) 29.0761 3.81263i 1.36311 0.178739i
\(456\) −2.89450 1.08523i −0.135548 0.0508203i
\(457\) −19.9311 + 34.5218i −0.932340 + 1.61486i −0.153029 + 0.988222i \(0.548903\pi\)
−0.779310 + 0.626638i \(0.784430\pi\)
\(458\) 10.1314 0.473408
\(459\) −1.83070 3.39388i −0.0854500 0.158413i
\(460\) 24.3316i 1.13447i
\(461\) −3.68254 + 6.37834i −0.171513 + 0.297069i −0.938949 0.344056i \(-0.888199\pi\)
0.767436 + 0.641125i \(0.221532\pi\)
\(462\) −13.2027 12.3471i −0.614244 0.574437i
\(463\) −14.3457 24.8475i −0.666702 1.15476i −0.978821 0.204718i \(-0.934372\pi\)
0.312119 0.950043i \(-0.398961\pi\)
\(464\) 2.50079 1.44383i 0.116096 0.0670282i
\(465\) 15.0378 + 18.2763i 0.697363 + 0.847545i
\(466\) −3.65503 + 6.33070i −0.169316 + 0.293264i
\(467\) −13.6704 −0.632590 −0.316295 0.948661i \(-0.602439\pi\)
−0.316295 + 0.948661i \(0.602439\pi\)
\(468\) −2.76737 8.08498i −0.127922 0.373728i
\(469\) −32.8677 13.6342i −1.51769 0.629569i
\(470\) −7.36387 4.25153i −0.339670 0.196109i
\(471\) −28.3741 + 4.72157i −1.30741 + 0.217558i
\(472\) −0.0183031 + 0.0105673i −0.000842469 + 0.000486400i
\(473\) 3.22157 1.85997i 0.148128 0.0855216i
\(474\) 6.21253 1.03379i 0.285351 0.0474835i
\(475\) 15.6739 + 9.04931i 0.719166 + 0.415211i
\(476\) −1.81361 0.752321i −0.0831266 0.0344826i
\(477\) 0 0
\(478\) −8.40988 −0.384659
\(479\) 5.20537 9.01596i 0.237839 0.411950i −0.722255 0.691627i \(-0.756894\pi\)
0.960094 + 0.279677i \(0.0902275\pi\)
\(480\) −4.28217 5.20436i −0.195453 0.237545i
\(481\) −7.40449 + 4.27499i −0.337616 + 0.194923i
\(482\) −4.47607 7.75277i −0.203879 0.353129i
\(483\) −19.5729 + 20.9292i −0.890597 + 0.952312i
\(484\) −2.28001 + 3.94910i −0.103637 + 0.179504i
\(485\) 73.2292i 3.32517i
\(486\) 10.5838 11.4448i 0.480090 0.519147i
\(487\) 2.33850 0.105968 0.0529838 0.998595i \(-0.483127\pi\)
0.0529838 + 0.998595i \(0.483127\pi\)
\(488\) 1.23456 2.13832i 0.0558858 0.0967970i
\(489\) −20.1031 7.53716i −0.909092 0.340842i
\(490\) 26.3024 + 7.07690i 1.18822 + 0.319702i
\(491\) −29.3448 + 16.9422i −1.32431 + 0.764591i −0.984413 0.175871i \(-0.943726\pi\)
−0.339898 + 0.940462i \(0.610392\pi\)
\(492\) −14.0359 + 11.5487i −0.632785 + 0.520658i
\(493\) 1.85588 + 1.07149i 0.0835845 + 0.0482575i
\(494\) 5.08381i 0.228732i
\(495\) 30.2729 34.6968i 1.36067 1.55950i
\(496\) 3.51174i 0.157682i
\(497\) 3.12741 + 4.08010i 0.140284 + 0.183017i
\(498\) −13.7709 + 2.29153i −0.617088 + 0.102686i
\(499\) 8.30223 + 14.3799i 0.371659 + 0.643732i 0.989821 0.142319i \(-0.0454558\pi\)
