Properties

Label 126.2.h.d.79.3
Level $126$
Weight $2$
Character 126.79
Analytic conductor $1.006$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(67,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.h (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.3
Root \(0.500000 + 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 126.79
Dual form 126.2.h.d.67.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(1.29418 - 1.15113i) q^{3} +(-0.500000 + 0.866025i) q^{4} +1.58836 q^{5} +(1.64400 + 0.545231i) q^{6} +(-2.64400 + 0.0963576i) q^{7} -1.00000 q^{8} +(0.349814 - 2.97954i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(1.29418 - 1.15113i) q^{3} +(-0.500000 + 0.866025i) q^{4} +1.58836 q^{5} +(1.64400 + 0.545231i) q^{6} +(-2.64400 + 0.0963576i) q^{7} -1.00000 q^{8} +(0.349814 - 2.97954i) q^{9} +(0.794182 + 1.37556i) q^{10} -1.58836 q^{11} +(0.349814 + 1.69636i) q^{12} +(2.40545 + 4.16635i) q^{13} +(-1.40545 - 2.24159i) q^{14} +(2.05563 - 1.82841i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.69963 - 4.67589i) q^{17} +(2.75526 - 1.18682i) q^{18} +(-3.54944 + 6.14781i) q^{19} +(-0.794182 + 1.37556i) q^{20} +(-3.31089 + 3.16828i) q^{21} +(-0.794182 - 1.37556i) q^{22} +0.300372 q^{23} +(-1.29418 + 1.15113i) q^{24} -2.47710 q^{25} +(-2.40545 + 4.16635i) q^{26} +(-2.97710 - 4.25874i) q^{27} +(1.23855 - 2.33795i) q^{28} +(4.13781 - 7.16689i) q^{29} +(2.61126 + 0.866025i) q^{30} +(1.35600 - 2.34867i) q^{31} +(0.500000 - 0.866025i) q^{32} +(-2.05563 + 1.82841i) q^{33} +(2.69963 - 4.67589i) q^{34} +(-4.19963 + 0.153051i) q^{35} +(2.40545 + 1.79272i) q^{36} +(0.500000 - 0.866025i) q^{37} -7.09888 q^{38} +(7.90909 + 2.62305i) q^{39} -1.58836 q^{40} +(2.93818 + 5.08907i) q^{41} +(-4.39926 - 1.28318i) q^{42} +(-0.833104 + 1.44298i) q^{43} +(0.794182 - 1.37556i) q^{44} +(0.555632 - 4.73259i) q^{45} +(0.150186 + 0.260130i) q^{46} +(-1.33310 - 2.30900i) q^{47} +(-1.64400 - 0.545231i) q^{48} +(6.98143 - 0.509538i) q^{49} +(-1.23855 - 2.14523i) q^{50} +(-8.87636 - 2.94384i) q^{51} -4.81089 q^{52} +(2.44437 + 4.23377i) q^{53} +(2.19963 - 4.70761i) q^{54} -2.52290 q^{55} +(2.64400 - 0.0963576i) q^{56} +(2.48329 + 12.0422i) q^{57} +8.27561 q^{58} +(-3.23855 + 5.60933i) q^{59} +(0.555632 + 2.69443i) q^{60} +(2.23855 + 3.87728i) q^{61} +2.71201 q^{62} +(-0.637806 + 7.91159i) q^{63} +1.00000 q^{64} +(3.82072 + 6.61769i) q^{65} +(-2.61126 - 0.866025i) q^{66} +(5.02654 - 8.70623i) q^{67} +5.39926 q^{68} +(0.388736 - 0.345766i) q^{69} +(-2.23236 - 3.56046i) q^{70} +12.7207 q^{71} +(-0.349814 + 2.97954i) q^{72} +(8.02654 + 13.9024i) q^{73} +1.00000 q^{74} +(-3.20582 + 2.85146i) q^{75} +(-3.54944 - 6.14781i) q^{76} +(4.19963 - 0.153051i) q^{77} +(1.68292 + 8.16100i) q^{78} +(-4.19344 - 7.26325i) q^{79} +(-0.794182 - 1.37556i) q^{80} +(-8.75526 - 2.08457i) q^{81} +(-2.93818 + 5.08907i) q^{82} +(1.18292 - 2.04887i) q^{83} +(-1.08836 - 4.45146i) q^{84} +(-4.28799 - 7.42702i) q^{85} -1.66621 q^{86} +(-2.89493 - 14.0384i) q^{87} +1.58836 q^{88} +(1.60507 - 2.78007i) q^{89} +(4.37636 - 1.88510i) q^{90} +(-6.76145 - 10.7840i) q^{91} +(-0.150186 + 0.260130i) q^{92} +(-0.948699 - 4.60054i) q^{93} +(1.33310 - 2.30900i) q^{94} +(-5.63781 + 9.76497i) q^{95} +(-0.349814 - 1.69636i) q^{96} +(0.712008 - 1.23323i) q^{97} +(3.93199 + 5.79133i) q^{98} +(-0.555632 + 4.73259i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 2 q^{3} - 3 q^{4} - 2 q^{5} - 2 q^{6} - 4 q^{7} - 6 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{2} + 2 q^{3} - 3 q^{4} - 2 q^{5} - 2 q^{6} - 4 q^{7} - 6 q^{8} - 4 q^{9} - q^{10} + 2 q^{11} - 4 q^{12} + 8 q^{13} - 2 q^{14} + 12 q^{15} - 3 q^{16} - 4 q^{17} + 4 q^{18} - 3 q^{19} + q^{20} - 7 q^{21} + q^{22} + 14 q^{23} - 2 q^{24} - 4 q^{25} - 8 q^{26} - 7 q^{27} + 2 q^{28} - 5 q^{29} + 15 q^{30} + 20 q^{31} + 3 q^{32} - 12 q^{33} + 4 q^{34} - 13 q^{35} + 8 q^{36} + 3 q^{37} - 6 q^{38} + q^{39} + 2 q^{40} - 2 q^{42} - 6 q^{43} - q^{44} + 3 q^{45} + 7 q^{46} - 9 q^{47} + 2 q^{48} - 12 q^{49} - 2 q^{50} - 18 q^{51} - 16 q^{52} + 15 q^{53} + q^{54} - 26 q^{55} + 4 q^{56} + 22 q^{57} - 10 q^{58} - 14 q^{59} + 3 q^{60} + 8 q^{61} + 40 q^{62} + 26 q^{63} + 6 q^{64} - 12 q^{65} - 15 q^{66} + q^{67} + 8 q^{68} + 3 q^{69} + 10 q^{70} + 14 q^{71} + 4 q^{72} + 19 q^{73} + 6 q^{74} - 25 q^{75} - 3 q^{76} + 13 q^{77} + 5 q^{78} + 5 q^{79} + q^{80} - 40 q^{81} + 2 q^{83} + 5 q^{84} - 2 q^{85} - 12 q^{86} - 36 q^{87} - 2 q^{88} - 9 q^{89} - 9 q^{90} - 46 q^{91} - 7 q^{92} + 37 q^{93} + 9 q^{94} - 4 q^{95} + 4 q^{96} + 28 q^{97} - 12 q^{98} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 1.29418 1.15113i 0.747196 0.664603i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.58836 0.710338 0.355169 0.934802i \(-0.384423\pi\)
0.355169 + 0.934802i \(0.384423\pi\)
\(6\) 1.64400 + 0.545231i 0.671159 + 0.222590i
\(7\) −2.64400 + 0.0963576i −0.999337 + 0.0364197i
\(8\) −1.00000 −0.353553
\(9\) 0.349814 2.97954i 0.116605 0.993178i
\(10\) 0.794182 + 1.37556i 0.251142 + 0.434991i
\(11\) −1.58836 −0.478910 −0.239455 0.970907i \(-0.576969\pi\)
−0.239455 + 0.970907i \(0.576969\pi\)
\(12\) 0.349814 + 1.69636i 0.100983 + 0.489696i
\(13\) 2.40545 + 4.16635i 0.667151 + 1.15554i 0.978697 + 0.205308i \(0.0658196\pi\)
−0.311547 + 0.950231i \(0.600847\pi\)
\(14\) −1.40545 2.24159i −0.375621 0.599090i
\(15\) 2.05563 1.82841i 0.530762 0.472093i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.69963 4.67589i −0.654756 1.13407i −0.981955 0.189115i \(-0.939438\pi\)
0.327199 0.944955i \(-0.393895\pi\)
\(18\) 2.75526 1.18682i 0.649421 0.279736i
\(19\) −3.54944 + 6.14781i −0.814298 + 1.41041i 0.0955331 + 0.995426i \(0.469544\pi\)
−0.909831 + 0.414979i \(0.863789\pi\)
\(20\) −0.794182 + 1.37556i −0.177584 + 0.307585i
\(21\) −3.31089 + 3.16828i −0.722496 + 0.691375i
\(22\) −0.794182 1.37556i −0.169320 0.293271i
\(23\) 0.300372 0.0626319 0.0313159 0.999510i \(-0.490030\pi\)
0.0313159 + 0.999510i \(0.490030\pi\)
\(24\) −1.29418 + 1.15113i −0.264174 + 0.234973i
