Properties

Label 126.2.m.a.41.7
Level $126$
Weight $2$
Character 126.41
Analytic conductor $1.006$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.m (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 6 x^{14} + 9 x^{12} + 54 x^{10} - 288 x^{8} + 486 x^{6} + 729 x^{4} - 4374 x^{2} + 6561\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 41.7
Root \(-0.0967785 + 1.72934i\) of defining polynomial
Character \(\chi\) \(=\) 126.41
Dual form 126.2.m.a.83.7

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.0967785 - 1.72934i) q^{3} +(0.500000 - 0.866025i) q^{4} +(0.183299 - 0.317483i) q^{5} +(-0.780860 - 1.54605i) q^{6} +(-0.624224 + 2.57106i) q^{7} -1.00000i q^{8} +(-2.98127 - 0.334727i) q^{9} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(0.0967785 - 1.72934i) q^{3} +(0.500000 - 0.866025i) q^{4} +(0.183299 - 0.317483i) q^{5} +(-0.780860 - 1.54605i) q^{6} +(-0.624224 + 2.57106i) q^{7} -1.00000i q^{8} +(-2.98127 - 0.334727i) q^{9} -0.366598i q^{10} +(0.579764 - 0.334727i) q^{11} +(-1.44927 - 0.948485i) q^{12} +(0.867380 + 0.500782i) q^{13} +(0.744936 + 2.53871i) q^{14} +(-0.531299 - 0.347713i) q^{15} +(-0.500000 - 0.866025i) q^{16} +4.98906 q^{17} +(-2.74922 + 1.20075i) q^{18} +6.35722i q^{19} +(-0.183299 - 0.317483i) q^{20} +(4.38584 + 1.32832i) q^{21} +(0.334727 - 0.579764i) q^{22} +(-6.66371 - 3.84729i) q^{23} +(-1.72934 - 0.0967785i) q^{24} +(2.43280 + 4.21374i) q^{25} +1.00156 q^{26} +(-0.867380 + 5.12325i) q^{27} +(1.91449 + 1.82612i) q^{28} +(1.58394 - 0.914490i) q^{29} +(-0.633975 - 0.0354788i) q^{30} +(-5.47837 - 3.16294i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(-0.522749 - 1.03501i) q^{33} +(4.32065 - 2.49453i) q^{34} +(0.701849 + 0.669453i) q^{35} +(-1.78052 + 2.41449i) q^{36} -5.16789 q^{37} +(3.17861 + 5.50552i) q^{38} +(0.949969 - 1.45154i) q^{39} +(-0.317483 - 0.183299i) q^{40} +(2.15928 - 3.73998i) q^{41} +(4.46241 - 1.04256i) q^{42} +(2.24922 + 3.89576i) q^{43} -0.669453i q^{44} +(-0.652734 + 0.885148i) q^{45} -7.69459 q^{46} +(-4.16450 - 7.21313i) q^{47} +(-1.54605 + 0.780860i) q^{48} +(-6.22069 - 3.20983i) q^{49} +(4.21374 + 2.43280i) q^{50} +(0.482834 - 8.62781i) q^{51} +(0.867380 - 0.500782i) q^{52} +(1.81045 + 4.87055i) q^{54} -0.245420i q^{55} +(2.57106 + 0.624224i) q^{56} +(10.9938 + 0.615242i) q^{57} +(0.914490 - 1.58394i) q^{58} +(-4.36348 + 7.55776i) q^{59} +(-0.566778 + 0.286262i) q^{60} +(4.29351 - 2.47886i) q^{61} -6.32588 q^{62} +(2.72158 - 7.45607i) q^{63} -1.00000 q^{64} +(0.317980 - 0.183586i) q^{65} +(-0.970217 - 0.634967i) q^{66} +(5.44537 - 9.43166i) q^{67} +(2.49453 - 4.32065i) q^{68} +(-7.29820 + 11.1515i) q^{69} +(0.942545 + 0.228839i) q^{70} +5.49843i q^{71} +(-0.334727 + 2.98127i) q^{72} -4.07314i q^{73} +(-4.47552 + 2.58394i) q^{74} +(7.52245 - 3.79936i) q^{75} +(5.50552 + 3.17861i) q^{76} +(0.498700 + 1.69955i) q^{77} +(0.0969299 - 1.73205i) q^{78} +(-4.17784 - 7.23623i) q^{79} -0.366598 q^{80} +(8.77592 + 1.99582i) q^{81} -4.31856i q^{82} +(-8.50712 - 14.7348i) q^{83} +(3.34328 - 3.13408i) q^{84} +(0.914490 - 1.58394i) q^{85} +(3.89576 + 2.24922i) q^{86} +(-1.42818 - 2.82769i) q^{87} +(-0.334727 - 0.579764i) q^{88} -10.7113 q^{89} +(-0.122710 + 1.09293i) q^{90} +(-1.82898 + 1.91749i) q^{91} +(-6.66371 + 3.84729i) q^{92} +(-6.00000 + 9.16789i) q^{93} +(-7.21313 - 4.16450i) q^{94} +(2.01831 + 1.16527i) q^{95} +(-0.948485 + 1.44927i) q^{96} +(14.9093 - 8.60787i) q^{97} +(-6.99219 + 0.330547i) q^{98} +(-1.84047 + 0.803848i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 8q^{4} + 2q^{7} + 12q^{9} + O(q^{10}) \) \( 16q + 8q^{4} + 2q^{7} + 12q^{9} - 12q^{11} - 6q^{14} - 8q^{16} - 12q^{18} + 18q^{21} - 48q^{23} - 8q^{25} + 4q^{28} - 12q^{29} - 24q^{30} + 12q^{36} - 8q^{37} - 36q^{39} - 12q^{42} + 4q^{43} + 24q^{46} - 8q^{49} + 60q^{50} + 12q^{51} - 6q^{56} + 48q^{57} - 12q^{58} + 24q^{60} + 24q^{63} - 16q^{64} + 84q^{65} - 28q^{67} + 36q^{74} + 78q^{77} - 24q^{78} - 4q^{79} + 36q^{81} + 18q^{84} - 12q^{85} - 24q^{86} + 24q^{91} - 48q^{92} - 96q^{93} + 12q^{95} - 72q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0.0967785 1.72934i 0.0558751 0.998438i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0.183299 0.317483i 0.0819738 0.141983i −0.822124 0.569309i \(-0.807211\pi\)
0.904098 + 0.427326i \(0.140544\pi\)
\(6\) −0.780860 1.54605i −0.318785 0.631171i
\(7\) −0.624224 + 2.57106i −0.235935 + 0.971769i
\(8\) 1.00000i 0.353553i
\(9\) −2.98127 0.334727i −0.993756 0.111576i
\(10\) 0.366598i 0.115929i
\(11\) 0.579764 0.334727i 0.174805 0.100924i −0.410044 0.912066i \(-0.634487\pi\)
0.584850 + 0.811142i \(0.301153\pi\)
\(12\) −1.44927 0.948485i −0.418367 0.273804i
\(13\) 0.867380 + 0.500782i 0.240568 + 0.138892i 0.615438 0.788185i \(-0.288979\pi\)
−0.374870 + 0.927077i \(0.622313\pi\)
\(14\) 0.744936 + 2.53871i 0.199092 + 0.678500i
\(15\) −0.531299 0.347713i −0.137181 0.0897791i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 4.98906 1.21003 0.605013 0.796216i \(-0.293168\pi\)
0.605013 + 0.796216i \(0.293168\pi\)
\(18\) −2.74922 + 1.20075i −0.647997 + 0.283020i
\(19\) 6.35722i 1.45845i 0.684275 + 0.729224i \(0.260119\pi\)
−0.684275 + 0.729224i \(0.739881\pi\)
\(20\) −0.183299 0.317483i −0.0409869 0.0709914i
\(21\) 4.38584 + 1.32832i 0.957068 + 0.289864i
\(22\) 0.334727 0.579764i 0.0713640 0.123606i
\(23\) −6.66371 3.84729i −1.38948 0.802216i −0.396223 0.918154i \(-0.629679\pi\)
−0.993256 + 0.115938i \(0.963012\pi\)
\(24\) −1.72934 0.0967785i −0.353001 0.0197548i
\(25\) 2.43280 + 4.21374i 0.486561 + 0.842748i
\(26\) 1.00156 0.196423
\(27\) −0.867380 + 5.12325i −0.166927 + 0.985969i
\(28\) 1.91449 + 1.82612i 0.361805 + 0.345105i
\(29\) 1.58394 0.914490i 0.294131 0.169817i −0.345672 0.938355i \(-0.612349\pi\)
0.639803 + 0.768539i \(0.279016\pi\)
\(30\) −0.633975 0.0354788i −0.115747 0.00647751i
\(31\) −5.47837 3.16294i −0.983944 0.568081i −0.0804857 0.996756i \(-0.525647\pi\)