−0.618162 + 0.786051i \(0.712123\pi\)
\(500\) 10.0017 + 17.3234i 0.447288 + 0.774726i
\(501\) 3.33262 + 20.0273i 0.148890 + 0.894753i
\(502\) 10.9494 + 6.32161i 0.488694 + 0.282147i
\(503\) −35.3661 −1.57690 −0.788449 0.615100i \(-0.789115\pi\)
−0.788449 + 0.615100i \(0.789115\pi\)
\(504\) 0.503130 7.92129i 0.0224112 0.352842i
\(505\) 32.2246 1.43398
\(506\) 21.3615 + 12.3331i 0.949635 + 0.548272i
\(507\) −6.53513 + 5.37713i −0.290235 + 0.238807i
\(508\) 1.47231 + 2.55012i 0.0653232 + 0.113143i
\(509\) −18.5291 32.0933i −0.821287 1.42251i −0.904724 0.425998i \(-0.859923\pi\)
0.0834371 0.996513i \(-0.473410\pi\)
\(510\) 1.75587 4.68324i 0.0777511 0.207377i
\(511\) 7.81411 + 10.1945i 0.345676 + 0.450977i
\(512\) 1.00000i 0.0441942i
\(513\) 8.16204 4.40271i 0.360363 0.194384i
\(514\) 16.3066i 0.719252i
\(515\) −57.4507 33.1692i −2.53158 1.46161i
\(516\) 1.52943 + 0.573425i 0.0673296 + 0.0252436i
\(517\) −7.46513 + 4.30999i −0.328316 + 0.189553i
\(518\) −7.87402 + 1.03249i −0.345965 + 0.0453649i
\(519\) 22.4311 18.4564i 0.984618 0.810147i
\(520\) 5.54191 9.59886i 0.243029 0.420938i
\(521\) 1.78309 0.0781187 0.0390594 0.999237i \(-0.487564\pi\)
0.0390594 + 0.999237i \(0.487564\pi\)
\(522\) −1.66851 + 8.50079i −0.0730286 + 0.372069i
\(523\) 24.0538i 1.05180i 0.850546 + 0.525901i \(0.176272\pi\)
−0.850546 + 0.525901i \(0.823728\pi\)
\(524\) 7.53255 13.0468i 0.329061 0.569950i
\(525\) −10.5185 + 45.2648i −0.459063 + 1.97552i
\(526\) −11.8608 20.5434i −0.517154 0.895737i
\(527\) 2.25696 1.30306i 0.0983149 0.0567621i
\(528\) −6.73961 + 1.12150i −0.293304 + 0.0488069i
\(529\) 8.05069 13.9442i 0.350030 0.606270i
\(530\) 0 0
\(531\) 0.0122117 0.0622167i 0.000529942 0.00269998i
\(532\) 1.80928 4.36160i 0.0784422 0.189099i
\(533\) −25.8876 14.9462i −1.12132 0.647392i
\(534\) −10.1977 12.3939i −0.441299 0.536336i
\(535\) −48.3126 + 27.8933i −2.08874 + 1.20593i
\(536\) −11.6474 + 6.72463i −0.503091 + 0.290460i
\(537\) −3.51174 + 9.36647i −0.151543 + 0.404193i
\(538\) 6.30716 + 3.64144i 0.271921 + 0.156994i
\(539\) 19.5451 19.5046i 0.841866 0.840124i
\(540\) 20.2104 + 0.584648i 0.869716 + 0.0251592i
\(541\) 30.0032 1.28994 0.644968 0.764209i \(-0.276871\pi\)
0.644968 + 0.764209i \(0.276871\pi\)
\(542\) 11.3440 19.6483i 0.487265 0.843968i
\(543\) −3.36445 + 8.97363i −0.144382 + 0.385095i
\(544\) −0.642692 + 0.371058i −0.0275552 + 0.0159090i
\(545\) −21.9458 38.0113i −0.940056 1.62822i
\(546\) 12.4885 3.79859i 0.534459 0.162565i