\(25\) −2.47710 −0.495420
\(26\) −2.40545 + 4.16635i −0.471747 + 0.817089i
\(27\) −2.97710 4.25874i −0.572943 0.819595i
\(28\) 1.23855 2.33795i 0.234064 0.441830i
\(29\) 4.13781 7.16689i 0.768371 1.33086i −0.170074 0.985431i \(-0.554401\pi\)
0.938446 0.345427i \(-0.112266\pi\)
\(30\) 2.61126 + 0.866025i 0.476749 + 0.158114i
\(31\) 1.35600 2.34867i 0.243545 0.421833i −0.718176 0.695861i \(-0.755023\pi\)
0.961722 + 0.274028i \(0.0883561\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −2.05563 + 1.82841i −0.357840 + 0.318285i
\(34\) 2.69963 4.67589i 0.462982 0.801909i
\(35\) −4.19963 + 0.153051i −0.709867 + 0.0258703i
\(36\) 2.40545 + 1.79272i 0.400908 + 0.298786i
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) −7.09888 −1.15159
\(39\) 7.90909 + 2.62305i 1.26647 + 0.420024i
\(40\) −1.58836 −0.251142
\(41\) 2.93818 + 5.08907i 0.458866 + 0.794780i 0.998901 0.0468628i \(-0.0149223\pi\)
−0.540035 + 0.841643i \(0.681589\pi\)
\(42\) −4.39926 1.28318i −0.678820 0.197999i
\(43\) −0.833104 + 1.44298i −0.127047 + 0.220052i −0.922531 0.385922i \(-0.873883\pi\)
0.795484 + 0.605974i \(0.207217\pi\)
\(44\) 0.794182 1.37556i 0.119727 0.207374i
\(45\) 0.555632 4.73259i 0.0828287 0.705492i
\(46\) 0.150186 + 0.260130i 0.0221437 + 0.0383540i
\(47\) −1.33310 2.30900i −0.194453 0.336803i 0.752268 0.658857i \(-0.228960\pi\)
−0.946721 + 0.322055i \(0.895627\pi\)
\(48\) −1.64400 0.545231i −0.237290 0.0786973i
\(49\) 6.98143 0.509538i 0.997347 0.0727912i
\(50\) −1.23855 2.14523i −0.175157 0.303382i
\(51\) −8.87636 2.94384i −1.24294 0.412220i
\(52\) −4.81089 −0.667151
\(53\) 2.44437 + 4.23377i 0.335760 + 0.581553i 0.983630 0.180197i \(-0.0576736\pi\)
−0.647871 + 0.761750i \(0.724340\pi\)
\(54\) 2.19963 4.70761i 0.299331 0.640625i
\(55\) −2.52290 −0.340188
\(56\) 2.64400 0.0963576i 0.353319 0.0128763i
\(57\) 2.48329 + 12.0422i 0.328920 + 1.59503i
\(58\) 8.27561 1.08664
\(59\) −3.23855 + 5.60933i −0.421623 + 0.730273i −0.996098 0.0882491i \(-0.971873\pi\)
0.574475 + 0.818522i \(0.305206\pi\)
\(60\) 0.555632 + 2.69443i 0.0717318 + 0.347850i
\(61\) 2.23855 + 3.87728i 0.286617 + 0.496435i 0.973000 0.230805i \(-0.0741360\pi\)
−0.686383 + 0.727240i \(0.740803\pi\)
\(62\) 2.71201 0.344425
\(63\) −0.637806 + 7.91159i −0.0803560 + 0.996766i
\(64\) 1.00000 0.125000
\(65\) 3.82072 + 6.61769i 0.473902 + 0.820823i
\(66\) −2.61126 0.866025i −0.321424 0.106600i
\(67\) 5.02654 8.70623i 0.614090 1.06363i −0.376454 0.926435i \(-0.622857\pi\)
0.990543 0.137199i \(-0.0438101\pi\)
\(68\) 5.39926 0.654756
\(69\) 0.388736 0.345766i 0.0467983 0.0416253i
\(70\) −2.23236 3.56046i −0.266818 0.425556i
\(71\) 12.7207 1.50967 0.754833 0.655917i \(-0.227718\pi\)
0.754833 + 0.655917i \(0.227718\pi\)
\(72\) −0.349814 + 2.97954i −0.0412260 + 0.351142i
\(73\) 8.02654 + 13.9024i 0.939436 + 1.62715i 0.766527 + 0.642213i \(0.221983\pi\)
0.172909 + 0.984938i \(0.444683\pi\)
\(74\) 1.00000 0.116248
\(75\) −3.20582 + 2.85146i −0.370176 + 0.329258i
\(76\) −3.54944 6.14781i −0.407149 0.705203i
\(77\) 4.19963 0.153051i 0.478592 0.0174418i
\(78\) 1.68292 + 8.16100i 0.190553 + 0.924051i
\(79\) −4.19344 7.26325i −0.471799 0.817179i 0.527681 0.849443i \(-0.323062\pi\)
−0.999479 + 0.0322635i \(0.989728\pi\)
\(80\) −0.794182 1.37556i −0.0887922 0.153793i
\(81\) −8.75526 2.08457i −0.972807 0.231619i
\(82\) −2.93818 + 5.08907i −0.324467 + 0.561994i
\(83\) 1.18292 2.04887i 0.129842 0.224893i −0.793773 0.608214i \(-0.791886\pi\)
0.923615 + 0.383321i \(0.125220\pi\)
\(84\) −1.08836 4.45146i −0.118750 0.485694i
\(85\) −4.28799 7.42702i −0.465098 0.805573i
\(86\) −1.66621 −0.179672
\(87\) −2.89493 14.0384i −0.310369 1.50507i
\(88\) 1.58836 0.169320
\(89\) 1.60507 2.78007i 0.170138 0.294687i −0.768330 0.640054i \(-0.778912\pi\)
0.938468 + 0.345367i \(0.112245\pi\)
\(90\) 4.37636 1.88510i 0.461308 0.198707i
\(91\) −6.76145 10.7840i −0.708793 1.13047i
\(92\) −0.150186 + 0.260130i −0.0156580 + 0.0271204i
\(93\) −0.948699 4.60054i −0.0983755 0.477053i
\(94\) 1.33310 2.30900i 0.137499 0.238156i
\(95\) −5.63781 + 9.76497i −0.578427 + 1.00186i
\(96\) −0.349814 1.69636i −0.0357027 0.173134i
\(97\) 0.712008 1.23323i 0.0722934 0.125216i −0.827613 0.561300i \(-0.810302\pi\)
0.899906 + 0.436084i \(0.143635\pi\)
\(98\) 3.93199 + 5.79133i 0.397191 + 0.585012i
\(99\) −0.555632 + 4.73259i −0.0558431 + 0.475643i
\(100\) 1.23855 2.14523i 0.123855 0.214523i
\(101\) 12.0334 1.19737 0.598685 0.800985i \(-0.295690\pi\)
0.598685 + 0.800985i \(0.295690\pi\)
\(102\) −1.88874 9.15907i −0.187013 0.906883i
\(103\) −6.09888 −0.600941 −0.300470 0.953791i \(-0.597144\pi\)
−0.300470 + 0.953791i \(0.597144\pi\)
\(104\) −2.40545 4.16635i −0.235873 0.408545i
\(105\) −5.25890 + 5.03238i −0.513216 + 0.491110i
\(106\) −2.44437 + 4.23377i −0.237418 + 0.411220i
\(107\) −1.54325 + 2.67299i −0.149192 + 0.258408i −0.930929 0.365200i \(-0.881001\pi\)
0.781737 + 0.623608i \(0.214334\pi\)
\(108\) 5.17673 0.448873i 0.498131 0.0431929i
\(109\) 1.14400 + 1.98146i 0.109575 + 0.189789i 0.915598 0.402095i \(-0.131718\pi\)
−0.806023 + 0.591884i \(0.798384\pi\)
\(110\) −1.26145 2.18490i −0.120275 0.208322i
\(111\) −0.349814 1.69636i −0.0332029 0.161011i
\(112\) 1.40545 + 2.24159i 0.132802 + 0.211810i
\(113\) −9.73236 16.8569i −0.915543 1.58577i −0.806104 0.591774i \(-0.798428\pi\)
−0.109440 0.993993i \(-0.534906\pi\)
\(114\) −9.18725 + 8.17172i −0.860465 + 0.765351i
\(115\) 0.477100 0.0444898
\(116\) 4.13781 + 7.16689i 0.384186 + 0.665429i
\(117\) 13.2553 5.70966i 1.22545 0.527858i
\(118\) −6.47710 −0.596265
\(119\) 7.58836 + 12.1029i 0.695624 + 1.10947i
\(120\) −2.05563 + 1.82841i −0.187653 + 0.166910i
\(121\) −8.47710 −0.770645
\(122\) −2.23855 + 3.87728i −0.202669 + 0.351033i
\(123\) 9.66071 + 3.20397i 0.871077 + 0.288892i
\(124\) 1.35600 + 2.34867i 0.121773 + 0.210917i
\(125\) −11.8764 −1.06225
\(126\) −7.17054 + 3.40344i −0.638802 + 0.303202i
\(127\) −13.4400 −1.19260 −0.596302 0.802760i \(-0.703364\pi\)
