Properties

Label 126.2.m
Level $126$
Weight $2$
Character orbit 126.m
Rep. character $\chi_{126}(41,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $16$
Newform subspaces $1$
Sturm bound $48$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.m (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(126, [\chi])\).

Total New Old
Modular forms 56 16 40
Cusp forms 40 16 24
Eisenstein series 16 0 16

Trace form

\( 16q + 8q^{4} + 2q^{7} + 12q^{9} + O(q^{10}) \) \( 16q + 8q^{4} + 2q^{7} + 12q^{9} - 12q^{11} - 6q^{14} - 8q^{16} - 12q^{18} + 18q^{21} - 48q^{23} - 8q^{25} + 4q^{28} - 12q^{29} - 24q^{30} + 12q^{36} - 8q^{37} - 36q^{39} - 12q^{42} + 4q^{43} + 24q^{46} - 8q^{49} + 60q^{50} + 12q^{51} - 6q^{56} + 48q^{57} - 12q^{58} + 24q^{60} + 24q^{63} - 16q^{64} + 84q^{65} - 28q^{67} + 36q^{74} + 78q^{77} - 24q^{78} - 4q^{79} + 36q^{81} + 18q^{84} - 12q^{85} - 24q^{86} + 24q^{91} - 48q^{92} - 96q^{93} + 12q^{95} - 72q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(126, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
126.2.m.a \(16\) \(1.006\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(0\) \(2\) \(q+\beta _{10}q^{2}-\beta _{1}q^{3}+\beta _{5}q^{4}+(\beta _{1}-\beta _{6}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(126, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(126, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)