−0.903459 + 0.428675i \(0.858980\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) −0.522749 1.03501i −0.0909990 0.180171i
\(34\) 4.32065 2.49453i 0.740986 0.427809i
\(35\) 0.701849 + 0.669453i 0.118634 + 0.113158i
\(36\) −1.78052 + 2.41449i −0.296753 + 0.402415i
\(37\) −5.16789 −0.849595 −0.424798 0.905288i \(-0.639655\pi\)
−0.424798 + 0.905288i \(0.639655\pi\)
\(38\) 3.17861 + 5.50552i 0.515639 + 0.893113i
\(39\) 0.949969 1.45154i 0.152117 0.232432i
\(40\) −0.317483 0.183299i −0.0501985 0.0289821i
\(41\) 2.15928 3.73998i 0.337223 0.584087i −0.646686 0.762756i \(-0.723846\pi\)
0.983909 + 0.178669i \(0.0571790\pi\)
\(42\) 4.46241 1.04256i 0.688564 0.160870i
\(43\) 2.24922 + 3.89576i 0.343002 + 0.594098i 0.984989 0.172618i \(-0.0552228\pi\)
−0.641986 + 0.766716i \(0.721889\pi\)
\(44\) 0.669453i 0.100924i
\(45\) −0.652734 + 0.885148i −0.0973038 + 0.131950i
\(46\) −7.69459 −1.13450
\(47\) −4.16450 7.21313i −0.607455 1.05214i −0.991658 0.128895i \(-0.958857\pi\)
0.384203 0.923249i \(-0.374476\pi\)
\(48\) −1.54605 + 0.780860i −0.223153 + 0.112707i
\(49\) −6.22069 3.20983i −0.888670 0.458548i
\(50\) 4.21374 + 2.43280i 0.595913 + 0.344050i
\(51\) 0.482834 8.62781i 0.0676102 1.20813i
\(52\) 0.867380 0.500782i 0.120284 0.0694460i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 1.81045 + 4.87055i 0.246371 + 0.662798i
\(55\) 0.245420i 0.0330925i
\(56\) 2.57106 + 0.624224i 0.343572 + 0.0834155i
\(57\) 10.9938 + 0.615242i 1.45617 + 0.0814909i
\(58\) 0.914490 1.58394i 0.120078 0.207982i
\(59\) −4.36348 + 7.55776i −0.568076 + 0.983937i 0.428680 + 0.903456i \(0.358979\pi\)
−0.996756 + 0.0804804i \(0.974355\pi\)
\(60\) −0.566778 + 0.286262i −0.0731707 + 0.0369562i
\(61\) 4.29351 2.47886i 0.549727 0.317385i −0.199285 0.979942i \(-0.563862\pi\)
0.749012 + 0.662556i \(0.230529\pi\)
\(62\) −6.32588 −0.803387
\(63\) 2.72158 7.45607i 0.342887 0.939377i
\(64\) −1.00000 −0.125000
\(65\) 0.317980 0.183586i 0.0394406 0.0227710i
\(66\) −0.970217 0.634967i −0.119425 0.0781590i
\(67\) 5.44537 9.43166i 0.665258 1.15226i −0.313958 0.949437i \(-0.601655\pi\)
0.979215 0.202823i \(-0.0650117\pi\)
\(68\) 2.49453 4.32065i 0.302506 0.523956i
\(69\) −7.29820 + 11.1515i −0.878600 + 1.34248i
\(70\) 0.942545 + 0.228839i 0.112656 + 0.0273515i
\(71\) 5.49843i 0.652544i 0.945276 + 0.326272i \(0.105793\pi\)
−0.945276 + 0.326272i \(0.894207\pi\)
\(72\) −0.334727 + 2.98127i −0.0394479 + 0.351346i
\(73\) 4.07314i 0.476725i −0.971176 0.238363i \(-0.923389\pi\)
0.971176 0.238363i \(-0.0766106\pi\)
\(74\) −4.47552 + 2.58394i −0.520269 + 0.300377i
\(75\) 7.52245 3.79936i 0.868618 0.438712i
\(76\) 5.50552 + 3.17861i 0.631526 + 0.364612i
\(77\) 0.498700 + 1.69955i 0.0568321 + 0.193682i
\(78\) 0.0969299 1.73205i 0.0109751 0.196116i
\(79\) −4.17784 7.23623i −0.470044 0.814140i 0.529370 0.848391i \(-0.322429\pi\)
−0.999413 + 0.0342518i \(0.989095\pi\)
\(80\) −0.366598 −0.0409869
\(81\) 8.77592 + 1.99582i 0.975102 + 0.221758i
\(82\) 4.31856i 0.476905i
\(83\) −8.50712 14.7348i −0.933778 1.61735i −0.776798 0.629750i \(-0.783158\pi\)
−0.156980 0.987602i \(-0.550176\pi\)
\(84\) 3.34328 3.13408i 0.364782 0.341957i
\(85\) 0.914490 1.58394i 0.0991904 0.171803i
\(86\) 3.89576 + 2.24922i 0.420090 + 0.242539i
\(87\) −1.42818 2.82769i −0.153117 0.303160i
\(88\) −0.334727 0.579764i −0.0356820 0.0618030i
\(89\) −10.7113 −1.13540 −0.567699 0.823236i \(-0.692166\pi\)
−0.567699 + 0.823236i \(0.692166\pi\)
\(90\) −0.122710 + 1.09293i −0.0129348 + 0.115205i
\(91\) −1.82898 + 1.91749i −0.191729 + 0.201007i
\(92\) −6.66371 + 3.84729i −0.694740 + 0.401108i
\(93\) −6.00000 + 9.16789i −0.622171 + 0.950666i
\(94\) −7.21313 4.16450i −0.743978 0.429536i
\(95\) 2.01831 + 1.16527i 0.207074 + 0.119555i
\(96\) −0.948485 + 1.44927i −0.0968044 + 0.147915i
\(97\) 14.9093 8.60787i 1.51381 0.873997i 0.513937 0.857828i \(-0.328186\pi\)
0.999869 0.0161687i \(-0.00514689\pi\)
\(98\) −6.99219 + 0.330547i −0.706318 + 0.0333902i
\(99\) −1.84047 + 0.803848i −0.184974 + 0.0807897i
\(100\) 4.86561 0.486561
\(101\) 7.86586 + 13.6241i 0.782683 + 1.35565i 0.930374 + 0.366613i \(0.119483\pi\)
−0.147691 + 0.989034i \(0.547184\pi\)
\(102\) −3.89576 7.71332i −0.385738 0.763732i
\(103\) 9.91124 + 5.72226i 0.976584 + 0.563831i 0.901237 0.433327i \(-0.142660\pi\)
0.0753467 + 0.997157i \(0.475994\pi\)
\(104\) 0.500782 0.867380i 0.0491057 0.0850537i
\(105\) 1.22564 1.14895i 0.119610 0.112126i
\(106\) 0 0
\(107\) 11.0618i 1.06938i 0.845048 + 0.534690i \(0.179572\pi\)
−0.845048 + 0.534690i \(0.820428\pi\)
\(108\) 4.00317 + 3.31280i 0.385205 + 0.318774i
\(109\) −10.5633 −1.01178 −0.505891 0.862597i \(-0.668836\pi\)
−0.505891 + 0.862597i \(0.668836\pi\)
\(110\) −0.122710 0.212540i −0.0117000 0.0202649i
\(111\) −0.500140 + 8.93706i −0.0474712 + 0.848268i
\(112\) 2.53871 0.744936i 0.239886 0.0703898i
\(113\) 3.60226 + 2.07976i 0.338872 + 0.195648i 0.659773 0.751465i \(-0.270652\pi\)
−0.320901 + 0.947113i \(0.603986\pi\)
\(114\) 9.82856 4.96410i 0.920529 0.464931i
\(115\) −2.44290 + 1.41041i −0.227802 + 0.131521i
\(116\) 1.82898i 0.169817i
\(117\) −2.41827 1.78330i −0.223569 0.164866i
\(118\) 8.72695i 0.803381i
\(119\) −3.11429 + 12.8272i −0.285487 + 1.17586i
\(120\) −0.347713 + 0.531299i −0.0317417 + 0.0485007i
\(121\) −5.27592 + 9.13815i −0.479629 + 0.830741i
\(122\) 2.47886 4.29351i 0.224425 0.388716i
\(123\) −6.25875 4.09609i −0.564332 0.369332i
\(124\) −5.47837 + 3.16294i −0.491972 + 0.284040i
\(125\) 3.61671 0.323489
\(126\) −1.37108 7.81794i −0.122145 0.696477i
\(127\) −1.66945 −0.148140 −0.0740700 0.997253i \(-0.523599\pi\)
−0.0740700 + 0.997253i \(0.523599\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 6.95479 3.51265i 0.612335 0.309271i
\(130\) 0.183586 0.317980i 0.0161015 0.0278887i
\(131\) −6.76607 + 11.7192i −0.591154 + 1.02391i 0.402923 + 0.915234i \(0.367994\pi\)
−0.994077 + 0.108675i \(0.965339\pi\)
\(132\) −1.15772 0.0647887i −0.100766 0.00563913i
\(133\) −16.3448 3.96833i −1.41727 0.344098i
\(134\) 10.8907i 0.940817i