−0.596302 + 0.802760i \(0.703364\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0.582863 + 2.82648i 0.0513182 + 0.248858i
\(130\) −3.82072 + 6.61769i −0.335100 + 0.580410i
\(131\) −3.17673 −0.277552 −0.138776 0.990324i \(-0.544317\pi\)
−0.138776 + 0.990324i \(0.544317\pi\)
\(132\) −0.555632 2.69443i −0.0483616 0.234520i
\(133\) 8.79232 16.5968i 0.762391 1.43913i
\(134\) 10.0531 0.868454
\(135\) −4.72872 6.76443i −0.406983 0.582190i
\(136\) 2.69963 + 4.67589i 0.231491 + 0.400955i
\(137\) −21.2632 −1.81664 −0.908320 0.418275i \(-0.862635\pi\)
−0.908320 + 0.418275i \(0.862635\pi\)
\(138\) 0.493810 + 0.163772i 0.0420359 + 0.0139412i
\(139\) 6.52654 + 11.3043i 0.553574 + 0.958818i 0.998013 + 0.0630092i \(0.0200698\pi\)
−0.444439 + 0.895809i \(0.646597\pi\)
\(140\) 1.96727 3.71351i 0.166264 0.313849i
\(141\) −4.38323 1.45370i −0.369135 0.122424i
\(142\) 6.36033 + 11.0164i 0.533747 + 0.924478i
\(143\) −3.82072 6.61769i −0.319505 0.553399i
\(144\) −2.75526 + 1.18682i −0.229605 + 0.0989016i
\(145\) 6.57234 11.3836i 0.545803 0.945359i
\(146\) −8.02654 + 13.9024i −0.664281 + 1.15057i
\(147\) 8.44870 8.69595i 0.696837 0.717230i
\(148\) 0.500000 + 0.866025i 0.0410997 + 0.0711868i
\(149\) 5.20877 0.426719 0.213360 0.976974i \(-0.431559\pi\)
0.213360 + 0.976974i \(0.431559\pi\)
\(150\) −4.07234 1.35059i −0.332505 0.110275i
\(151\) −0.522900 −0.0425530 −0.0212765 0.999774i \(-0.506773\pi\)
−0.0212765 + 0.999774i \(0.506773\pi\)
\(152\) 3.54944 6.14781i 0.287898 0.498654i
\(153\) −14.8764 + 6.40794i −1.20268 + 0.518052i
\(154\) 2.23236 + 3.56046i 0.179889 + 0.286910i
\(155\) 2.15383 3.73054i 0.173000 0.299644i
\(156\) −6.22617 + 5.53795i −0.498493 + 0.443391i
\(157\) −4.43199 + 7.67643i −0.353711 + 0.612646i −0.986897 0.161354i \(-0.948414\pi\)
0.633185 + 0.774000i \(0.281747\pi\)
\(158\) 4.19344 7.26325i 0.333612 0.577833i
\(159\) 8.03706 + 2.66549i 0.637381 + 0.211387i
\(160\) 0.794182 1.37556i 0.0627856 0.108748i
\(161\) −0.794182 + 0.0289431i −0.0625903 + 0.00228104i
\(162\) −2.57234 8.62456i −0.202102 0.677610i
\(163\) 10.9814 19.0204i 0.860132 1.48979i −0.0116689 0.999932i \(-0.503714\pi\)
0.871801 0.489860i \(-0.162952\pi\)
\(164\) −5.87636 −0.458866
\(165\) −3.26509 + 2.90418i −0.254187 + 0.226090i
\(166\) 2.36584 0.183624
\(167\) 1.65019 + 2.85821i 0.127695 + 0.221175i 0.922783 0.385319i \(-0.125909\pi\)
−0.795088 + 0.606494i \(0.792575\pi\)
\(168\) 3.31089 3.16828i 0.255441 0.244438i
\(169\) −5.07234 + 8.78555i −0.390180 + 0.675812i
\(170\) 4.28799 7.42702i 0.328874 0.569626i
\(171\) 17.0760 + 12.7263i 1.30583 + 0.973203i
\(172\) −0.833104 1.44298i −0.0635236 0.110026i
\(173\) −9.55377 16.5476i −0.726360 1.25809i −0.958412 0.285389i \(-0.907877\pi\)
0.232052 0.972703i \(-0.425456\pi\)
\(174\) 10.7101 9.52628i 0.811934 0.722185i
\(175\) 6.54944 0.238687i 0.495091 0.0180431i
\(176\) 0.794182 + 1.37556i 0.0598637 + 0.103687i
\(177\) 2.26578 + 10.9875i 0.170307 + 0.825870i
\(178\) 3.21015 0.240611
\(179\) −8.03706 13.9206i −0.600718 1.04047i −0.992712 0.120507i \(-0.961548\pi\)
0.391994 0.919968i \(-0.371785\pi\)
\(180\) 3.82072 + 2.84748i 0.284780 + 0.212239i
\(181\) 8.05308 0.598581 0.299291 0.954162i \(-0.403250\pi\)
0.299291 + 0.954162i \(0.403250\pi\)
\(182\) 5.95853 11.2476i 0.441676 0.833728i
\(183\) 7.36033 + 2.44105i 0.544092 + 0.180448i
\(184\) −0.300372 −0.0221437
\(185\) 0.794182 1.37556i 0.0583894 0.101133i
\(186\) 3.50983 3.12186i 0.257353 0.228906i
\(187\) 4.28799 + 7.42702i 0.313569 + 0.543118i
\(188\) 2.66621 0.194453
\(189\) 8.28180 + 10.9732i 0.602412 + 0.798185i
\(190\) −11.2756 −0.818019
\(191\) 11.9814 + 20.7524i 0.866946 + 1.50159i 0.865102 + 0.501596i \(0.167254\pi\)
0.00184390 + 0.999998i \(0.499413\pi\)
\(192\) 1.29418 1.15113i 0.0933995 0.0830754i
\(193\) −4.88255 + 8.45682i −0.351453 + 0.608735i −0.986504 0.163735i \(-0.947646\pi\)
0.635051 + 0.772470i \(0.280979\pi\)
\(194\) 1.42402 0.102238
\(195\) 12.5625 + 4.16635i 0.899620 + 0.298359i
\(196\) −3.04944 + 6.30087i −0.217817 + 0.450062i
\(197\) −18.2436 −1.29980 −0.649900 0.760020i \(-0.725189\pi\)
−0.649900 + 0.760020i \(0.725189\pi\)
\(198\) −4.37636 + 1.88510i −0.311014 + 0.133968i
\(199\) 9.04944 + 15.6741i 0.641498 + 1.11111i 0.985098 + 0.171991i \(0.0550200\pi\)
−0.343601 + 0.939116i \(0.611647\pi\)
\(200\) 2.47710 0.175157
\(201\) −3.51671 17.0536i −0.248050 1.20287i
\(202\) 6.01671 + 10.4212i 0.423334 + 0.733236i
\(203\) −10.2498 + 19.3479i −0.719392 + 1.35796i
\(204\) 6.98762 6.21523i 0.489231 0.435153i
\(205\) 4.66690 + 8.08330i 0.325950 + 0.564562i
\(206\) −3.04944 5.28179i −0.212465 0.368000i
\(207\) 0.105074 0.894969i 0.00730317 0.0622046i
\(208\) 2.40545 4.16635i 0.166788 0.288885i
\(209\) 5.63781 9.76497i 0.389975 0.675457i
\(210\) −6.98762 2.03815i −0.482192 0.140646i
\(211\) 0.166208 + 0.287880i 0.0114422 + 0.0198185i 0.871690 0.490058i \(-0.163024\pi\)
−0.860248 + 0.509877i \(0.829691\pi\)
\(212\) −4.88874 −0.335760
\(213\) 16.4629 14.6431i 1.12802 1.00333i
\(214\) −3.08650 −0.210989
\(215\) −1.32327 + 2.29197i −0.0902464 + 0.156311i
\(216\) 2.97710 + 4.25874i 0.202566 + 0.289771i
\(217\) −3.35896 + 6.34053i −0.228021 + 0.430423i
\(218\) −1.14400 + 1.98146i −0.0774812 + 0.134201i
\(219\) 26.3912 + 8.75264i 1.78335 + 0.591449i
\(220\) 1.26145 2.18490i 0.0850469 0.147306i
\(221\) 12.9876 22.4952i 0.873642 1.51319i
\(222\) 1.29418 1.15113i 0.0868598 0.0772586i
\(223\) 3.16621 5.48403i 0.212025 0.367238i −0.740323 0.672251i \(-0.765328\pi\)
0.952348 + 0.305013i \(0.0986609\pi\)
\(224\) −1.23855 + 2.33795i −0.0827541 + 0.156211i
\(225\) −0.866524 + 7.38061i −0.0577683 + 0.492040i
\(226\) 9.73236 16.8569i 0.647387 1.12131i
\(227\) −23.3090 −1.54707 −0.773537 0.633751i \(-0.781515\pi\)
−0.773537 + 0.633751i \(0.781515\pi\)
\(228\) −11.6705 3.87053i −0.772900 0.256332i
\(229\) −4.95420 −0.327383 −0.163691 0.986512i \(-0.552340\pi\)
−0.163691 + 0.986512i \(0.552340\pi\)
\(230\) 0.238550 + 0.413181i 0.0157295 + 0.0272443i
\(231\) 5.25890 5.03238i 0.346010 0.331106i