\(547\) −10.7816 + 18.6743i −0.460987 + 0.798454i −0.999010 0.0444765i \(-0.985838\pi\)
0.538023 + 0.842930i \(0.319171\pi\)
\(548\) 15.7199i 0.671523i
\(549\) 2.39880 + 7.00817i 0.102378 + 0.299102i
\(550\) 40.0015 1.70567
\(551\) −2.57686 + 4.46325i −0.109778 + 0.190141i
\(552\) 1.77782 + 10.6838i 0.0756692 + 0.454733i
\(553\) 1.25076 + 9.53864i 0.0531878 + 0.405624i
\(554\) 20.9298 12.0838i 0.889221 0.513392i
\(555\) −3.32060 19.9551i −0.140952 0.847045i
\(556\) −2.86373 1.65337i −0.121449 0.0701187i
\(557\) 36.9477i 1.56552i 0.622321 + 0.782762i \(0.286190\pi\)
−0.622321 + 0.782762i \(0.713810\pi\)
\(558\) 7.93838 + 6.92623i 0.336058 + 0.293211i
\(559\) 2.68625i 0.113616i
\(560\) 8.17075 6.26292i 0.345277 0.264657i
\(561\) −3.22157 3.91535i −0.136015 0.165306i
\(562\) 2.37423 + 4.11229i 0.100151 + 0.173467i
\(563\) 7.58422 + 13.1363i 0.319637 + 0.553627i 0.980412 0.196957i \(-0.0631058\pi\)
−0.660776 + 0.750584i \(0.729772\pi\)
\(564\) −3.54406 1.32876i −0.149232 0.0559509i
\(565\) 33.1329 + 19.1293i 1.39391 + 0.804774i
\(566\) −29.3853 −1.23516
\(567\) 16.9140 + 16.7606i 0.710321 + 0.703878i
\(568\) 1.94304 0.0815282
\(569\) −31.8084 18.3646i −1.33348 0.769885i −0.347648 0.937625i \(-0.613020\pi\)
−0.985831 + 0.167740i \(0.946353\pi\)
\(570\) 11.2628 + 4.22274i 0.471749 + 0.176871i
\(571\) −5.61387 9.72351i −0.234933 0.406916i 0.724320 0.689464i \(-0.242154\pi\)
−0.959253 + 0.282548i \(0.908820\pi\)
\(572\) −5.61811 9.73085i −0.234905 0.406867i
\(573\) −6.83819 8.31085i −0.285670 0.347191i
\(574\) −16.8907 22.0360i −0.705005 0.919767i
\(575\) 63.4114i 2.64444i
\(576\) −2.26053 1.97231i −0.0941887 0.0821796i
\(577\) 36.5515i 1.52166i −0.648952 0.760829i \(-0.724792\pi\)
0.648952 0.760829i \(-0.275208\pi\)
\(578\) 14.2455 + 8.22463i 0.592534 + 0.342100i
\(579\) 2.21916 + 13.3360i 0.0922253 + 0.554226i
\(580\) −9.73085 + 5.61811i −0.404052 + 0.233279i
\(581\) −2.77248 21.1436i −0.115022 0.877186i
\(582\) 5.35061 + 32.1544i 0.221790 + 1.33284i
\(583\) 0 0
\(584\) 4.85486 0.200896
\(585\) 10.7682 + 31.4596i 0.445209 + 1.30069i
\(586\) 6.62413i 0.273640i
\(587\) 4.99738 8.65571i 0.206264 0.357259i −0.744271 0.667878i \(-0.767203\pi\)
0.950535 + 0.310619i \(0.100536\pi\)
\(588\) 12.0662 + 1.18559i 0.497604 + 0.0488927i
\(589\) 3.13376 + 5.42784i 0.129124 + 0.223650i
\(590\) 0.0712195 0.0411186i 0.00293206 0.00169283i
\(591\) 7.76719 20.7166i 0.319499 0.852166i
\(592\) −1.50079 + 2.59944i −0.0616820 + 0.106836i
\(593\) 7.78223 0.319578 0.159789 0.987151i \(-0.448919\pi\)