\(135\) 1.46755 + 1.21446i 0.126307 + 0.104525i
\(136\) 4.98906i 0.427809i
\(137\) 7.78428 4.49425i 0.665056 0.383970i −0.129145 0.991626i \(-0.541223\pi\)
0.794201 + 0.607656i \(0.207890\pi\)
\(138\) −0.744670 + 13.3066i −0.0633905 + 1.13273i
\(139\) 8.05336 + 4.64961i 0.683077 + 0.394375i 0.801014 0.598646i \(-0.204294\pi\)
−0.117936 + 0.993021i \(0.537628\pi\)
\(140\) 0.930688 0.273092i 0.0786575 0.0230805i
\(141\) −12.8770 + 6.50379i −1.08444 + 0.547718i
\(142\) 2.74922 + 4.76178i 0.230709 + 0.399600i
\(143\) 0.670501 0.0560701
\(144\) 1.20075 + 2.74922i 0.100063 + 0.229101i
\(145\) 0.670501i 0.0556821i
\(146\) −2.03657 3.52744i −0.168548 0.291933i
\(147\) −6.15294 + 10.4471i −0.507486 + 0.861660i
\(148\) −2.58394 + 4.47552i −0.212399 + 0.367886i
\(149\) −2.45268 1.41606i −0.200931 0.116008i 0.396158 0.918182i \(-0.370343\pi\)
−0.597090 + 0.802174i \(0.703676\pi\)
\(150\) 4.61495 7.05156i 0.376809 0.575758i
\(151\) 8.27592 + 14.3343i 0.673484 + 1.16651i 0.976909 + 0.213654i \(0.0685365\pi\)
−0.303425 + 0.952855i \(0.598130\pi\)
\(152\) 6.35722 0.515639
\(153\) −14.8737 1.66997i −1.20247 0.135009i
\(154\) 1.28166 + 1.22250i 0.103279 + 0.0985122i
\(155\) −2.00836 + 1.15953i −0.161315 + 0.0931355i
\(156\) −0.782082 1.54846i −0.0626166 0.123976i
\(157\) −2.45480 1.41728i −0.195914 0.113111i 0.398834 0.917023i \(-0.369415\pi\)
−0.594748 + 0.803912i \(0.702748\pi\)
\(158\) −7.23623 4.17784i −0.575684 0.332371i
\(159\) 0 0
\(160\) −0.317483 + 0.183299i −0.0250993 + 0.0144911i
\(161\) 14.0513 14.7312i 1.10739 1.16098i
\(162\) 8.59808 2.65953i 0.675529 0.208952i
\(163\) 24.7281 1.93685 0.968426 0.249300i \(-0.0802005\pi\)
0.968426 + 0.249300i \(0.0802005\pi\)
\(164\) −2.15928 3.73998i −0.168611 0.292044i
\(165\) −0.424416 0.0237514i −0.0330408 0.00184904i
\(166\) −14.7348 8.50712i −1.14364 0.660281i
\(167\) 9.67422 16.7562i 0.748614 1.29664i −0.199874 0.979822i \(-0.564053\pi\)
0.948487 0.316815i \(-0.102614\pi\)
\(168\) 1.32832 4.38584i 0.102482 0.338375i
\(169\) −5.99843 10.3896i −0.461418 0.799199i
\(170\) 1.82898i 0.140276i
\(171\) 2.12793 18.9526i 0.162727 1.44934i
\(172\) 4.49843 0.343002
\(173\) 2.41827 + 4.18856i 0.183858 + 0.318451i 0.943191 0.332251i \(-0.107808\pi\)
−0.759333 + 0.650702i \(0.774475\pi\)
\(174\) −2.65068 1.73476i −0.200948 0.131512i
\(175\) −12.3524 + 3.62456i −0.933752 + 0.273991i
\(176\) −0.579764 0.334727i −0.0437013 0.0252310i
\(177\) 12.6477 + 8.27738i 0.950658 + 0.622166i
\(178\) −9.27628 + 5.35566i −0.695286 + 0.401424i
\(179\) 3.65796i 0.273409i 0.990612 + 0.136704i \(0.0436511\pi\)
−0.990612 + 0.136704i \(0.956349\pi\)
\(180\) 0.440193 + 1.00786i 0.0328101 + 0.0751213i
\(181\) 5.66796i 0.421296i −0.977562 0.210648i \(-0.932443\pi\)
0.977562 0.210648i \(-0.0675574\pi\)
\(182\) −0.625201 + 2.57508i −0.0463430 + 0.190878i
\(183\) −3.87128 7.66485i −0.286173 0.566602i
\(184\) −3.84729 + 6.66371i −0.283626 + 0.491255i
\(185\) −0.947269 + 1.64072i −0.0696446 + 0.120628i
\(186\) −0.612209 + 10.9396i −0.0448893 + 0.802132i
\(187\) 2.89248 1.66997i 0.211519 0.122120i
\(188\) −8.32901 −0.607455
\(189\) −12.6307 5.42814i −0.918750 0.394839i
\(190\) 2.33055 0.169076
\(191\) 23.7098 13.6888i 1.71558 0.990490i 0.788996 0.614398i \(-0.210601\pi\)
0.926583 0.376091i \(-0.122732\pi\)
\(192\) −0.0967785 + 1.72934i −0.00698438 + 0.124805i
\(193\) 5.01413 8.68473i 0.360925 0.625141i −0.627188 0.778868i \(-0.715794\pi\)
0.988113 + 0.153727i \(0.0491276\pi\)
\(194\) 8.60787 14.9093i 0.618009 1.07042i
\(195\) −0.286710 0.567664i −0.0205317 0.0406513i
\(196\) −5.89014 + 3.78236i −0.420724 + 0.270168i
\(197\) 18.8258i 1.34129i −0.741780 0.670643i \(-0.766018\pi\)
0.741780 0.670643i \(-0.233982\pi\)
\(198\) −1.19197 + 1.61639i −0.0847098 + 0.114872i
\(199\) 5.36406i 0.380248i 0.981760 + 0.190124i \(0.0608890\pi\)
−0.981760 + 0.190124i \(0.939111\pi\)
\(200\) 4.21374 2.43280i 0.297956 0.172025i
\(201\) −15.7836 10.3297i −1.11329 0.728601i
\(202\) 13.6241 + 7.86586i 0.958587 + 0.553440i
\(203\) 1.36247 + 4.64326i 0.0956268 + 0.325893i
\(204\) −7.23048 4.73205i −0.506235 0.331310i
\(205\) −0.791588 1.37107i −0.0552869 0.0957597i
\(206\) 11.4445 0.797377
\(207\) 18.5785 + 13.7003i 1.29130 + 0.952239i
\(208\) 1.00156i 0.0694460i
\(209\) 2.12793 + 3.68569i 0.147192 + 0.254944i
\(210\) 0.486960 1.60784i 0.0336035 0.110951i
\(211\) −0.828981 + 1.43584i −0.0570694 + 0.0988471i −0.893149 0.449762i \(-0.851509\pi\)
0.836079 + 0.548609i \(0.184842\pi\)
\(212\) 0 0
\(213\) 9.50869 + 0.532130i 0.651525 + 0.0364609i
\(214\) 5.53088 + 9.57976i 0.378083 + 0.654859i
\(215\) 1.64912 0.112469
\(216\) 5.12325 + 0.867380i 0.348593 + 0.0590178i
\(217\) 11.5518 12.1108i 0.784189 0.822137i
\(218\) −9.14811 + 5.28166i −0.619588 + 0.357719i
\(219\) −7.04387 0.394192i −0.475980 0.0266370i
\(220\) −0.212540 0.122710i −0.0143295 0.00827312i
\(221\) 4.32741 + 2.49843i 0.291093 + 0.168063i
\(222\) 4.03540 + 7.98979i 0.270838 + 0.536240i
\(223\) −14.7546 + 8.51860i −0.988044 + 0.570448i −0.904689 0.426072i \(-0.859897\pi\)
−0.0833551 + 0.996520i \(0.526564\pi\)
\(224\) 1.82612 1.91449i 0.122013 0.127917i
\(225\) −5.84239 13.3766i −0.389492 0.891774i
\(226\) 4.15953 0.276688
\(227\) −2.55512 4.42560i −0.169589 0.293737i 0.768686 0.639626i \(-0.220911\pi\)
−0.938276 + 0.345889i \(0.887577\pi\)
\(228\) 6.02973 9.21332i 0.399329 0.610167i
\(229\) 13.2215 + 7.63345i 0.873703 + 0.504433i 0.868577 0.495554i \(-0.165035\pi\)
0.00512595 + 0.999987i \(0.498368\pi\)
\(230\) −1.41041 + 2.44290i −0.0929997 + 0.161080i
\(231\) 2.98737 0.697944i 0.196555 0.0459213i
\(232\) −0.914490 1.58394i −0.0600392 0.103991i
\(233\) 10.1930i 0.667767i 0.942614 + 0.333883i \(0.108359\pi\)
−0.942614 + 0.333883i \(0.891641\pi\)
\(234\) −2.98593 0.335250i −0.195197 0.0219160i
\(235\) −3.05340 −0.199182
\(236\) 4.36348 + 7.55776i 0.284038 + 0.491968i
\(237\) −12.9183 + 6.52461i −0.839131 + 0.423819i
\(238\) 3.71653 + 12.6658i 0.240907 + 0.821002i