\(232\) −4.13781 + 7.16689i −0.271660 + 0.470529i
\(233\) −7.13781 + 12.3630i −0.467613 + 0.809930i −0.999315 0.0370017i \(-0.988219\pi\)
0.531702 + 0.846932i \(0.321553\pi\)
\(234\) 11.5723 + 8.62456i 0.756508 + 0.563805i
\(235\) −2.11745 3.66754i −0.138127 0.239244i
\(236\) −3.23855 5.60933i −0.210812 0.365136i
\(237\) −13.7880 4.57279i −0.895626 0.297034i
\(238\) −6.68725 + 12.6232i −0.433470 + 0.818239i
\(239\) 2.48762 + 4.30868i 0.160911 + 0.278706i 0.935196 0.354132i \(-0.115224\pi\)
−0.774285 + 0.632837i \(0.781890\pi\)
\(240\) −2.61126 0.866025i −0.168556 0.0559017i
\(241\) −13.0000 −0.837404 −0.418702 0.908124i \(-0.637515\pi\)
−0.418702 + 0.908124i \(0.637515\pi\)
\(242\) −4.23855 7.34138i −0.272464 0.471922i
\(243\) −13.7305 + 7.38061i −0.880812 + 0.473466i
\(244\) −4.47710 −0.286617
\(245\) 11.0891 0.809332i 0.708454 0.0517063i
\(246\) 2.05563 + 9.96840i 0.131062 + 0.635562i
\(247\) −34.1520 −2.17304
\(248\) −1.35600 + 2.34867i −0.0861063 + 0.149141i
\(249\) −0.827603 4.01330i −0.0524472 0.254333i
\(250\) −5.93818 10.2852i −0.375563 0.650495i
\(251\) 2.43268 0.153549 0.0767746 0.997048i \(-0.475538\pi\)
0.0767746 + 0.997048i \(0.475538\pi\)
\(252\) −6.53273 4.50815i −0.411523 0.283987i
\(253\) −0.477100 −0.0299950
\(254\) −6.71998 11.6393i −0.421649 0.730318i
\(255\) −14.0989 4.67589i −0.882906 0.292816i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −0.987620 −0.0616061 −0.0308030 0.999525i \(-0.509806\pi\)
−0.0308030 + 0.999525i \(0.509806\pi\)
\(258\) −2.15638 + 1.91802i −0.134250 + 0.119410i
\(259\) −1.23855 + 2.33795i −0.0769597 + 0.145273i
\(260\) −7.64145 −0.473902
\(261\) −19.9065 14.8358i −1.23218 0.918314i
\(262\) −1.58836 2.75113i −0.0981295 0.169965i
\(263\) 17.1854 1.05970 0.529848 0.848092i \(-0.322249\pi\)
0.529848 + 0.848092i \(0.322249\pi\)
\(264\) 2.05563 1.82841i 0.126515 0.112531i
\(265\) 3.88255 + 6.72477i 0.238503 + 0.413099i
\(266\) 18.7694 0.684031i 1.15083 0.0419407i
\(267\) −1.12296 5.44556i −0.0687237 0.333263i
\(268\) 5.02654 + 8.70623i 0.307045 + 0.531817i
\(269\) 11.4523 + 19.8360i 0.698262 + 1.20942i 0.969069 + 0.246791i \(0.0793761\pi\)
−0.270807 + 0.962634i \(0.587291\pi\)
\(270\) 3.49381 7.47741i 0.212627 0.455060i
\(271\) 7.00364 12.1307i 0.425441 0.736885i −0.571021 0.820936i \(-0.693452\pi\)
0.996462 + 0.0840504i \(0.0267857\pi\)
\(272\) −2.69963 + 4.67589i −0.163689 + 0.283518i
\(273\) −21.1643 6.17323i −1.28092 0.373621i
\(274\) −10.6316 18.4145i −0.642279 1.11246i
\(275\) 3.93454 0.237261
\(276\) 0.105074 + 0.509538i 0.00632473 + 0.0306706i
\(277\) 28.2953 1.70010 0.850049 0.526703i \(-0.176572\pi\)
0.850049 + 0.526703i \(0.176572\pi\)
\(278\) −6.52654 + 11.3043i −0.391436 + 0.677987i
\(279\) −6.52359 4.86186i −0.390557 0.291072i
\(280\) 4.19963 0.153051i 0.250976 0.00914654i
\(281\) −8.79782 + 15.2383i −0.524834 + 0.909039i 0.474748 + 0.880122i \(0.342539\pi\)
−0.999582 + 0.0289175i \(0.990794\pi\)
\(282\) −0.932677 4.52284i −0.0555401 0.269331i
\(283\) 9.26145 16.0413i 0.550536 0.953556i −0.447700 0.894184i \(-0.647757\pi\)
0.998236 0.0593725i \(-0.0189100\pi\)
\(284\) −6.36033 + 11.0164i −0.377416 + 0.653704i
\(285\) 3.94437 + 19.1275i 0.233644 + 1.13301i
\(286\) 3.82072 6.61769i 0.225924 0.391312i
\(287\) −8.25890 13.1724i −0.487508 0.777541i
\(288\) −2.40545 1.79272i −0.141742 0.105637i
\(289\) −6.07598 + 10.5239i −0.357411 + 0.619054i
\(290\) 13.1447 0.771882
\(291\) −0.498141 2.41564i −0.0292015 0.141607i
\(292\) −16.0531 −0.939436
\(293\) −7.04256 12.1981i −0.411431 0.712619i 0.583616 0.812030i \(-0.301638\pi\)
−0.995046 + 0.0994108i \(0.968304\pi\)
\(294\) 11.7553 + 2.96881i 0.685581 + 0.173145i
\(295\) −5.14400 + 8.90966i −0.299495 + 0.518741i
\(296\) −0.500000 + 0.866025i −0.0290619 + 0.0503367i
\(297\) 4.72872 + 6.76443i 0.274388 + 0.392512i
\(298\) 2.60439 + 4.51093i 0.150868 + 0.261311i
\(299\) 0.722528 + 1.25146i 0.0417849 + 0.0723736i
\(300\) −0.866524 4.20205i −0.0500288 0.242605i
\(301\) 2.06368 3.89550i 0.118949 0.224533i
\(302\) −0.261450 0.452845i −0.0150448 0.0260583i
\(303\) 15.5734 13.8520i 0.894671 0.795776i
\(304\) 7.09888 0.407149
\(305\) 3.55563 + 6.15854i 0.203595 + 0.352637i
\(306\) −12.9876 9.67933i −0.742453 0.553330i
\(307\) −5.85532 −0.334180 −0.167090 0.985942i \(-0.553437\pi\)
−0.167090 + 0.985942i \(0.553437\pi\)
\(308\) −1.96727 + 3.71351i −0.112096 + 0.211597i
\(309\) −7.89307 + 7.02059i −0.449021 + 0.399387i
\(310\) 4.30766 0.244658
\(311\) −0.405446 + 0.702253i −0.0229907 + 0.0398211i −0.877292 0.479957i \(-0.840652\pi\)
0.854301 + 0.519778i \(0.173985\pi\)
\(312\) −7.90909 2.62305i −0.447764 0.148501i
\(313\) −5.28799 9.15907i −0.298895 0.517701i 0.676988 0.735994i \(-0.263285\pi\)
−0.975883 + 0.218292i \(0.929951\pi\)
\(314\) −8.86398 −0.500223
\(315\) −1.01307 + 12.5665i −0.0570799 + 0.708041i
\(316\) 8.38688 0.471799
\(317\) −6.09820 10.5624i −0.342509 0.593243i 0.642389 0.766379i \(-0.277943\pi\)
−0.984898 + 0.173136i \(0.944610\pi\)
\(318\) 1.71015 + 8.29305i 0.0959004 + 0.465051i
\(319\) −6.57234 + 11.3836i −0.367981 + 0.637361i
\(320\) 1.58836 0.0887922
\(321\) 1.07970 + 5.23582i 0.0602631 + 0.292235i
\(322\) −0.422156 0.673310i −0.0235259 0.0375221i
\(323\) 38.3287 2.13267
\(324\) 6.18292 6.53999i 0.343495 0.363333i
\(325\) −5.95853 10.3205i −0.330520 0.572477i
\(326\) 21.9629 1.21641
\(327\) 3.76145 + 1.24748i 0.208009 + 0.0689860i
\(328\) −2.93818 5.08907i −0.162234 0.280997i
\(329\) 3.74721 + 5.97654i 0.206590 + 0.329497i
\(330\) −4.14764 1.37556i −0.228320 0.0757223i
\(331\) 7.83310 + 13.5673i 0.430546 + 0.745728i 0.996920 0.0784202i \(-0.0249876\pi\)
−0.566374 + 0.824148i \(0.691654\pi\)
\(332\) 1.18292 + 2.04887i 0.0649211 + 0.112447i
\(333\) −2.40545 1.79272i −0.131818 0.0982402i
\(334\) −1.65019 + 2.85821i −0.0902942 + 0.156394i
\(335\) 7.98398 13.8287i 0.436211 0.755540i
\(336\) 4.39926 + 1.28318i 0.239999 + 0.0700031i
\(337\) −4.21201 7.29541i −0.229443 0.397406i 0.728200 0.685364i \(-0.240357\pi\)
−0.957643 + 0.287958i \(0.907024\pi\)