0.159789 + 0.987151i \(0.448919\pi\)
\(594\) 10.7574 17.4470i 0.441382 0.715860i
\(595\) 7.05696 + 2.92737i 0.289307 + 0.120010i
\(596\) 9.52765 + 5.50079i 0.390268 + 0.225321i
\(597\) −1.10181 + 2.93873i −0.0450940 + 0.120274i
\(598\) −15.4256 + 8.90597i −0.630800 + 0.364192i
\(599\) 21.6614 12.5062i 0.885061 0.510990i 0.0127373 0.999919i \(-0.495945\pi\)
0.872324 + 0.488929i \(0.162612\pi\)
\(600\) 11.1599 + 13.5633i 0.455601 + 0.553718i
\(601\) 25.9925 + 15.0068i 1.06026 + 0.612139i 0.925503 0.378740i \(-0.123643\pi\)
0.134753 + 0.990879i \(0.456976\pi\)
\(602\) −0.956010 + 2.30464i −0.0389640 + 0.0939300i
\(603\) 7.77106 39.5924i 0.316462 1.61233i
\(604\) 1.43998 0.0585918
\(605\) 8.87179 15.3664i 0.360689 0.624732i
\(606\) 14.1496 2.35454i 0.574786 0.0956467i
\(607\) 3.96882 2.29140i 0.161089 0.0930050i −0.417288 0.908774i \(-0.637019\pi\)
0.578378 + 0.815769i \(0.303686\pi\)
\(608\) −0.892369 1.54563i −0.0361903 0.0626835i
\(609\) −12.8895 2.99521i −0.522309 0.121372i
\(610\) −4.80380 + 8.32043i −0.194500 + 0.336884i
\(611\) 6.22468i 0.251823i
\(612\) 0.428799 2.18467i 0.0173332 0.0883099i
\(613\) 30.5522 1.23399 0.616996 0.786966i \(-0.288349\pi\)
0.616996 + 0.786966i \(0.288349\pi\)
\(614\) −10.8621 + 18.8137i −0.438359 + 0.759259i
\(615\) 54.6151 44.9375i 2.20229 1.81206i
\(616\) −1.35688 10.3479i −0.0546701 0.416929i
\(617\) −28.2484 + 16.3092i −1.13724 + 0.656585i −0.945745 0.324909i \(-0.894666\pi\)
−0.191493 + 0.981494i \(0.561333\pi\)
\(618\) −27.6497 10.3666i −1.11224 0.417006i
\(619\) −17.3244 10.0023i −0.696327 0.402024i 0.109651 0.993970i \(-0.465027\pi\)
−0.805978 + 0.591946i \(0.798360\pi\)
\(620\) 13.6646i 0.548782i
\(621\) −27.6575 17.0529i −1.10986 0.684311i
\(622\) 6.29800i 0.252527i
\(623\) 19.4582 14.9148i 0.779575 0.597548i
\(624\) 1.73205 4.61971i 0.0693375 0.184937i
\(625\) −13.5657 23.4965i −0.542628 0.939859i
\(626\) −11.1095 19.2423i −0.444026 0.769076i
\(627\) 9.41614 7.74763i 0.376044 0.309411i
\(628\) −14.3822 8.30354i −0.573910 0.331347i
\(629\) −2.22752 −0.0888171
\(630\) −1.95774 + 30.8227i −0.0779981 + 1.22800i
\(631\) 6.09634 0.242692 0.121346 0.992610i \(-0.461279\pi\)
0.121346 + 0.992610i \(0.461279\pi\)
\(632\) 3.14898 + 1.81806i 0.125260 + 0.0723187i
\(633\) −1.07336 6.45036i −0.0426624 0.256379i
\(634\) −7.83070 13.5632i −0.310997 0.538663i
\(635\) −5.72893 9.92279i −0.227345 0.393774i
\(636\) 0 0
\(637\) 5.14076 + 19.2654i 0.203685 + 0.763322i
\(638\) 11.3907i 0.450963i
\(639\) −3.83228 + 4.39230i −0.151603 + 0.173757i