\(239\) −16.6117 9.59076i −1.07452 0.620375i −0.145108 0.989416i \(-0.546353\pi\)
−0.929413 + 0.369041i \(0.879686\pi\)
\(240\) −0.0354788 + 0.633975i −0.00229015 + 0.0409229i
\(241\) −17.9140 + 10.3426i −1.15394 + 0.666227i −0.949844 0.312724i \(-0.898759\pi\)
−0.204095 + 0.978951i \(0.565425\pi\)
\(242\) 10.5518i 0.678297i
\(243\) 4.30078 14.9834i 0.275895 0.961188i
\(244\) 4.95771i 0.317385i
\(245\) −2.15931 + 1.38661i −0.137954 + 0.0885869i
\(246\) −7.46828 0.417944i −0.476160 0.0266471i
\(247\) −3.18359 + 5.51413i −0.202567 + 0.350856i
\(248\) −3.16294 + 5.47837i −0.200847 + 0.347877i
\(249\) −26.3048 + 13.2857i −1.66700 + 0.841950i
\(250\) 3.13216 1.80836i 0.198096 0.114370i
\(251\) 1.81200 0.114373 0.0571864 0.998364i \(-0.481787\pi\)
0.0571864 + 0.998364i \(0.481787\pi\)
\(252\) −5.09636 6.08499i −0.321040 0.383319i
\(253\) −5.15117 −0.323851
\(254\) −1.44579 + 0.834727i −0.0907169 + 0.0523754i
\(255\) −2.65068 1.73476i −0.165992 0.108635i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −3.22773 + 5.59059i −0.201340 + 0.348731i −0.948960 0.315395i \(-0.897863\pi\)
0.747620 + 0.664126i \(0.231196\pi\)
\(258\) 4.26670 6.51943i 0.265633 0.405882i
\(259\) 3.22592 13.2869i 0.200449 0.825611i
\(260\) 0.367172i 0.0227710i
\(261\) −5.02826 + 2.19615i −0.311242 + 0.135938i
\(262\) 13.5321i 0.836018i
\(263\) −7.63888 + 4.41031i −0.471034 + 0.271951i −0.716672 0.697410i \(-0.754336\pi\)
0.245639 + 0.969361i \(0.421002\pi\)
\(264\) −1.03501 + 0.522749i −0.0637002 + 0.0321730i
\(265\) 0 0
\(266\) −16.1392 + 4.73572i −0.989557 + 0.290366i
\(267\) −1.03663 + 18.5236i −0.0634404 + 1.13362i
\(268\) −5.44537 9.43166i −0.332629 0.576130i
\(269\) −14.2653 −0.869773 −0.434886 0.900485i \(-0.643212\pi\)
−0.434886 + 0.900485i \(0.643212\pi\)
\(270\) 1.87817 + 0.317980i 0.114302 + 0.0193516i
\(271\) 3.05281i 0.185445i −0.995692 0.0927226i \(-0.970443\pi\)
0.995692 0.0927226i \(-0.0295570\pi\)
\(272\) −2.49453 4.32065i −0.151253 0.261978i
\(273\) 3.13899 + 3.34851i 0.189980 + 0.202661i
\(274\) 4.49425 7.78428i 0.271508 0.470265i
\(275\) 2.82090 + 1.62865i 0.170107 + 0.0982112i
\(276\) 6.00839 + 11.8962i 0.361663 + 0.716066i
\(277\) −0.632828 1.09609i −0.0380230 0.0658577i 0.846388 0.532567i \(-0.178773\pi\)
−0.884411 + 0.466710i \(0.845439\pi\)
\(278\) 9.29922 0.557730
\(279\) 15.2738 + 11.2633i 0.914417 + 0.674318i
\(280\) 0.669453 0.701849i 0.0400075 0.0419435i
\(281\) 9.11639 5.26335i 0.543838 0.313985i −0.202795 0.979221i \(-0.565002\pi\)
0.746633 + 0.665236i \(0.231669\pi\)
\(282\) −7.89994 + 12.0710i −0.470434 + 0.718815i
\(283\) 17.2094 + 9.93588i 1.02300 + 0.590627i 0.914970 0.403522i \(-0.132214\pi\)
0.108025 + 0.994148i \(0.465547\pi\)
\(284\) 4.76178 + 2.74922i 0.282560 + 0.163136i
\(285\) 2.21049 3.37759i 0.130938 0.200071i
\(286\) 0.580671 0.335250i 0.0343358 0.0198238i
\(287\) 8.26784 + 7.88623i 0.488035 + 0.465509i
\(288\) 2.41449 + 1.78052i 0.142275 + 0.104918i
\(289\) 7.89074 0.464161
\(290\) −0.335250 0.580671i −0.0196866 0.0340982i
\(291\) −13.4431 26.6163i −0.788047 1.56028i
\(292\) −3.52744 2.03657i −0.206428 0.119181i
\(293\) −6.70606 + 11.6152i −0.391772 + 0.678569i −0.992683 0.120747i \(-0.961471\pi\)
0.600911 + 0.799316i \(0.294804\pi\)
\(294\) −0.105064 + 12.1239i −0.00612748 + 0.707080i
\(295\) 1.59964 + 2.77066i 0.0931348 + 0.161314i
\(296\) 5.16789i 0.300377i
\(297\) 1.21201 + 3.26061i 0.0703280 + 0.189200i
\(298\) −2.83211 −0.164060
\(299\) −3.85331 6.67413i −0.222843 0.385975i
\(300\) 0.470886 8.41431i 0.0271866 0.485800i
\(301\) −11.4202 + 3.35104i −0.658252 + 0.193151i
\(302\) 14.3343 + 8.27592i 0.824847 + 0.476225i
\(303\) 24.3220 12.2843i 1.39726 0.705713i
\(304\) 5.50552 3.17861i 0.315763 0.182306i
\(305\) 1.81749i 0.104069i
\(306\) −13.7160 + 5.99063i −0.784092 + 0.342461i
\(307\) 0.653728i 0.0373102i −0.999826 0.0186551i \(-0.994062\pi\)
0.999826 0.0186551i \(-0.00593845\pi\)
\(308\) 1.72120 + 0.417889i 0.0980747 + 0.0238114i
\(309\) 10.8550 16.5862i 0.617517 0.943554i
\(310\) −1.15953 + 2.00836i −0.0658567 + 0.114067i
\(311\) −4.62246 + 8.00634i −0.262116 + 0.453998i −0.966804 0.255519i \(-0.917754\pi\)
0.704688 + 0.709517i \(0.251087\pi\)
\(312\) −1.45154 0.949969i −0.0821770 0.0537814i
\(313\) 5.33830 3.08207i 0.301739 0.174209i −0.341485 0.939887i \(-0.610930\pi\)
0.643224 + 0.765678i \(0.277597\pi\)
\(314\) −2.83456 −0.159963
\(315\) −1.86831 2.23075i −0.105268 0.125688i
\(316\) −8.35568 −0.470044
\(317\) −17.8876 + 10.3274i −1.00467 + 0.580045i −0.909626 0.415428i \(-0.863632\pi\)
−0.0950420 + 0.995473i \(0.530299\pi\)
\(318\) 0 0
\(319\) 0.612209 1.06038i 0.0342771 0.0593697i
\(320\) −0.183299 + 0.317483i −0.0102467 + 0.0177479i
\(321\) 19.1296 + 1.07054i 1.06771 + 0.0597517i
\(322\) 4.80315 19.7832i 0.267669 1.10248i
\(323\) 31.7166i 1.76476i
\(324\) 6.11639 6.60226i 0.339799 0.366792i
\(325\) 4.87322i 0.270318i
\(326\) 21.4151 12.3640i 1.18608 0.684781i
\(327\) −1.02230 + 18.2676i −0.0565334 + 1.01020i
\(328\) −3.73998 2.15928i −0.206506 0.119226i
\(329\) 21.1450 6.20457i 1.16576 0.342069i
\(330\) −0.379431 + 0.191639i −0.0208870 + 0.0105494i
\(331\) −5.35568 9.27631i −0.294375 0.509872i 0.680464 0.732781i \(-0.261778\pi\)
−0.974839 + 0.222909i \(0.928445\pi\)
\(332\) −17.0142 −0.933778
\(333\) 15.4069 + 1.72983i 0.844291 + 0.0947941i
\(334\) 19.3484i 1.05870i
\(335\) −1.99626 3.45763i −0.109067 0.188910i
\(336\) −1.04256 4.46241i −0.0568762 0.243444i
\(337\) 3.77592 6.54008i 0.205687 0.356261i −0.744664 0.667439i \(-0.767390\pi\)
0.950351 + 0.311179i \(0.100724\pi\)
\(338\) −10.3896 5.99843i −0.565119 0.326272i
\(339\) 3.94525 6.02827i 0.214277 0.327411i
\(340\) −0.914490 1.58394i −0.0495952 0.0859014i
\(341\) −4.23488 −0.229332
\(342\) −7.63345 17.4774i −0.412770 0.945069i
\(343\) 12.1358 13.9901i 0.655270 0.755394i
\(344\) 3.89576 2.24922i 0.210045 0.121270i
\(345\) 2.20267 + 4.36112i 0.118588 + 0.234795i
\(346\) 4.18856 + 2.41827i 0.225179 + 0.130007i