\(338\) −10.1447 −0.551798
\(339\) −31.9999 10.6128i −1.73800 0.576407i
\(340\) 8.57598 0.465098
\(341\) −2.15383 + 3.73054i −0.116636 + 0.202020i
\(342\) −2.48329 + 21.1514i −0.134281 + 1.14374i
\(343\) −18.4098 + 2.01993i −0.994035 + 0.109066i
\(344\) 0.833104 1.44298i 0.0449179 0.0778002i
\(345\) 0.617454 0.549202i 0.0332426 0.0295681i
\(346\) 9.55377 16.5476i 0.513614 0.889606i
\(347\) −0.283662 + 0.491316i −0.0152277 + 0.0263752i −0.873539 0.486754i \(-0.838181\pi\)
0.858311 + 0.513130i \(0.171514\pi\)
\(348\) 13.6051 + 4.51212i 0.729309 + 0.241875i
\(349\) −0.00364189 + 0.00630794i −0.000194946 + 0.000337656i −0.866123 0.499831i \(-0.833395\pi\)
0.865928 + 0.500169i \(0.166729\pi\)
\(350\) 3.48143 + 5.55264i 0.186090 + 0.296801i
\(351\) 10.5822 22.6478i 0.564835 1.20885i
\(352\) −0.794182 + 1.37556i −0.0423300 + 0.0733178i
\(353\) 6.65383 0.354148 0.177074 0.984198i \(-0.443337\pi\)
0.177074 + 0.984198i \(0.443337\pi\)
\(354\) −8.38255 + 7.45596i −0.445527 + 0.396280i
\(355\) 20.2051 1.07237
\(356\) 1.60507 + 2.78007i 0.0850688 + 0.147343i
\(357\) 23.7527 + 6.92820i 1.25713 + 0.366679i
\(358\) 8.03706 13.9206i 0.424772 0.735727i
\(359\) −0.398568 + 0.690339i −0.0210356 + 0.0364347i −0.876352 0.481672i \(-0.840030\pi\)
0.855316 + 0.518107i \(0.173363\pi\)
\(360\) −0.555632 + 4.73259i −0.0292844 + 0.249429i
\(361\) −15.6971 27.1881i −0.826162 1.43095i
\(362\) 4.02654 + 6.97418i 0.211630 + 0.366555i
\(363\) −10.9709 + 9.75822i −0.575823 + 0.512174i
\(364\) 12.7200 0.463566i 0.666708 0.0242975i
\(365\) 12.7491 + 22.0820i 0.667317 + 1.15583i
\(366\) 1.56615 + 7.59476i 0.0818641 + 0.396985i
\(367\) −15.4327 −0.805579 −0.402790 0.915293i \(-0.631959\pi\)
−0.402790 + 0.915293i \(0.631959\pi\)
\(368\) −0.150186 0.260130i −0.00782898 0.0135602i
\(369\) 16.1909 6.97418i 0.842864 0.363061i
\(370\) 1.58836 0.0825751
\(371\) −6.87085 10.9585i −0.356717 0.568939i
\(372\) 4.45853 + 1.47867i 0.231164 + 0.0766655i
\(373\) 10.2422 0.530321 0.265160 0.964204i \(-0.414575\pi\)
0.265160 + 0.964204i \(0.414575\pi\)
\(374\) −4.28799 + 7.42702i −0.221727 + 0.384042i
\(375\) −15.3702 + 13.6712i −0.793712 + 0.705977i
\(376\) 1.33310 + 2.30900i 0.0687496 + 0.119078i
\(377\) 39.8131 2.05048
\(378\) −5.36219 + 12.6589i −0.275801 + 0.651102i
\(379\) 25.0087 1.28461 0.642304 0.766450i \(-0.277979\pi\)
0.642304 + 0.766450i \(0.277979\pi\)
\(380\) −5.63781 9.76497i −0.289213 0.500932i
\(381\) −17.3938 + 15.4711i −0.891109 + 0.792608i
\(382\) −11.9814 + 20.7524i −0.613023 + 1.06179i
\(383\) −6.26695 −0.320226 −0.160113 0.987099i \(-0.551186\pi\)
−0.160113 + 0.987099i \(0.551186\pi\)
\(384\) 1.64400 + 0.545231i 0.0838948 + 0.0278237i
\(385\) 6.67054 0.243101i 0.339962 0.0123896i
\(386\) −9.76509 −0.497030
\(387\) 4.00797 + 2.98704i 0.203737 + 0.151840i
\(388\) 0.712008 + 1.23323i 0.0361467 + 0.0626080i
\(389\) −21.6342 −1.09690 −0.548448 0.836185i \(-0.684781\pi\)
−0.548448 + 0.836185i \(0.684781\pi\)
\(390\) 2.67309 + 12.9626i 0.135357 + 0.656388i
\(391\) −0.810892 1.40451i −0.0410086 0.0710290i
\(392\) −6.98143 + 0.509538i −0.352615 + 0.0257356i
\(393\) −4.11126 + 3.65682i −0.207386 + 0.184462i
\(394\) −9.12178 15.7994i −0.459549 0.795962i
\(395\) −6.66071 11.5367i −0.335137 0.580473i
\(396\) −3.82072 2.84748i −0.191999 0.143091i
\(397\) 2.05308 3.55605i 0.103041 0.178473i −0.809895 0.586575i \(-0.800476\pi\)
0.912936 + 0.408102i \(0.133809\pi\)
\(398\) −9.04944 + 15.6741i −0.453608 + 0.785671i
\(399\) −7.72617 31.6004i −0.386792 1.58200i
\(400\) 1.23855 + 2.14523i 0.0619275 + 0.107262i
\(401\) 16.7417 0.836041 0.418021 0.908438i \(-0.362724\pi\)
0.418021 + 0.908438i \(0.362724\pi\)
\(402\) 13.0105 11.5724i 0.648906 0.577178i
\(403\) 13.0472 0.649926
\(404\) −6.01671 + 10.4212i −0.299343 + 0.518476i
\(405\) −13.9065 3.31105i −0.691022 0.164527i
\(406\) −21.8807 + 0.797418i −1.08592 + 0.0395752i
\(407\) −0.794182 + 1.37556i −0.0393661 + 0.0681842i
\(408\) 8.87636 + 2.94384i 0.439445 + 0.145742i
\(409\) 4.38255 7.59079i 0.216703 0.375341i −0.737095 0.675789i \(-0.763803\pi\)
0.953798 + 0.300449i \(0.0971364\pi\)
\(410\) −4.66690 + 8.08330i −0.230482 + 0.399206i
\(411\) −27.5185 + 24.4767i −1.35739 + 1.20735i
\(412\) 3.04944 5.28179i 0.150235 0.260215i
\(413\) 8.02221 15.1431i 0.394747 0.745144i
\(414\) 0.827603 0.356487i 0.0406744 0.0175204i
\(415\) 1.87890 3.25436i 0.0922318 0.159750i
\(416\) 4.81089 0.235873
\(417\) 21.4592 + 7.11695i 1.05086 + 0.348518i
\(418\) 11.2756 0.551508
\(419\) −0.210149 0.363988i −0.0102664 0.0177820i 0.860847 0.508865i \(-0.169935\pi\)
−0.871113 + 0.491083i \(0.836601\pi\)
\(420\) −1.72872 7.07053i −0.0843528 0.345007i
\(421\) 3.28799 5.69497i 0.160247 0.277556i −0.774710 0.632316i \(-0.782104\pi\)
0.934957 + 0.354761i \(0.115438\pi\)
\(422\) −0.166208 + 0.287880i −0.00809086 + 0.0140138i
\(423\) −7.34610 + 3.16431i −0.357179 + 0.153854i
\(424\) −2.44437 4.23377i −0.118709 0.205610i
\(425\) 6.68725 + 11.5827i 0.324379 + 0.561841i
\(426\) 20.9127 + 6.93570i 1.01323 + 0.336036i
\(427\) −6.29232 10.0358i −0.304507 0.485667i
\(428\) −1.54325 2.67299i −0.0745959 0.129204i
\(429\) −12.5625 4.16635i −0.606524 0.201154i
\(430\) −2.64654 −0.127628
\(431\) 11.0439 + 19.1287i 0.531968 + 0.921395i 0.999304 + 0.0373155i \(0.0118806\pi\)
−0.467336 + 0.884080i \(0.654786\pi\)
\(432\) −2.19963 + 4.70761i −0.105830 + 0.226495i
\(433\) −9.43268 −0.453306 −0.226653 0.973976i \(-0.572778\pi\)
−0.226653 + 0.973976i \(0.572778\pi\)
\(434\) −7.17054 + 0.261323i −0.344197 + 0.0125439i
\(435\) −4.59820 22.2981i −0.220467 1.06911i
\(436\) −2.28799 −0.109575
\(437\) −1.06615 + 1.84663i −0.0510010 + 0.0883363i
\(438\) 5.61559 + 27.2318i 0.268323 + 1.30118i
\(439\) 15.6032 + 27.0256i 0.744701 + 1.28986i 0.950334 + 0.311231i \(0.100741\pi\)
−0.205634 + 0.978629i \(0.565926\pi\)
\(440\) 2.52290 0.120275
\(441\) 0.924016 20.9797i 0.0440007 0.999031i
\(442\) 25.9752 1.23552
\(443\) −6.52723 11.3055i −0.310118 0.537140i 0.668270 0.743919i \(-0.267035\pi\)