\(640\) 3.89111i 0.153810i
\(641\) 28.9612 + 16.7207i 1.14390 + 0.660429i 0.947393 0.320074i \(-0.103708\pi\)
0.196504 + 0.980503i \(0.437041\pi\)
\(642\) −19.1756 + 15.7778i −0.756801 + 0.622699i
\(643\) −16.6022 + 9.58527i −0.654726 + 0.378006i −0.790264 0.612766i \(-0.790057\pi\)
0.135539 + 0.990772i \(0.456724\pi\)
\(644\) −16.4038 + 2.15096i −0.646398 + 0.0847595i
\(645\) −5.95121 2.23126i −0.234328 0.0878559i
\(646\) 0.662242 1.14704i 0.0260556 0.0451296i
\(647\) 44.6049 1.75360 0.876800 0.480854i \(-0.159673\pi\)
0.876800 + 0.480854i \(0.159673\pi\)
\(648\) 8.91693 1.21999i 0.350290 0.0479257i
\(649\) 0.0833680i 0.00327248i
\(650\) −14.4430 + 25.0159i −0.566500 + 0.981206i
\(651\) −10.9921 + 11.7538i −0.430814 + 0.460668i
\(652\) −6.19773 10.7348i −0.242722 0.420407i
\(653\) −0.564755 + 0.326061i −0.0221006 + 0.0127598i −0.511010 0.859575i \(-0.670728\pi\)
0.488909 + 0.872335i \(0.337395\pi\)
\(654\) −12.4136 15.0869i −0.485410 0.589946i
\(655\) −29.3100 + 50.7664i −1.14524 + 1.98361i
\(656\) −10.4941 −0.409726
\(657\) −9.57529 + 10.9746i −0.373568 + 0.428158i
\(658\) 2.21530 5.34039i 0.0863614 0.208190i
\(659\) 26.2738 + 15.1692i 1.02348 + 0.590908i 0.915111 0.403202i \(-0.132103\pi\)
0.108372 + 0.994110i \(0.465436\pi\)
\(660\) 26.2246 4.36387i 1.02079 0.169863i
\(661\) 11.1004 6.40881i 0.431755 0.249274i −0.268339 0.963325i \(-0.586475\pi\)
0.700094 + 0.714051i \(0.253141\pi\)
\(662\) 1.10181 0.636129i 0.0428230 0.0247239i
\(663\) 3.61175 0.601008i 0.140269 0.0233412i
\(664\) −6.98012 4.02998i −0.270881 0.156393i
\(665\) −7.04011 + 16.9715i −0.273004 + 0.658126i
\(666\) −2.91610 8.51948i −0.112996 0.330123i
\(667\) 18.0569 0.699165
\(668\) −5.86087 + 10.1513i −0.226764 + 0.392767i
\(669\) −14.0624 17.0908i −0.543683 0.660769i
\(670\) 45.3214 26.1663i 1.75092 1.01089i
\(671\) 4.86986 + 8.43484i 0.187999 + 0.325623i
\(672\) 3.13010 3.34701i 0.120746 0.129114i
\(673\) 11.2246 19.4416i 0.432678 0.749420i −0.564425 0.825484i \(-0.690902\pi\)
0.997103 + 0.0760644i \(0.0242355\pi\)
\(674\) 7.56002i 0.291201i
\(675\) −52.6710 1.52367i −2.02731 0.0586461i
\(676\) −4.88608 −0.187926
\(677\) −25.5903 + 44.3237i −0.983516 + 1.70350i −0.335163 + 0.942160i \(0.608791\pi\)
−0.648353 + 0.761340i \(0.724542\pi\)
\(678\) 15.9461 + 5.97860i 0.612406 + 0.229607i
\(679\) −49.3694 + 6.47360i −1.89462 + 0.248434i
\(680\) 2.50079 1.44383i 0.0959009 0.0553684i
\(681\) 26.7262 21.9904i 1.02415 0.842673i
\(682\) 11.9966 + 6.92623i 0.459373 + 0.265219i