\(347\) −9.46737 5.46599i −0.508235 0.293430i 0.223873 0.974618i \(-0.428130\pi\)
−0.732108 + 0.681189i \(0.761463\pi\)
\(348\) −3.16294 0.177006i −0.169551 0.00948851i
\(349\) −1.02562 + 0.592145i −0.0549004 + 0.0316968i −0.527199 0.849742i \(-0.676758\pi\)
0.472299 + 0.881439i \(0.343424\pi\)
\(350\) −8.88520 + 9.31516i −0.474934 + 0.497916i
\(351\) −3.31798 + 4.00943i −0.177101 + 0.214008i
\(352\) −0.669453 −0.0356820
\(353\) −16.7912 29.0832i −0.893706 1.54794i −0.835398 0.549646i \(-0.814763\pi\)
−0.0583086 0.998299i \(-0.518571\pi\)
\(354\) 15.0919 + 0.844581i 0.802126 + 0.0448890i
\(355\) 1.74566 + 1.00786i 0.0926501 + 0.0534915i
\(356\) −5.35566 + 9.27628i −0.283849 + 0.491642i
\(357\) 21.8812 + 6.62708i 1.15808 + 0.350742i
\(358\) 1.82898 + 3.16789i 0.0966646 + 0.167428i
\(359\) 10.1281i 0.534542i −0.963621 0.267271i \(-0.913878\pi\)
0.963621 0.267271i \(-0.0861219\pi\)
\(360\) 0.885148 + 0.652734i 0.0466514 + 0.0344021i
\(361\) −21.4143 −1.12707
\(362\) −2.83398 4.90860i −0.148951 0.257990i
\(363\) 15.2924 + 10.0083i 0.802644 + 0.525297i
\(364\) 0.746101 + 2.54269i 0.0391063 + 0.133273i
\(365\) −1.29315 0.746603i −0.0676868 0.0390790i
\(366\) −7.18505 4.70232i −0.375569 0.245794i
\(367\) 15.5903 9.00104i 0.813805 0.469850i −0.0344706 0.999406i \(-0.510975\pi\)
0.848275 + 0.529555i \(0.177641\pi\)
\(368\) 7.69459i 0.401108i
\(369\) −7.68927 + 10.4271i −0.400287 + 0.542814i
\(370\) 1.89454i 0.0984923i
\(371\) 0 0
\(372\) 4.93962 + 9.78010i 0.256108 + 0.507074i
\(373\) −8.20451 + 14.2106i −0.424814 + 0.735799i −0.996403 0.0847411i \(-0.972994\pi\)
0.571589 + 0.820540i \(0.306327\pi\)
\(374\) 1.66997 2.89248i 0.0863522 0.149566i
\(375\) 0.350020 6.25454i 0.0180749 0.322983i
\(376\) −7.21313 + 4.16450i −0.371989 + 0.214768i
\(377\) 1.83184 0.0943447
\(378\) −13.6526 + 1.61446i −0.702214 + 0.0830387i
\(379\) −2.91372 −0.149668 −0.0748339 0.997196i \(-0.523843\pi\)
−0.0748339 + 0.997196i \(0.523843\pi\)
\(380\) 2.01831 1.16527i 0.103537 0.0597773i
\(381\) −0.161567 + 2.88706i −0.00827734 + 0.147909i
\(382\) 13.6888 23.7098i 0.700382 1.21310i
\(383\) 4.28721 7.42567i 0.219066 0.379434i −0.735456 0.677572i \(-0.763032\pi\)
0.954523 + 0.298138i \(0.0963655\pi\)
\(384\) 0.780860 + 1.54605i 0.0398481 + 0.0788963i
\(385\) 0.630990 + 0.153197i 0.0321582 + 0.00780766i
\(386\) 10.0283i 0.510425i
\(387\) −5.40150 12.3672i −0.274574 0.628659i
\(388\) 17.2157i 0.873997i
\(389\) −30.7906 + 17.7770i −1.56115 + 0.901328i −0.564004 + 0.825772i \(0.690740\pi\)
−0.997142 + 0.0755559i \(0.975927\pi\)
\(390\) −0.532130 0.348257i −0.0269455 0.0176347i
\(391\) −33.2456 19.1944i −1.68130 0.970702i
\(392\) −3.20983 + 6.22069i −0.162121 + 0.314192i
\(393\) 19.6117 + 12.8350i 0.989279 + 0.647442i
\(394\) −9.41292 16.3037i −0.474216 0.821367i
\(395\) −3.06318 −0.154125
\(396\) −0.224084 + 1.99582i −0.0112606 + 0.100294i
\(397\) 3.58034i 0.179692i 0.995956 + 0.0898460i \(0.0286375\pi\)
−0.995956 + 0.0898460i \(0.971363\pi\)
\(398\) 2.68203 + 4.64541i 0.134438 + 0.232853i
\(399\) −8.44444 + 27.8817i −0.422751 + 1.39583i
\(400\) 2.43280 4.21374i 0.121640 0.210687i
\(401\) 0.165300 + 0.0954357i 0.00825467 + 0.00476583i 0.504122 0.863633i \(-0.331816\pi\)
−0.495867 + 0.868398i \(0.665150\pi\)
\(402\) −18.8338 1.05399i −0.939347 0.0525682i
\(403\) −3.16789 5.48694i −0.157804 0.273324i
\(404\) 15.7317 0.782683
\(405\) 2.24226 2.42037i 0.111419 0.120269i
\(406\) 3.50157 + 3.33994i 0.173780 + 0.165759i
\(407\) −2.99615 + 1.72983i −0.148514 + 0.0857445i
\(408\) −8.62781 0.482834i −0.427140 0.0239038i
\(409\) 3.00832 + 1.73685i 0.148752 + 0.0858819i 0.572529 0.819885i \(-0.305963\pi\)
−0.423777 + 0.905767i \(0.639296\pi\)
\(410\) −1.37107 0.791588i −0.0677124 0.0390938i
\(411\) −7.01877 13.8966i −0.346210 0.685471i
\(412\) 9.91124 5.72226i 0.488292 0.281915i
\(413\) −16.7077 15.9365i −0.822130 0.784183i
\(414\) 22.9396 + 2.57558i 1.12742 + 0.126583i
\(415\) −6.23739 −0.306182
\(416\) −0.500782 0.867380i −0.0245529 0.0425268i
\(417\) 8.82017 13.4771i 0.431926 0.659975i
\(418\) 3.68569 + 2.12793i 0.180273 + 0.104081i
\(419\) −0.703955 + 1.21929i −0.0343905 + 0.0595660i −0.882708 0.469921i \(-0.844282\pi\)
0.848318 + 0.529487i \(0.177616\pi\)
\(420\) −0.382200 1.63591i −0.0186494 0.0798242i
\(421\) 15.1930 + 26.3151i 0.740463 + 1.28252i 0.952285 + 0.305211i \(0.0987268\pi\)
−0.211822 + 0.977308i \(0.567940\pi\)
\(422\) 1.65796i 0.0807083i
\(423\) 10.0011 + 22.8982i 0.486269 + 1.11335i
\(424\) 0 0
\(425\) 12.1374 + 21.0226i 0.588751 + 1.01975i
\(426\) 8.50083 4.29351i 0.411867 0.208021i
\(427\) 3.69318 + 12.5862i 0.178725 + 0.609090i
\(428\) 9.57976 + 5.53088i 0.463055 + 0.267345i
\(429\) 0.0648900 1.15953i 0.00313292 0.0559825i
\(430\) 1.42818 0.824559i 0.0688728 0.0397638i
\(431\) 27.2747i 1.31378i −0.753988 0.656888i \(-0.771873\pi\)
0.753988 0.656888i \(-0.228127\pi\)
\(432\) 4.87055 1.81045i 0.234335 0.0871053i
\(433\) 8.15047i 0.391686i −0.980635 0.195843i \(-0.937256\pi\)
0.980635 0.195843i \(-0.0627444\pi\)
\(434\) 3.94876 16.2642i 0.189547 0.780707i
\(435\) −1.15953 0.0648900i −0.0555951 0.00311124i
\(436\) −5.28166 + 9.14811i −0.252946 + 0.438115i
\(437\) 24.4581 42.3627i 1.16999 2.02648i
\(438\) −6.29726 + 3.18055i −0.300895 + 0.151973i
\(439\) −10.6005 + 6.12020i −0.505934 + 0.292101i −0.731161 0.682205i \(-0.761021\pi\)
0.225226 + 0.974306i \(0.427688\pi\)
\(440\) −0.245420 −0.0117000
\(441\) 17.4711 + 11.6516i 0.831958 + 0.554838i
\(442\) 4.99687 0.237677
\(443\) 6.93544 4.00418i 0.329513 0.190244i −0.326112 0.945331i \(-0.605739\pi\)
0.655625 + 0.755087i \(0.272405\pi\)
\(444\) 7.48965 + 4.90166i 0.355443 + 0.232623i
\(445\) −1.96337 + 3.40067i −0.0930729 + 0.161207i
\(446\) −8.51860 + 14.7546i −0.403367 + 0.698653i
\(447\) −2.68622 + 4.10449i −0.127054 + 0.194136i
\(448\) 0.624224 2.57106i 0.0294918 0.121471i
\(449\) 14.5183i 0.685163i 0.939488 + 0.342581i \(0.111301\pi\)
−0.939488 + 0.342581i \(0.888699\pi\)
