# Properties

 Label 126.2.l Level $126$ Weight $2$ Character orbit 126.l Rep. character $\chi_{126}(5,\cdot)$ Character field $\Q(\zeta_{6})$ Dimension $16$ Newform subspaces $1$ Sturm bound $48$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$126 = 2 \cdot 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 126.l (of order $$6$$ and degree $$2$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$63$$ Character field: $$\Q(\zeta_{6})$$ Newform subspaces: $$1$$ Sturm bound: $$48$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(126, [\chi])$$.

Total New Old
Modular forms 56 16 40
Cusp forms 40 16 24
Eisenstein series 16 0 16

## Trace form

 $$16 q - 16 q^{4} + 2 q^{7} + O(q^{10})$$ $$16 q - 16 q^{4} + 2 q^{7} + 12 q^{11} + 6 q^{13} - 6 q^{14} - 18 q^{15} + 16 q^{16} - 18 q^{17} - 12 q^{18} - 12 q^{21} - 6 q^{23} - 8 q^{25} + 12 q^{26} + 36 q^{27} - 2 q^{28} + 6 q^{29} + 30 q^{35} - 2 q^{37} - 12 q^{39} - 6 q^{41} - 2 q^{43} - 12 q^{44} - 30 q^{45} + 6 q^{46} - 36 q^{47} - 8 q^{49} - 12 q^{50} + 6 q^{51} - 6 q^{52} - 36 q^{53} + 18 q^{54} + 6 q^{56} + 6 q^{57} + 6 q^{58} + 60 q^{59} + 18 q^{60} + 36 q^{62} + 36 q^{63} - 16 q^{64} + 24 q^{66} - 28 q^{67} + 18 q^{68} - 42 q^{69} - 18 q^{70} + 12 q^{72} + 18 q^{74} + 60 q^{75} - 42 q^{77} + 32 q^{79} - 36 q^{81} + 12 q^{84} - 12 q^{85} + 24 q^{86} - 24 q^{87} - 24 q^{89} + 18 q^{90} - 12 q^{91} + 6 q^{92} - 42 q^{93} + 6 q^{97} - 24 q^{98} + 18 q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(126, [\chi])$$ into newform subspaces

Label Dim $A$ Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
126.2.l.a $16$ $1.006$ $$\mathbb{Q}[x]/(x^{16} - \cdots)$$ None $$0$$ $$0$$ $$0$$ $$2$$ $$q-\beta _{6}q^{2}-\beta _{11}q^{3}-q^{4}+(1+\beta _{2}-\beta _{4}+\cdots)q^{5}+\cdots$$

## Decomposition of $$S_{2}^{\mathrm{old}}(126, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(126, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(63, [\chi])$$$$^{\oplus 2}$$