\(683\) 14.5616i 0.557184i 0.960410 + 0.278592i \(0.0898677\pi\)
−0.960410 + 0.278592i \(0.910132\pi\)
\(684\) 5.25397 + 1.03123i 0.200890 + 0.0394301i
\(685\) 61.1681i 2.33711i
\(686\) −2.44590 + 18.3580i −0.0933847 + 0.700913i
\(687\) −17.3100 + 2.88045i −0.660419 + 0.109896i
\(688\) 0.471521 + 0.816699i 0.0179766 + 0.0311363i
\(689\) 0 0
\(690\) −6.91772 41.5719i −0.263353 1.58261i
\(691\) 21.1757 + 12.2258i 0.805560 + 0.465090i 0.845412 0.534115i \(-0.179355\pi\)
−0.0398517 + 0.999206i \(0.512689\pi\)
\(692\) 16.7710 0.637536
\(693\) 26.0679 + 17.3420i 0.990238 + 0.658768i
\(694\) −22.1091 −0.839250
\(695\) 11.1431 + 6.43347i 0.422682 + 0.244035i
\(696\) −3.86224 + 3.17787i −0.146398 + 0.120457i
\(697\) −3.89393 6.74448i −0.147493 0.255465i
\(698\) −7.37173 12.7682i −0.279024 0.483284i
\(699\) 4.44495 11.8555i 0.168123 0.448417i
\(700\) −21.2941 + 16.3220i −0.804841 + 0.616914i
\(701\) 2.21697i 0.0837337i 0.999123 + 0.0418669i \(0.0133305\pi\)
−0.999123 + 0.0418669i \(0.986669\pi\)
\(702\) 7.02686 + 13.0269i 0.265212 + 0.491667i
\(703\) 5.35703i 0.202044i
\(704\) −3.41614 1.97231i −0.128751 0.0743342i
\(705\) 13.7903 + 5.17036i 0.519375 + 0.194727i
\(706\) 14.9629 8.63881i 0.563135 0.325126i
\(707\) 2.84871 + 21.7250i 0.107137 + 0.817054i
\(708\) 0.0282675 0.0232586i 0.00106236 0.000874112i
\(709\) 12.1962 21.1244i 0.458036 0.793342i −0.540821 0.841138i \(-0.681886\pi\)
0.998857 + 0.0477959i \(0.0152197\pi\)
\(710\) −7.56060 −0.283744
\(711\) −10.3206 + 3.53258i −0.387051 + 0.132482i
\(712\) 9.26646i 0.347275i
\(713\) 10.9796 19.0173i 0.411190 0.712203i
\(714\) 3.31255 + 0.769756i 0.123969 + 0.0288074i
\(715\) 21.8607 + 37.8639i 0.817544 + 1.41603i
\(716\) −5.00158 + 2.88766i −0.186918 + 0.107917i
\(717\) 14.3688 2.39102i 0.536611 0.0892941i
\(718\) −5.45647 + 9.45088i −0.203634 + 0.352704i
\(719\) 2.22752 0.0830725 0.0415363 0.999137i \(-0.486775\pi\)
0.0415363 + 0.999137i \(0.486775\pi\)
\(720\) 8.79598 + 7.67448i 0.327807 + 0.286011i
\(721\) 17.2831 41.6641i 0.643657 1.55165i
\(722\) −13.6959 7.90736i −0.509710 0.294281i
\(723\) 9.85181 + 11.9735i 0.366393 + 0.445298i
\(724\) −4.79180 + 2.76655i −0.178086 + 0.102818i
\(725\) 25.3599 14.6416i 0.941844 0.543774i
\(726\) 2.77276 7.39549i 0.102907 0.274472i
\(727\) −10.4880 6.05523i −0.388977 0.224576i 0.292740 0.956192i \(-0.405433\pi\)
−0.681717 + 0.731616i \(0.738766\pi\)
\(728\) 6.96124 + 2.88766i 0.258001 + 0.107024i
\(729\) −14.8291 + 22.5632i −0.549227 + 0.835673i