−0.978388 + 0.206779i \(0.933702\pi\)
\(444\) 1.64400 + 0.545231i 0.0780206 + 0.0258755i
\(445\) 2.54944 4.41576i 0.120855 0.209327i
\(446\) 6.33242 0.299849
\(447\) 6.74110 5.99596i 0.318843 0.283599i
\(448\) −2.64400 + 0.0963576i −0.124917 + 0.00455247i
\(449\) −9.91706 −0.468015 −0.234008 0.972235i \(-0.575184\pi\)
−0.234008 + 0.972235i \(0.575184\pi\)
\(450\) −6.82505 + 2.93987i −0.321736 + 0.138587i
\(451\) −4.66690 8.08330i −0.219756 0.380628i
\(452\) 19.4647 0.915543
\(453\) −0.676728 + 0.601924i −0.0317955 + 0.0282809i
\(454\) −11.6545 20.1862i −0.546974 0.947386i
\(455\) −10.7396 17.1290i −0.503482 0.803019i
\(456\) −2.48329 12.0422i −0.116291 0.563930i
\(457\) 12.2615 + 21.2375i 0.573566 + 0.993446i 0.996196 + 0.0871436i \(0.0277739\pi\)
−0.422629 + 0.906303i \(0.638893\pi\)
\(458\) −2.47710 4.29046i −0.115747 0.200480i
\(459\) −11.8764 + 25.4176i −0.554341 + 1.18639i
\(460\) −0.238550 + 0.413181i −0.0111224 + 0.0192646i
\(461\) 1.75526 3.04020i 0.0817506 0.141596i −0.822251 0.569125i \(-0.807282\pi\)
0.904002 + 0.427528i \(0.140616\pi\)
\(462\) 6.98762 + 2.03815i 0.325094 + 0.0948234i
\(463\) 8.69413 + 15.0587i 0.404050 + 0.699836i 0.994210 0.107451i \(-0.0342687\pi\)
−0.590160 + 0.807286i \(0.700935\pi\)
\(464\) −8.27561 −0.384186
\(465\) −1.50688 7.30733i −0.0698798 0.338869i
\(466\) −14.2756 −0.661305
\(467\) 6.69894 11.6029i 0.309990 0.536918i −0.668370 0.743829i \(-0.733008\pi\)
0.978360 + 0.206911i \(0.0663410\pi\)
\(468\) −1.68292 + 14.3342i −0.0777929 + 0.662600i
\(469\) −12.4512 + 23.5036i −0.574945 + 1.08529i
\(470\) 2.11745 3.66754i 0.0976709 0.169171i
\(471\) 3.10074 + 15.0365i 0.142875 + 0.692844i
\(472\) 3.23855 5.60933i 0.149066 0.258190i
\(473\) 1.32327 2.29197i 0.0608441 0.105385i
\(474\) −2.93385 14.2271i −0.134756 0.653474i
\(475\) 8.79232 15.2287i 0.403419 0.698743i
\(476\) −14.2756 + 0.520259i −0.654322 + 0.0238460i
\(477\) 13.4697 5.80205i 0.616737 0.265658i
\(478\) −2.48762 + 4.30868i −0.113781 + 0.197075i
\(479\) 20.8058 0.950641 0.475321 0.879813i \(-0.342332\pi\)
0.475321 + 0.879813i \(0.342332\pi\)
\(480\) −0.555632 2.69443i −0.0253610 0.122984i
\(481\) 4.81089 0.219358
\(482\) −6.50000 11.2583i −0.296067 0.512803i
\(483\) −0.994499 + 0.951662i −0.0452513 + 0.0433021i
\(484\) 4.23855 7.34138i 0.192661 0.333699i
\(485\) 1.13093 1.95882i 0.0513528 0.0889456i
\(486\) −13.2570 8.20066i −0.601352 0.371989i
\(487\) 16.2472 + 28.1410i 0.736231 + 1.27519i 0.954181 + 0.299230i \(0.0967298\pi\)
−0.217950 + 0.975960i \(0.569937\pi\)
\(488\) −2.23855 3.87728i −0.101334 0.175516i
\(489\) −7.68292 37.2569i −0.347434 1.68481i
\(490\) 6.24543 + 9.19874i 0.282140 + 0.415557i
\(491\) −9.66071 16.7328i −0.435982 0.755142i 0.561394 0.827549i \(-0.310265\pi\)
−0.997375 + 0.0724067i \(0.976932\pi\)
\(492\) −7.60507 + 6.76443i −0.342863 + 0.304964i
\(493\) −44.6822 −2.01238
\(494\) −17.0760 29.5765i −0.768285 1.33071i
\(495\) −0.882546 + 7.51707i −0.0396675 + 0.337867i
\(496\) −2.71201 −0.121773
\(497\) −33.6334 + 1.22573i −1.50866 + 0.0549816i
\(498\) 3.06182 2.72338i 0.137204 0.122037i
\(499\) −11.1506 −0.499169 −0.249585 0.968353i \(-0.580294\pi\)
−0.249585 + 0.968353i \(0.580294\pi\)
\(500\) 5.93818 10.2852i 0.265563 0.459969i
\(501\) 5.42580 + 1.79947i 0.242407 + 0.0803942i
\(502\) 1.21634 + 2.10676i 0.0542878 + 0.0940293i
\(503\) −40.7651 −1.81763 −0.908813 0.417204i \(-0.863010\pi\)
−0.908813 + 0.417204i \(0.863010\pi\)
\(504\) 0.637806 7.91159i 0.0284101 0.352410i
\(505\) 19.1135 0.850537
\(506\) −0.238550 0.413181i −0.0106048 0.0183681i
\(507\) 3.54875 + 17.2090i 0.157606 + 0.764279i
\(508\) 6.71998 11.6393i 0.298151 0.516413i
\(509\) 1.44506 0.0640510 0.0320255 0.999487i \(-0.489804\pi\)
0.0320255 + 0.999487i \(0.489804\pi\)
\(510\) −3.00000 14.5479i −0.132842 0.644194i
\(511\) −22.5617 35.9844i −0.998073 1.59186i
\(512\) −1.00000 −0.0441942
\(513\) 36.7490 3.18650i 1.62251 0.140687i
\(514\) −0.493810 0.855304i −0.0217810 0.0377259i
\(515\) −9.68725 −0.426871
\(516\) −2.73924 0.908468i −0.120588 0.0399931i
\(517\) 2.11745 + 3.66754i 0.0931255 + 0.161298i
\(518\) −2.64400 + 0.0963576i −0.116171 + 0.00423371i
\(519\) −31.4127 10.4180i −1.37887 0.457301i
\(520\) −3.82072 6.61769i −0.167550 0.290205i
\(521\) 9.64214 + 16.7007i 0.422430 + 0.731670i 0.996177 0.0873630i \(-0.0278440\pi\)
−0.573747 + 0.819033i \(0.694511\pi\)
\(522\) 2.89493 24.6575i 0.126707 1.07923i
\(523\) −18.3454 + 31.7752i −0.802189 + 1.38943i 0.115984 + 0.993251i \(0.462998\pi\)
−0.918173 + 0.396180i \(0.870335\pi\)
\(524\) 1.58836 2.75113i 0.0693880 0.120184i
\(525\) 8.20141 7.84814i 0.357939 0.342521i
\(526\) 8.59269 + 14.8830i 0.374659 + 0.648929i
\(527\) −14.6428 −0.637851
\(528\) 2.61126 + 0.866025i 0.113641 + 0.0376889i
\(529\) −22.9098 −0.996077
\(530\) −3.88255 + 6.72477i −0.168647 + 0.292105i
\(531\) 15.5803 + 11.6116i 0.676128 + 0.503900i
\(532\) 9.97710 + 15.9128i 0.432562 + 0.689907i
\(533\) −14.1353 + 24.4830i −0.612266 + 1.06048i
\(534\) 4.15452 3.69529i 0.179784 0.159911i
\(535\) −2.45125 + 4.24568i −0.105977 + 0.183557i
\(536\) −5.02654 + 8.70623i −0.217114 + 0.376052i
\(537\) −26.4258 8.76411i −1.14036 0.378199i
\(538\) −11.4523 + 19.8360i −0.493745 + 0.855192i
\(539\) −11.0891 + 0.809332i −0.477639 + 0.0348604i
\(540\) 8.22253 0.712974i 0.353841 0.0306815i
\(541\) −1.62543 + 2.81532i −0.0698825 + 0.121040i −0.898849 0.438258i \(-0.855596\pi\)
0.828967 + 0.559298i \(0.188929\pi\)
\(542\) 14.0073 0.601664
\(543\) 10.4222 9.27012i 0.447258 0.397819i
\(544\) −5.39926 −0.231491
\(545\) 1.81708 + 3.14728i 0.0778352 + 0.134815i
\(546\) −5.23600 21.4155i −0.224080 0.916498i
\(547\) −2.95853 + 5.12432i −0.126498 + 0.219100i −0.922317 0.386433i \(-0.873707\pi\)
0.795820 + 0.605534i \(0.207040\pi\)
\(548\) 10.6316 18.4145i 0.454160 0.786628i
\(549\) 12.3356 5.31351i 0.526470 0.226775i
\(550\) 1.96727 + 3.40741i 0.0838846 + 0.145292i
\(551\) 29.3738 + 50.8769i 1.25137 + 2.16743i
\(552\) −0.388736 + 0.345766i −0.0165457 + 0.0147168i