\(450\) −11.7480 8.66329i −0.553804 0.408391i
\(451\) 2.89108i 0.136135i
\(452\) 3.60226 2.07976i 0.169436 0.0978239i
\(453\) 25.5899 12.9247i 1.20232 0.607254i
\(454\) −4.42560 2.55512i −0.207704 0.119918i
\(455\) 0.273519 + 0.932144i 0.0128228 + 0.0436996i
\(456\) 0.615242 10.9938i 0.0288114 0.514833i
\(457\) −4.97751 8.62130i −0.232838 0.403287i 0.725804 0.687901i \(-0.241468\pi\)
−0.958642 + 0.284614i \(0.908135\pi\)
\(458\) 15.2669 0.713375
\(459\) −4.32741 + 25.5602i −0.201986 + 1.19305i
\(460\) 2.82082i 0.131521i
\(461\) 16.1635 + 27.9960i 0.752810 + 1.30391i 0.946456 + 0.322834i \(0.104636\pi\)
−0.193645 + 0.981072i \(0.562031\pi\)
\(462\) 2.23817 2.09812i 0.104129 0.0976135i
\(463\) −4.72516 + 8.18421i −0.219597 + 0.380353i −0.954685 0.297619i \(-0.903807\pi\)
0.735088 + 0.677972i \(0.237141\pi\)
\(464\) −1.58394 0.914490i −0.0735327 0.0424541i
\(465\) 1.81086 + 3.58536i 0.0839765 + 0.166267i
\(466\) 5.09651 + 8.82741i 0.236091 + 0.408922i
\(467\) −20.6623 −0.956138 −0.478069 0.878322i \(-0.658663\pi\)
−0.478069 + 0.878322i \(0.658663\pi\)
\(468\) −2.75352 + 1.20263i −0.127281 + 0.0555916i
\(469\) 20.8502 + 19.8878i 0.962773 + 0.918335i
\(470\) −2.64432 + 1.52670i −0.121973 + 0.0704214i
\(471\) −2.68853 + 4.10803i −0.123881 + 0.189288i
\(472\) 7.55776 + 4.36348i 0.347874 + 0.200845i
\(473\) 2.60803 + 1.50575i 0.119917 + 0.0692343i
\(474\) −7.92524 + 12.1096i −0.364018 + 0.556213i
\(475\) −26.7877 + 15.4659i −1.22910 + 0.709623i
\(476\) 9.55151 + 9.11064i 0.437793 + 0.417586i
\(477\) 0 0
\(478\) −19.1815 −0.877343
\(479\) 5.08042 + 8.79955i 0.232131 + 0.402062i 0.958435 0.285311i \(-0.0920970\pi\)
−0.726304 + 0.687373i \(0.758764\pi\)
\(480\) 0.286262 + 0.566778i 0.0130660 + 0.0258697i
\(481\) −4.48252 2.58799i −0.204386 0.118002i
\(482\) −10.3426 + 17.9140i −0.471094 + 0.815958i
\(483\) −24.1155 25.7251i −1.09729 1.17053i
\(484\) 5.27592 + 9.13815i 0.239814 + 0.415371i
\(485\) 6.31126i 0.286579i
\(486\) −3.76713 15.1264i −0.170881 0.686149i
\(487\) −31.2296 −1.41515 −0.707575 0.706638i \(-0.750211\pi\)
−0.707575 + 0.706638i \(0.750211\pi\)
\(488\) −2.47886 4.29351i −0.112213 0.194358i
\(489\) 2.39315 42.7634i 0.108222 1.93383i
\(490\) −1.17672 + 2.28049i −0.0531587 + 0.103022i
\(491\) 17.8314 + 10.2950i 0.804720 + 0.464605i 0.845119 0.534578i \(-0.179529\pi\)
−0.0403987 + 0.999184i \(0.512863\pi\)
\(492\) −6.67669 + 3.37219i −0.301009 + 0.152030i
\(493\) 7.90239 4.56245i 0.355906 0.205482i
\(494\) 6.36717i 0.286473i
\(495\) −0.0821487 + 0.731664i −0.00369231 + 0.0328858i
\(496\) 6.32588i 0.284040i
\(497\) −14.1368 3.43226i −0.634122 0.153958i
\(498\) −16.1378 + 24.6582i −0.723150 + 1.10496i
\(499\) 12.5766 21.7834i 0.563007 0.975157i −0.434225 0.900805i \(-0.642978\pi\)
0.997232 0.0743527i \(-0.0236891\pi\)
\(500\) 1.80836 3.13216i 0.0808722 0.140075i
\(501\) −28.0411 18.3517i −1.25278 0.819894i
\(502\) 1.56924 0.906002i 0.0700387 0.0404369i
\(503\) 31.1553 1.38915 0.694574 0.719421i \(-0.255593\pi\)
0.694574 + 0.719421i \(0.255593\pi\)
\(504\) −7.45607 2.72158i −0.332120 0.121229i
\(505\) 5.76722 0.256638
\(506\) −4.46104 + 2.57558i −0.198317 + 0.114499i
\(507\) −18.5477 + 9.36787i −0.823733 + 0.416042i
\(508\) −0.834727 + 1.44579i −0.0370350 + 0.0641465i
\(509\) 2.41674 4.18591i 0.107120 0.185537i −0.807482 0.589892i \(-0.799170\pi\)
0.914602 + 0.404354i \(0.132504\pi\)
\(510\) −3.16294 0.177006i −0.140057 0.00783796i
\(511\) 10.4723 + 2.54255i 0.463267 + 0.112476i
\(512\) 1.00000i 0.0441942i
\(513\) −32.5696 5.51413i −1.43798 0.243455i
\(514\) 6.45545i 0.284738i
\(515\) 3.63344 2.09777i 0.160109 0.0924387i
\(516\) 0.435352 7.77934i 0.0191653 0.342467i
\(517\) −4.82886 2.78794i −0.212373 0.122613i
\(518\) −3.84974 13.1198i −0.169148 0.576451i
\(519\) 7.47751 3.77666i 0.328226 0.165777i
\(520\) −0.183586 0.317980i −0.00805077 0.0139443i
\(521\) −17.5322 −0.768101 −0.384050 0.923312i \(-0.625471\pi\)
−0.384050 + 0.923312i \(0.625471\pi\)
\(522\) −3.25653 + 4.41606i −0.142534 + 0.193286i
\(523\) 19.1019i 0.835267i 0.908616 + 0.417633i \(0.137140\pi\)
−0.908616 + 0.417633i \(0.862860\pi\)
\(524\) 6.76607 + 11.7192i 0.295577 + 0.511955i
\(525\) 5.07267 + 21.7123i 0.221390 + 0.947603i
\(526\) −4.41031 + 7.63888i −0.192299 + 0.333071i
\(527\) −27.3319 15.7801i −1.19060 0.687392i
\(528\) −0.634967 + 0.970217i −0.0276334 + 0.0422233i
\(529\) 18.1033 + 31.3559i 0.787101 + 1.36330i
\(530\) 0 0
\(531\) 15.5385 21.0711i 0.674312 0.914410i
\(532\) −11.6091 + 12.1708i −0.503317 + 0.527673i
\(533\) 3.74584 2.16266i 0.162250 0.0936752i
\(534\) 8.36404 + 16.5602i 0.361947 + 0.716630i
\(535\) 3.51192 + 2.02761i 0.151834 + 0.0876612i
\(536\) −9.43166 5.44537i −0.407386 0.235204i
\(537\) 6.32588 + 0.354012i 0.272982 + 0.0152767i
\(538\) −12.3541 + 7.13267i −0.532625 + 0.307511i
\(539\) −4.68095 + 0.221286i −0.201623 + 0.00953144i
\(540\) 1.78554 0.663707i 0.0768372 0.0285614i
\(541\) 13.6642 0.587471 0.293735 0.955887i \(-0.405102\pi\)
0.293735 + 0.955887i \(0.405102\pi\)
\(542\) −1.52641 2.64381i −0.0655648 0.113562i
\(543\) −9.80186 0.548537i −0.420638 0.0235400i
\(544\) −4.32065 2.49453i −0.185247 0.106952i
\(545\) −1.93625 + 3.35368i −0.0829397 + 0.143656i
\(546\) 4.39270 + 1.33040i 0.187990 + 0.0569359i
\(547\) 4.94380 + 8.56292i 0.211382 + 0.366124i 0.952147 0.305640i \(-0.0988703\pi\)
−0.740765 + 0.671764i \(0.765537\pi\)
\(548\) 8.98851i 0.383970i
\(549\) −13.6298 + 5.95299i −0.581707 + 0.254067i
\(550\) 3.25730 0.138892
\(551\) 5.81362 + 10.0695i 0.247669 + 0.428975i
\(552\) 11.1515 + 7.29820i 0.474640 + 0.310632i
\(553\) 21.2127 6.22444i 0.902055 0.264690i
\(554\) −1.09609 0.632828i −0.0465684 0.0268863i
\(555\) 2.74569 + 1.79694i 0.116548 + 0.0762759i
\(556\) 8.05336 4.64961i 0.341539 0.197187i
\(557\) 12.5800i 0.533034i −0.963830 0.266517i \(-0.914127\pi\)
0.963830 0.266517i \(-0.0858728\pi\)
\(558\) 18.8591 + 2.11744i 0.798371 + 0.0896384i
\(559\) 4.50547i 0.190561i
\(560\) 0.228839 0.942545i 0.00967023 0.0398298i