\(730\) −18.8908 −0.699180
\(731\) −0.349924 + 0.606086i −0.0129424 + 0.0224169i
\(732\) −1.50137 + 4.00443i −0.0554921 + 0.148008i
\(733\) −13.5673 + 7.83306i −0.501118 + 0.289321i −0.729175 0.684327i \(-0.760096\pi\)
0.228057 + 0.973648i \(0.426763\pi\)
\(734\) 17.8636 + 30.9407i 0.659357 + 1.14204i
\(735\) −46.9512 4.61325i −1.73182 0.170162i
\(736\) −3.12656 + 5.41535i −0.115246 + 0.199613i
\(737\) 53.0522i 1.95420i
\(738\) 20.6976 23.7222i 0.761890 0.873228i
\(739\) −8.10454 −0.298130 −0.149065 0.988827i \(-0.547626\pi\)
−0.149065 + 0.988827i \(0.547626\pi\)
\(740\) 5.83974 10.1147i 0.214673 0.371825i
\(741\) 1.44538 + 8.68599i 0.0530974 + 0.319088i
\(742\) 0 0
\(743\) −10.5429 + 6.08697i −0.386783 + 0.223309i −0.680765 0.732502i \(-0.738353\pi\)
0.293982 + 0.955811i \(0.405019\pi\)
\(744\) 0.998423 + 6.00000i 0.0366040 + 0.219971i
\(745\) −37.0732 21.4042i −1.35826 0.784189i
\(746\) 32.0600i 1.17380i
\(747\) 22.8769 7.83042i 0.837020 0.286500i
\(748\) 2.92737i 0.107035i
\(749\) −23.0759 30.1054i −0.843176 1.10003i
\(750\) −22.0136 26.7544i −0.803824 0.976934i
\(751\) −17.3062 29.9752i −0.631511 1.09381i −0.987243 0.159221i \(-0.949102\pi\)
0.355732 0.934588i \(-0.384232\pi\)
\(752\) −1.09263 1.89248i −0.0398440 0.0690118i
\(753\) −20.5049 7.68782i −0.747240 0.280160i
\(754\) −7.12348 4.11274i −0.259422 0.149777i
\(755\) −5.60311 −0.203918
\(756\) 1.39248 + 13.6770i 0.0506440 + 0.497429i
\(757\) −39.0553 −1.41949 −0.709744 0.704459i \(-0.751190\pi\)
−0.709744 + 0.704459i \(0.751190\pi\)
\(758\) −30.2149 17.4446i −1.09745 0.633615i
\(759\) −40.0038 14.9985i −1.45204 0.544410i
\(760\) 3.47231 + 6.01422i 0.125954 + 0.218159i
\(761\) −5.11262 8.85532i −0.185332 0.321005i 0.758356 0.651840i \(-0.226003\pi\)
−0.943688 + 0.330835i \(0.892670\pi\)
\(762\) −3.24055 3.93842i −0.117393 0.142674i
\(763\) 23.6862 18.1556i 0.857499 0.657277i
\(764\) 6.21372i 0.224805i
\(765\) −1.66851 + 8.50079i −0.0603250 + 0.307347i
\(766\) 17.5342i 0.633537i
\(767\) 0.0521363 + 0.0301009i 0.00188253 + 0.00108688i
\(768\) −0.284310 1.70856i −0.0102592 0.0616522i
\(769\) 26.6746 15.4006i 0.961910 0.555359i 0.0651494 0.997876i \(-0.479248\pi\)
0.896760 + 0.442517i \(0.145914\pi\)
\(770\) 5.27976 + 40.2649i 0.190269 + 1.45105i
\(771\) 4.63613 + 27.8607i 0.166966 + 1.00338i
\(772\) −3.90271 + 6.75970i −0.140462 + 0.243287i
\(773\) 35.7833 1.28704 0.643518 0.765431i \(-0.277474\pi\)
0.643518 + 0.765431i \(0.277474\pi\)
\(774\) −2.77616 0.544895i −0.0997869 0.0195859i