\(553\) 11.7873 + 18.7999i 0.501247 + 0.799454i
\(554\) 14.1476 + 24.5044i 0.601076 + 1.04109i
\(555\) −0.555632 2.69443i −0.0235853 0.114372i
\(556\) −13.0531 −0.553574
\(557\) 12.8040 + 22.1772i 0.542523 + 0.939678i 0.998758 + 0.0498188i \(0.0158644\pi\)
−0.456235 + 0.889859i \(0.650802\pi\)
\(558\) 0.948699 8.08052i 0.0401616 0.342076i
\(559\) −8.01594 −0.339038
\(560\) 2.23236 + 3.56046i 0.0943344 + 0.150457i
\(561\) 14.0989 + 4.67589i 0.595255 + 0.197416i
\(562\) −17.5956 −0.742228
\(563\) 23.3189 40.3895i 0.982773 1.70221i 0.331330 0.943515i \(-0.392503\pi\)
0.651443 0.758698i \(-0.274164\pi\)
\(564\) 3.45056 3.06914i 0.145295 0.129234i
\(565\) −15.4585 26.7750i −0.650345 1.12643i
\(566\) 18.5229 0.778576
\(567\) 23.3497 + 4.66795i 0.980597 + 0.196035i
\(568\) −12.7207 −0.533747
\(569\) −15.5989 27.0181i −0.653939 1.13266i −0.982159 0.188054i \(-0.939782\pi\)
0.328219 0.944602i \(-0.393551\pi\)
\(570\) −14.5927 + 12.9797i −0.611221 + 0.543658i
\(571\) 7.83812 13.5760i 0.328015 0.568139i −0.654103 0.756406i \(-0.726954\pi\)
0.982118 + 0.188267i \(0.0602869\pi\)
\(572\) 7.64145 0.319505
\(573\) 39.3948 + 13.0653i 1.64574 + 0.545811i
\(574\) 7.27816 13.7386i 0.303785 0.573438i
\(575\) −0.744051 −0.0310291
\(576\) 0.349814 2.97954i 0.0145756 0.124147i
\(577\) 6.99567 + 12.1169i 0.291234 + 0.504431i 0.974102 0.226110i \(-0.0726010\pi\)
−0.682868 + 0.730542i \(0.739268\pi\)
\(578\) −12.1520 −0.505455
\(579\) 3.41597 + 16.5651i 0.141963 + 0.688422i
\(580\) 6.57234 + 11.3836i 0.272902 + 0.472680i
\(581\) −2.93021 + 5.53120i −0.121565 + 0.229473i
\(582\) 1.84294 1.63922i 0.0763921 0.0679480i
\(583\) −3.88255 6.72477i −0.160799 0.278511i
\(584\) −8.02654 13.9024i −0.332141 0.575285i
\(585\) 21.0542 9.06902i 0.870483 0.374958i
\(586\) 7.04256 12.1981i 0.290926 0.503898i
\(587\) 1.44801 2.50803i 0.0597658 0.103517i −0.834594 0.550865i \(-0.814298\pi\)
0.894360 + 0.447348i \(0.147631\pi\)
\(588\) 3.30656 + 11.6648i 0.136360 + 0.481047i
\(589\) 9.62612 + 16.6729i 0.396637 + 0.686996i
\(590\) −10.2880 −0.423550
\(591\) −23.6105 + 21.0007i −0.971206 + 0.863852i
\(592\) −1.00000 −0.0410997
\(593\) −2.04394 + 3.54021i −0.0839346 + 0.145379i −0.904937 0.425546i \(-0.860082\pi\)
0.821002 + 0.570925i \(0.193415\pi\)
\(594\) −3.49381 + 7.47741i −0.143353 + 0.306802i
\(595\) 12.0531 + 19.2238i 0.494128 + 0.788100i
\(596\) −2.60439 + 4.51093i −0.106680 + 0.184775i
\(597\) 29.7545 + 9.86807i 1.21777 + 0.403873i
\(598\) −0.722528 + 1.25146i −0.0295464 + 0.0511758i
\(599\) 9.88255 17.1171i 0.403790 0.699385i −0.590390 0.807118i \(-0.701026\pi\)
0.994180 + 0.107734i \(0.0343593\pi\)
\(600\) 3.20582 2.85146i 0.130877 0.116410i
\(601\) −13.4320 + 23.2649i −0.547902 + 0.948994i 0.450516 + 0.892768i \(0.351240\pi\)
−0.998418 + 0.0562261i \(0.982093\pi\)
\(602\) 4.40545 0.160552i 0.179553 0.00654360i
\(603\) −24.1822 18.0223i −0.984773 0.733926i
\(604\) 0.261450 0.452845i 0.0106383 0.0184260i
\(605\) −13.4647 −0.547419
\(606\) 19.7829 + 6.56099i 0.803625 + 0.266522i
\(607\) −15.2422 −0.618661 −0.309331 0.950955i \(-0.600105\pi\)
−0.309331 + 0.950955i \(0.600105\pi\)
\(608\) 3.54944 + 6.14781i 0.143949 + 0.249327i
\(609\) 9.00688 + 36.8385i 0.364977 + 1.49277i
\(610\) −3.55563 + 6.15854i −0.143963 + 0.249352i
\(611\) 6.41342 11.1084i 0.259459 0.449396i
\(612\) 1.88874 16.0873i 0.0763476 0.650290i
\(613\) −1.36033 2.35617i −0.0549434 0.0951648i 0.837246 0.546827i \(-0.184165\pi\)
−0.892189 + 0.451662i \(0.850831\pi\)
\(614\) −2.92766 5.07085i −0.118151 0.204643i
\(615\) 15.3447 + 5.08907i 0.618759 + 0.205211i
\(616\) −4.19963 + 0.153051i −0.169208 + 0.00616660i
\(617\) −9.21812 15.9663i −0.371108 0.642777i 0.618629 0.785684i \(-0.287689\pi\)
−0.989736 + 0.142906i \(0.954355\pi\)
\(618\) −10.0265 3.32530i −0.403327 0.133763i
\(619\) 0.107546 0.00432262 0.00216131 0.999998i \(-0.499312\pi\)
0.00216131 + 0.999998i \(0.499312\pi\)
\(620\) 2.15383 + 3.73054i 0.0864998 + 0.149822i
\(621\) −0.894237 1.27921i −0.0358845 0.0513328i
\(622\) −0.810892 −0.0325138
\(623\) −3.97593 + 7.50516i −0.159292 + 0.300688i
\(624\) −1.68292 8.16100i −0.0673706 0.326701i
\(625\) −6.47848 −0.259139
\(626\) 5.28799 9.15907i 0.211351 0.366070i
\(627\) −3.94437 19.1275i −0.157523 0.763878i
\(628\) −4.43199 7.67643i −0.176856 0.306323i
\(629\) −5.39926 −0.215282
\(630\) −11.3894 + 5.40590i −0.453766 + 0.215376i
\(631\) 35.7266 1.42225 0.711126 0.703064i \(-0.248185\pi\)
0.711126 + 0.703064i \(0.248185\pi\)
\(632\) 4.19344 + 7.26325i 0.166806 + 0.288916i
\(633\) 0.546489 + 0.181243i 0.0217210 + 0.00720376i
\(634\) 6.09820 10.5624i 0.242190 0.419486i
\(635\) −21.3475 −0.847152
\(636\) −6.32691 + 5.62755i −0.250878 + 0.223147i
\(637\) 18.9164 + 27.8615i 0.749494 + 1.10391i
\(638\) −13.1447 −0.520403
\(639\) 4.44987 37.9017i 0.176034 1.49937i
\(640\) 0.794182 + 1.37556i 0.0313928 + 0.0543739i
\(641\) 17.3128 0.683813 0.341906 0.939734i \(-0.388927\pi\)
0.341906 + 0.939734i \(0.388927\pi\)
\(642\) −3.99450 + 3.55296i −0.157650 + 0.140224i
\(643\) 14.4821 + 25.0838i 0.571119 + 0.989207i 0.996451 + 0.0841700i \(0.0268239\pi\)
−0.425332 + 0.905037i \(0.639843\pi\)
\(644\) 0.372026 0.702253i 0.0146599 0.0276727i
\(645\) 0.925798 + 4.48949i 0.0364533 + 0.176773i
\(646\) 19.1643 + 33.1936i 0.754011 + 1.30599i
\(647\) 1.27816 + 2.21384i 0.0502497 + 0.0870350i 0.890056 0.455851i \(-0.150665\pi\)
−0.839807 + 0.542886i \(0.817332\pi\)
\(648\) 8.75526 + 2.08457i 0.343939 + 0.0818895i
\(649\) 5.14400 8.90966i 0.201920 0.349735i
\(650\) 5.95853 10.3205i 0.233713 0.404802i
\(651\) 2.95165 + 12.0724i 0.115684 + 0.473154i
\(652\) 10.9814 + 19.0204i 0.430066 + 0.744896i
\(653\) 29.9766 1.17308 0.586538 0.809922i \(-0.300491\pi\)
0.586538 + 0.809922i \(0.300491\pi\)
\(654\) 0.800372 + 3.88125i 0.0312970 + 0.151769i
\(655\) −5.04580 −0.197156
\(656\) 2.93818 5.08907i 0.114717 0.198695i
\(657\) 44.2304 19.0521i 1.72559 0.743294i
\(658\) −3.30223 + 6.23345i −0.128734 + 0.243005i
