Defining parameters
| Level: | \( N \) | \(=\) | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 126.k (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(48\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(126, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 64 | 8 | 56 |
| Cusp forms | 32 | 8 | 24 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(126, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 126.2.k.a | $8$ | $1.006$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+(-\beta_{3}+\beta_1)q^{2}+(-\beta_{2}+1)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(126, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(126, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)