\(561\) −2.60803 5.16371i −0.110111 0.218012i
\(562\) 5.26335 9.11639i 0.222021 0.384552i
\(563\) −12.1666 + 21.0732i −0.512763 + 0.888132i 0.487127 + 0.873331i \(0.338045\pi\)
−0.999890 + 0.0148007i \(0.995289\pi\)
\(564\) −0.806068 + 14.4037i −0.0339416 + 0.606506i
\(565\) 1.32058 0.762437i 0.0555572 0.0320760i
\(566\) 19.8718 0.835272
\(567\) −10.6095 + 21.3176i −0.445557 + 0.895253i
\(568\) 5.49843 0.230709
\(569\) −8.18746 + 4.72703i −0.343236 + 0.198167i −0.661702 0.749767i \(-0.730166\pi\)
0.318466 + 0.947934i \(0.396832\pi\)
\(570\) 0.225547 4.03032i 0.00944711 0.168811i
\(571\) 15.7843 27.3392i 0.660551 1.14411i −0.319920 0.947445i \(-0.603656\pi\)
0.980471 0.196664i \(-0.0630108\pi\)
\(572\) 0.335250 0.580671i 0.0140175 0.0242791i
\(573\) −21.3781 42.3272i −0.893084 1.76824i
\(574\) 11.1033 + 2.69575i 0.463442 + 0.112518i
\(575\) 37.4388i 1.56131i
\(576\) 2.98127 + 0.334727i 0.124219 + 0.0139469i
\(577\) 33.5794i 1.39793i 0.715157 + 0.698964i \(0.246355\pi\)
−0.715157 + 0.698964i \(0.753645\pi\)
\(578\) 6.83358 3.94537i 0.284239 0.164106i
\(579\) −14.5336 9.51166i −0.603997 0.395291i
\(580\) −0.580671 0.335250i −0.0241110 0.0139205i
\(581\) 43.1943 12.6745i 1.79200 0.525828i
\(582\) −24.9502 16.3289i −1.03422 0.676853i
\(583\) 0 0
\(584\) −4.07314 −0.168548
\(585\) −1.00943 + 0.440882i −0.0417350 + 0.0182282i
\(586\) 13.4121i 0.554049i
\(587\) 9.65855 + 16.7291i 0.398651 + 0.690484i 0.993560 0.113310i \(-0.0361452\pi\)
−0.594909 + 0.803793i \(0.702812\pi\)
\(588\) 5.97096 + 10.5521i 0.246238 + 0.435163i
\(589\) 20.1075 34.8272i 0.828516 1.43503i
\(590\) 2.77066 + 1.59964i 0.114066 + 0.0658562i
\(591\) −32.5564 1.82194i −1.33919 0.0749445i
\(592\) 2.58394 + 4.47552i 0.106199 + 0.183943i
\(593\) −0.733196 −0.0301088 −0.0150544 0.999887i \(-0.504792\pi\)
−0.0150544 + 0.999887i \(0.504792\pi\)
\(594\) 2.67994 + 2.21776i 0.109959 + 0.0909959i
\(595\) 3.50157 + 3.33994i 0.143550 + 0.136924i
\(596\) −2.45268 + 1.41606i −0.100466 + 0.0580039i
\(597\) 9.27631 + 0.519125i 0.379654 + 0.0212464i
\(598\) −6.67413 3.85331i −0.272926 0.157574i
\(599\) 26.6548 + 15.3892i 1.08909 + 0.628785i 0.933333 0.359011i \(-0.116886\pi\)
0.155754 + 0.987796i \(0.450219\pi\)
\(600\) −3.79936 7.52245i −0.155108 0.307103i
\(601\) 0.786931 0.454335i 0.0320996 0.0185327i −0.483864 0.875143i \(-0.660767\pi\)
0.515964 + 0.856610i \(0.327434\pi\)
\(602\) −8.21470 + 8.61221i −0.334806 + 0.351007i
\(603\) −19.3911 + 26.2956i −0.789668 + 1.07084i
\(604\) 16.5518 0.673484
\(605\) 1.93414 + 3.35003i 0.0786340 + 0.136198i
\(606\) 14.9213 22.7995i 0.606137 0.926166i
\(607\) −38.7783 22.3887i −1.57396 0.908728i −0.995676 0.0928949i \(-0.970388\pi\)
−0.578287 0.815833i \(-0.696279\pi\)
\(608\) 3.17861 5.50552i 0.128910 0.223278i
\(609\) 8.16166 1.90682i 0.330727 0.0772682i
\(610\) −0.908744 1.57399i −0.0367940 0.0637290i
\(611\) 8.34204i 0.337483i
\(612\) −8.88310 + 12.0460i −0.359078 + 0.486932i
\(613\) 18.1480 0.732992 0.366496 0.930420i \(-0.380557\pi\)
0.366496 + 0.930420i \(0.380557\pi\)
\(614\) −0.326864 0.566145i −0.0131912 0.0228478i
\(615\) −2.44766 + 1.23624i −0.0986993 + 0.0498500i
\(616\) 1.69955 0.498700i 0.0684769 0.0200932i
\(617\) −19.7393 11.3965i −0.794674 0.458805i 0.0469315 0.998898i \(-0.485056\pi\)
−0.841605 + 0.540093i \(0.818389\pi\)
\(618\) 1.10758 19.7915i 0.0445535 0.796132i
\(619\) 38.4228 22.1834i 1.54434 0.891626i 0.545785 0.837925i \(-0.316232\pi\)
0.998557 0.0537011i \(-0.0171018\pi\)
\(620\) 2.31905i 0.0931355i
\(621\) 25.4906 30.8027i 1.02290 1.23607i
\(622\) 9.24493i 0.370688i
\(623\) 6.68626 27.5394i 0.267880 1.10334i
\(624\) −1.73205 0.0969299i −0.0693375 0.00388030i
\(625\) −11.5011 + 19.9204i −0.460043 + 0.796818i
\(626\) 3.08207 5.33830i 0.123184 0.213361i
\(627\) 6.57976 3.32323i 0.262770 0.132717i
\(628\) −2.45480 + 1.41728i −0.0979571 + 0.0565555i
\(629\) −25.7829 −1.02803
\(630\) −2.73338 0.997727i −0.108901 0.0397504i
\(631\) −32.5707 −1.29662 −0.648310 0.761377i \(-0.724524\pi\)
−0.648310 + 0.761377i \(0.724524\pi\)
\(632\) −7.23623 + 4.17784i −0.287842 + 0.166186i
\(633\) 2.40283 + 1.57255i 0.0955039 + 0.0625033i
\(634\) −10.3274 + 17.8876i −0.410154 + 0.710408i
\(635\) −0.306009 + 0.530024i −0.0121436 + 0.0210333i
\(636\) 0 0
\(637\) −3.78828 5.89936i −0.150097 0.233741i
\(638\) 1.22442i 0.0484751i
\(639\) 1.84047 16.3923i 0.0728080 0.648470i
\(640\) 0.366598i 0.0144911i
\(641\) −10.2270 + 5.90456i −0.403942 + 0.233216i −0.688184 0.725537i \(-0.741592\pi\)
0.284241 + 0.958753i \(0.408258\pi\)
\(642\) 17.1020 8.63768i 0.674962 0.340902i
\(643\) −25.3714 14.6482i −1.00055 0.577668i −0.0921392 0.995746i \(-0.529370\pi\)
−0.908411 + 0.418078i \(0.862704\pi\)
\(644\) −5.73197 19.5344i −0.225871 0.769762i
\(645\) 0.159599 2.85189i 0.00628421 0.112293i
\(646\) 15.8583 + 27.4674i 0.623936 + 1.08069i
\(647\) 28.1683 1.10741 0.553705 0.832713i \(-0.313214\pi\)
0.553705 + 0.832713i \(0.313214\pi\)
\(648\) 1.99582 8.77592i 0.0784032 0.344751i
\(649\) 5.84229i 0.229330i
\(650\) 2.43661 + 4.22033i 0.0955717 + 0.165535i
\(651\) −19.8258 21.1492i −0.777036 0.828901i
\(652\) 12.3640 21.4151i 0.484213 0.838682i
\(653\) 39.0555 + 22.5487i 1.52836 + 0.882399i 0.999431 + 0.0337326i \(0.0107394\pi\)
0.528929 + 0.848666i \(0.322594\pi\)
\(654\) 8.24848 + 16.3314i 0.322541 + 0.638608i
\(655\) 2.48043 + 4.29623i 0.0969184 + 0.167868i
\(656\) −4.31856 −0.168611
\(657\) −1.36339 + 12.1431i −0.0531909 + 0.473748i
\(658\) 15.2098 15.9458i 0.592939 0.621632i
\(659\) 27.5435 15.9022i 1.07294 0.619463i 0.143958 0.989584i \(-0.454017\pi\)
0.928984 + 0.370121i \(0.120684\pi\)
\(660\) −0.232778 + 0.355680i −0.00906085 + 0.0138448i
\(661\) −17.1234 9.88619i −0.666022 0.384528i 0.128546 0.991704i \(-0.458969\pi\)
−0.794568 + 0.607175i \(0.792302\pi\)
\(662\) −9.27631 5.35568i −0.360534 0.208154i
\(663\) 4.73945 7.24180i 0.184065 0.281248i
\(664\) −14.7348 + 8.50712i −0.571820 + 0.330140i
\(665\) −4.25587 + 4.46181i −0.165035 + 0.173022i