\(659\) −7.63162 + 13.2183i −0.297286 + 0.514914i −0.975514 0.219937i \(-0.929415\pi\)
0.678228 + 0.734851i \(0.262748\pi\)
\(660\) −0.882546 4.27974i −0.0343531 0.166589i
\(661\) 13.6261 23.6011i 0.529994 0.917977i −0.469393 0.882989i \(-0.655527\pi\)
0.999388 0.0349881i \(-0.0111393\pi\)
\(662\) −7.83310 + 13.5673i −0.304442 + 0.527309i
\(663\) −9.08650 44.0633i −0.352891 1.71128i
\(664\) −1.18292 + 2.04887i −0.0459061 + 0.0795117i
\(665\) 13.9654 26.3618i 0.541555 1.02227i
\(666\) 0.349814 2.97954i 0.0135550 0.115455i
\(667\) 1.24288 2.15273i 0.0481245 0.0833541i
\(668\) −3.30037 −0.127695
\(669\) −2.21517 10.7420i −0.0856433 0.415311i
\(670\) 15.9680 0.616896
\(671\) −3.55563 6.15854i −0.137264 0.237748i
\(672\) 1.08836 + 4.45146i 0.0419846 + 0.171719i
\(673\) 23.2280 40.2320i 0.895372 1.55083i 0.0620280 0.998074i \(-0.480243\pi\)
0.833344 0.552755i \(-0.186423\pi\)
\(674\) 4.21201 7.29541i 0.162240 0.281009i
\(675\) 7.37457 + 10.5493i 0.283847 + 0.406044i
\(676\) −5.07234 8.78555i −0.195090 0.337906i
\(677\) −2.54944 4.41576i −0.0979830 0.169712i 0.812867 0.582450i \(-0.197906\pi\)
−0.910850 + 0.412738i \(0.864572\pi\)
\(678\) −6.80903 33.0191i −0.261499 1.26809i
\(679\) −1.76371 + 3.32927i −0.0676852 + 0.127766i
\(680\) 4.28799 + 7.42702i 0.164437 + 0.284813i
\(681\) −30.1661 + 26.8317i −1.15597 + 1.02819i
\(682\) −4.30766 −0.164949
\(683\) −7.77197 13.4614i −0.297386 0.515088i 0.678151 0.734923i \(-0.262782\pi\)
−0.975537 + 0.219835i \(0.929448\pi\)
\(684\) −19.5593 + 8.42510i −0.747868 + 0.322142i
\(685\) −33.7738 −1.29043
\(686\) −10.9542 14.9334i −0.418233 0.570159i
\(687\) −6.41164 + 5.70291i −0.244619 + 0.217580i
\(688\) 1.66621 0.0635236
\(689\) −11.7596 + 20.3682i −0.448005 + 0.775967i
\(690\) 0.784350 + 0.260130i 0.0298597 + 0.00990297i
\(691\) −11.6483 20.1755i −0.443123 0.767512i 0.554796 0.831986i \(-0.312796\pi\)
−0.997919 + 0.0644744i \(0.979463\pi\)
\(692\) 19.1075 0.726360
\(693\) 1.01307 12.5665i 0.0384833 0.477361i
\(694\) −0.567323 −0.0215353
\(695\) 10.3665 + 17.9553i 0.393225 + 0.681085i
\(696\) 2.89493 + 14.0384i 0.109732 + 0.532124i
\(697\) 15.8640 27.4772i 0.600891 1.04077i
\(698\) −0.00728378 −0.000275695
\(699\) 4.99381 + 24.2165i 0.188883 + 0.915954i
\(700\) −3.06801 + 5.79133i −0.115960 + 0.218892i
\(701\) −45.6464 −1.72404 −0.862020 0.506874i \(-0.830801\pi\)
−0.862020 + 0.506874i \(0.830801\pi\)
\(702\) 24.9047 2.15948i 0.939967 0.0815044i
\(703\) 3.54944 + 6.14781i 0.133870 + 0.231869i
\(704\) −1.58836 −0.0598637
\(705\) −6.96217 2.30900i −0.262211 0.0869621i
\(706\) 3.32691 + 5.76238i 0.125210 + 0.216870i
\(707\) −31.8163 + 1.15951i −1.19658 + 0.0436079i
\(708\) −10.6483 3.53152i −0.400189 0.132723i
\(709\) −9.00069 15.5897i −0.338028 0.585482i 0.646034 0.763309i \(-0.276427\pi\)
−0.984062 + 0.177827i \(0.943093\pi\)
\(710\) 10.1025 + 17.4981i 0.379141 + 0.656692i
\(711\) −23.1080 + 9.95371i −0.866619 + 0.373293i
\(712\) −1.60507 + 2.78007i −0.0601527 + 0.104188i
\(713\) 0.407305 0.705474i 0.0152537 0.0264202i
\(714\) 5.87636 + 24.0346i 0.219917 + 0.899471i
\(715\) −6.06870 10.5113i −0.226957 0.393100i
\(716\) 16.0741 0.600718
\(717\) 8.17928 + 2.71266i 0.305461 + 0.101306i
\(718\) −0.797135 −0.0297488
\(719\) 18.4389 31.9371i 0.687654 1.19105i −0.284941 0.958545i \(-0.591974\pi\)
0.972595 0.232506i \(-0.0746926\pi\)
\(720\) −4.37636 + 1.88510i −0.163097 + 0.0702536i
\(721\) 16.1254 0.587674i 0.600542 0.0218861i
\(722\) 15.6971 27.1881i 0.584185 1.01184i
\(723\) −16.8244 + 14.9646i −0.625705 + 0.556541i
\(724\) −4.02654 + 6.97418i −0.149645 + 0.259193i
\(725\) −10.2498 + 17.7531i −0.380666 + 0.659334i
\(726\) −13.9363 4.62198i −0.517225 0.171538i
\(727\) 15.2429 26.4014i 0.565327 0.979175i −0.431692 0.902021i \(-0.642083\pi\)
0.997019 0.0771543i \(-0.0245834\pi\)
\(728\) 6.76145 + 10.7840i 0.250596 + 0.399683i
\(729\) −9.27375 + 25.3574i −0.343472 + 0.939163i
\(730\) −12.7491 + 22.0820i −0.471864 + 0.817293i
\(731\) 8.99628 0.332739
\(732\) −5.79418 + 5.15371i −0.214159 + 0.190487i
\(733\) 6.15059 0.227177 0.113589 0.993528i \(-0.463765\pi\)
0.113589 + 0.993528i \(0.463765\pi\)
\(734\) −7.71634 13.3651i −0.284815 0.493314i
\(735\) 13.4196 13.8123i 0.494990 0.509475i
\(736\) 0.150186 0.260130i 0.00553593 0.00958851i
\(737\) −7.98398 + 13.8287i −0.294094 + 0.509385i
\(738\) 14.1353 + 10.5346i 0.520326 + 0.387785i
\(739\) −20.3912 35.3186i −0.750103 1.29922i −0.947772 0.318947i \(-0.896671\pi\)
0.197670 0.980269i \(-0.436663\pi\)
\(740\) 0.794182 + 1.37556i 0.0291947 + 0.0505667i
\(741\) −44.1989 + 39.3132i −1.62369 + 1.44421i
\(742\) 6.05494 11.4296i 0.222284 0.419594i
\(743\) 7.25271 + 12.5621i 0.266076 + 0.460858i 0.967845 0.251547i \(-0.0809394\pi\)
−0.701769 + 0.712405i \(0.747606\pi\)
\(744\) 0.948699 + 4.60054i 0.0347810 + 0.168664i
\(745\) 8.27342 0.303115
\(746\) 5.12110 + 8.87000i 0.187497 + 0.324754i
\(747\) −5.69089 4.24127i −0.208219 0.155180i
\(748\) −8.57598 −0.313569
\(749\) 3.82279 7.21608i 0.139682 0.263670i
\(750\) −19.5247 6.47536i −0.712941 0.236447i
\(751\) 4.18911 0.152863 0.0764314 0.997075i \(-0.475647\pi\)
0.0764314 + 0.997075i \(0.475647\pi\)
\(752\) −1.33310 + 2.30900i −0.0486133 + 0.0842007i
\(753\) 3.14833 2.80032i 0.114731 0.102049i
\(754\) 19.9065 + 34.4791i 0.724953 + 1.25566i
\(755\) −0.830556 −0.0302270
\(756\) −13.6440 + 1.68564i −0.496227 + 0.0613060i
\(757\) 2.38688 0.0867525 0.0433763 0.999059i \(-0.486189\pi\)
0.0433763 + 0.999059i \(0.486189\pi\)
\(758\) 12.5043 + 21.6581i 0.454178 + 0.786659i
\(759\) −0.617454 + 0.549202i −0.0224122 + 0.0199348i
\(760\) 5.63781 9.76497i 0.204505 0.354213i
\(761\) 3.63416 0.131738 0.0658692 0.997828i \(-0.479018\pi\)
0.0658692 + 0.997828i \(0.479018\pi\)
\(762\) −22.0952 7.32788i −0.800426 0.265461i
\(763\) −3.21565 5.12874i −0.116414 0.185673i
\(764\) −23.9629 −0.866946
\(765\) −23.6291 + 10.1781i −0.854311 + 0.367992i
\(766\) −3.13348 5.42734i −0.113217 0.196098i
\(767\) −31.1606 −1.12515
\(768\) 0.349814 + 1.69636i 0.0126228 + 0.0612120i