\(666\) 14.2076 6.20535i 0.550535 0.240452i
\(667\) −14.0733 −0.544918
\(668\) −9.67422 16.7562i −0.374307 0.648318i
\(669\) 13.3037 + 26.3403i 0.514349 + 1.01837i
\(670\) −3.45763 1.99626i −0.133580 0.0771223i
\(671\) 1.65948 2.87430i 0.0640635 0.110961i
\(672\) −3.13408 3.34328i −0.120900 0.128970i
\(673\) −0.945369 1.63743i −0.0364413 0.0631182i 0.847230 0.531227i \(-0.178269\pi\)
−0.883671 + 0.468109i \(0.844936\pi\)
\(674\) 7.55183i 0.290886i
\(675\) −23.6982 + 8.80893i −0.912144 + 0.339056i
\(676\) −11.9969 −0.461418
\(677\) −10.5661 18.3010i −0.406088 0.703364i 0.588360 0.808599i \(-0.299774\pi\)
−0.994447 + 0.105235i \(0.966441\pi\)
\(678\) 0.402553 7.19326i 0.0154599 0.276255i
\(679\) 12.8246 + 43.7058i 0.492164 + 1.67728i
\(680\) −1.58394 0.914490i −0.0607415 0.0350691i
\(681\) −7.90067 + 3.99038i −0.302754 + 0.152912i
\(682\) −3.66751 + 2.11744i −0.140436 + 0.0810810i
\(683\) 8.71972i 0.333651i −0.985986 0.166825i \(-0.946648\pi\)
0.985986 0.166825i \(-0.0533516\pi\)
\(684\) −15.3495 11.3191i −0.586901 0.432798i
\(685\) 3.29517i 0.125902i
\(686\) 3.51484 18.1837i 0.134197 0.694256i
\(687\) 14.4804 22.1258i 0.552463 0.844153i
\(688\) 2.24922 3.89576i 0.0857506 0.148524i
\(689\) 0 0
\(690\) 4.08812 + 2.67551i 0.155632 + 0.101855i
\(691\) 15.7071 9.06850i 0.597526 0.344982i −0.170542 0.985350i \(-0.554552\pi\)
0.768068 + 0.640369i \(0.221218\pi\)
\(692\) 4.83654 0.183858
\(693\) −0.917872 5.23374i −0.0348671 0.198814i
\(694\) −10.9320 −0.414972
\(695\) 2.95235 1.70454i 0.111989 0.0646568i
\(696\) −2.82769 + 1.42818i −0.107183 + 0.0541349i
\(697\) 10.7728 18.6590i 0.408048 0.706760i
\(698\) −0.592145 + 1.02562i −0.0224130 + 0.0388205i
\(699\) 17.6272 + 0.986465i 0.666724 + 0.0373115i
\(700\) −3.03723 + 12.5098i −0.114796 + 0.472824i
\(701\) 35.6167i 1.34523i 0.739995 + 0.672613i \(0.234828\pi\)
−0.739995 + 0.672613i \(0.765172\pi\)
\(702\) −0.868738 + 5.13126i −0.0327884 + 0.193667i
\(703\) 32.8534i 1.23909i
\(704\) −0.579764 + 0.334727i −0.0218507 + 0.0126155i
\(705\) −0.295503 + 5.28038i −0.0111293 + 0.198871i
\(706\) −29.0832 16.7912i −1.09456 0.631946i
\(707\) −39.9384 + 11.7191i −1.50204 + 0.440743i
\(708\) 13.4923 6.81453i 0.507071 0.256106i
\(709\) 1.80385 + 3.12436i 0.0677449 + 0.117338i 0.897908 0.440183i \(-0.145086\pi\)
−0.830163 + 0.557520i \(0.811753\pi\)
\(710\) 2.01572 0.0756485
\(711\) 10.0331 + 22.9716i 0.376271 + 0.861501i
\(712\) 10.7113i 0.401424i
\(713\) 24.3375 + 42.1538i 0.911447 + 1.57867i
\(714\) 22.2632 5.20138i 0.833180 0.194657i
\(715\) 0.122902 0.212873i 0.00459628 0.00796099i
\(716\) 3.16789 + 1.82898i 0.118390 + 0.0683522i
\(717\) −18.1934 + 27.7992i −0.679445 + 1.03818i
\(718\) −5.06407 8.77122i −0.188989 0.327339i
\(719\) 25.7829 0.961540 0.480770 0.876847i \(-0.340357\pi\)
0.480770 + 0.876847i \(0.340357\pi\)
\(720\) 1.09293 + 0.122710i 0.0407310 + 0.00457314i
\(721\) −20.8991 + 21.9104i −0.778323 + 0.815987i
\(722\) −18.5453 + 10.7072i −0.690186 + 0.398479i
\(723\) 16.1523 + 31.9804i 0.600710 + 1.18936i
\(724\) −4.90860 2.83398i −0.182427 0.105324i
\(725\) 7.70685 + 4.44955i 0.286225 + 0.165252i
\(726\) 18.2478 + 1.02119i 0.677238 + 0.0378999i
\(727\) −1.32423 + 0.764544i −0.0491129 + 0.0283554i −0.524355 0.851499i \(-0.675694\pi\)
0.475242 + 0.879855i \(0.342360\pi\)
\(728\) 1.91749 + 1.82898i 0.0710668 + 0.0677865i
\(729\) −25.4953 8.88761i −0.944270 0.329171i
\(730\) −1.49321 −0.0552660
\(731\) 11.2215 + 19.4362i 0.415042 + 0.718873i
\(732\) −8.57360 0.479800i −0.316889 0.0177339i
\(733\) 17.9908 + 10.3870i 0.664504 + 0.383651i 0.793991 0.607930i \(-0.208000\pi\)
−0.129487 + 0.991581i \(0.541333\pi\)
\(734\) 9.00104 15.5903i 0.332234 0.575447i
\(735\) 2.18894 + 3.86839i 0.0807404 + 0.142688i
\(736\) 3.84729 + 6.66371i 0.141813 + 0.245628i
\(737\) 7.29084i 0.268562i
\(738\) −1.44554 + 12.8748i −0.0532110 + 0.473927i
\(739\) −11.8709 −0.436678 −0.218339 0.975873i \(-0.570064\pi\)
−0.218339 + 0.975873i \(0.570064\pi\)
\(740\) 0.947269 + 1.64072i 0.0348223 + 0.0603140i
\(741\) 9.22773 + 6.03917i 0.338989 + 0.221854i
\(742\) 0 0
\(743\) −37.5906 21.7029i −1.37907 0.796204i −0.387019 0.922072i \(-0.626495\pi\)
−0.992047 + 0.125868i \(0.959828\pi\)
\(744\) 9.16789 + 6.00000i 0.336111 + 0.219971i
\(745\) −0.899148 + 0.519124i −0.0329422 + 0.0190192i
\(746\) 16.4090i 0.600777i
\(747\) 20.4299 + 46.7759i 0.747491 + 1.71144i
\(748\) 3.33994i 0.122120i
\(749\) −28.4404 6.90502i −1.03919 0.252304i
\(750\) −2.82415 5.59160i −0.103123 0.204176i
\(751\) −1.15691 + 2.00383i −0.0422164 + 0.0731209i −0.886362 0.462994i \(-0.846775\pi\)
0.844145 + 0.536115i \(0.180109\pi\)
\(752\) −4.16450 + 7.21313i −0.151864 + 0.263036i
\(753\) 0.175363 3.13358i 0.00639058 0.114194i
\(754\) 1.58642 0.915921i 0.0577741 0.0333559i
\(755\) 6.06787 0.220832
\(756\) −11.0163 + 8.22446i −0.400658 + 0.299121i
\(757\) −15.0946 −0.548624 −0.274312 0.961641i \(-0.588450\pi\)
−0.274312 + 0.961641i \(0.588450\pi\)
\(758\) −2.52336 + 1.45686i −0.0916525 + 0.0529156i
\(759\) −0.498522 + 8.90814i −0.0180952 + 0.323345i
\(760\) 1.16527 2.01831i 0.0422689 0.0732119i
\(761\) −11.6690 + 20.2112i −0.422999 + 0.732656i −0.996231 0.0867370i \(-0.972356\pi\)
0.573232 + 0.819393i \(0.305689\pi\)
\(762\) 1.30361 + 2.58105i 0.0472248 + 0.0935016i
\(763\) 6.59388 27.1589i 0.238715 0.983219i
\(764\) 27.3777i 0.990490i
\(765\) −3.25653 + 4.41606i −0.117740 + 0.159663i
\(766\) 8.57443i 0.309807i
\(767\) −7.56959 + 4.37030i −0.273322 + 0.157803i
\(768\) 1.44927 + 0.948485i 0.0522959 + 0.0342255i
\(769\) 15.8266 + 9.13748i 0.570721 + 0.329506i 0.757437 0.652908i \(-0.226451\pi\)
−0.186716 + 0.982414i \(0.559784\pi\)
\(770\) 0.623052 0.182822i 0.0224532 0.00658846i
\(771\) 9.35568 + 6.12290i 0.336937 + 0.220511i
\(772\) −5.01413 8.68473i −0.180463 0.312570i
\(773\) 0.438507 0.0157720 0.00788600 0.999969i \(-0.497490\pi\)
0.00788600 + 0.999969i \(0.497490\pi\)
\(774\) −10.8614 8.00953i −0.390406