Properties

Label 126.2.h.d.67.3
Level $126$
Weight $2$
Character 126.67
Analytic conductor $1.006$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(67,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.h (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.3
Root \(0.500000 - 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 126.67
Dual form 126.2.h.d.79.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(1.29418 + 1.15113i) q^{3} +(-0.500000 - 0.866025i) q^{4} +1.58836 q^{5} +(1.64400 - 0.545231i) q^{6} +(-2.64400 - 0.0963576i) q^{7} -1.00000 q^{8} +(0.349814 + 2.97954i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(1.29418 + 1.15113i) q^{3} +(-0.500000 - 0.866025i) q^{4} +1.58836 q^{5} +(1.64400 - 0.545231i) q^{6} +(-2.64400 - 0.0963576i) q^{7} -1.00000 q^{8} +(0.349814 + 2.97954i) q^{9} +(0.794182 - 1.37556i) q^{10} -1.58836 q^{11} +(0.349814 - 1.69636i) q^{12} +(2.40545 - 4.16635i) q^{13} +(-1.40545 + 2.24159i) q^{14} +(2.05563 + 1.82841i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.69963 + 4.67589i) q^{17} +(2.75526 + 1.18682i) q^{18} +(-3.54944 - 6.14781i) q^{19} +(-0.794182 - 1.37556i) q^{20} +(-3.31089 - 3.16828i) q^{21} +(-0.794182 + 1.37556i) q^{22} +0.300372 q^{23} +(-1.29418 - 1.15113i) q^{24} -2.47710 q^{25} +(-2.40545 - 4.16635i) q^{26} +(-2.97710 + 4.25874i) q^{27} +(1.23855 + 2.33795i) q^{28} +(4.13781 + 7.16689i) q^{29} +(2.61126 - 0.866025i) q^{30} +(1.35600 + 2.34867i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-2.05563 - 1.82841i) q^{33} +(2.69963 + 4.67589i) q^{34} +(-4.19963 - 0.153051i) q^{35} +(2.40545 - 1.79272i) q^{36} +(0.500000 + 0.866025i) q^{37} -7.09888 q^{38} +(7.90909 - 2.62305i) q^{39} -1.58836 q^{40} +(2.93818 - 5.08907i) q^{41} +(-4.39926 + 1.28318i) q^{42} +(-0.833104 - 1.44298i) q^{43} +(0.794182 + 1.37556i) q^{44} +(0.555632 + 4.73259i) q^{45} +(0.150186 - 0.260130i) q^{46} +(-1.33310 + 2.30900i) q^{47} +(-1.64400 + 0.545231i) q^{48} +(6.98143 + 0.509538i) q^{49} +(-1.23855 + 2.14523i) q^{50} +(-8.87636 + 2.94384i) q^{51} -4.81089 q^{52} +(2.44437 - 4.23377i) q^{53} +(2.19963 + 4.70761i) q^{54} -2.52290 q^{55} +(2.64400 + 0.0963576i) q^{56} +(2.48329 - 12.0422i) q^{57} +8.27561 q^{58} +(-3.23855 - 5.60933i) q^{59} +(0.555632 - 2.69443i) q^{60} +(2.23855 - 3.87728i) q^{61} +2.71201 q^{62} +(-0.637806 - 7.91159i) q^{63} +1.00000 q^{64} +(3.82072 - 6.61769i) q^{65} +(-2.61126 + 0.866025i) q^{66} +(5.02654 + 8.70623i) q^{67} +5.39926 q^{68} +(0.388736 + 0.345766i) q^{69} +(-2.23236 + 3.56046i) q^{70} +12.7207 q^{71} +(-0.349814 - 2.97954i) q^{72} +(8.02654 - 13.9024i) q^{73} +1.00000 q^{74} +(-3.20582 - 2.85146i) q^{75} +(-3.54944 + 6.14781i) q^{76} +(4.19963 + 0.153051i) q^{77} +(1.68292 - 8.16100i) q^{78} +(-4.19344 + 7.26325i) q^{79} +(-0.794182 + 1.37556i) q^{80} +(-8.75526 + 2.08457i) q^{81} +(-2.93818 - 5.08907i) q^{82} +(1.18292 + 2.04887i) q^{83} +(-1.08836 + 4.45146i) q^{84} +(-4.28799 + 7.42702i) q^{85} -1.66621 q^{86} +(-2.89493 + 14.0384i) q^{87} +1.58836 q^{88} +(1.60507 + 2.78007i) q^{89} +(4.37636 + 1.88510i) q^{90} +(-6.76145 + 10.7840i) q^{91} +(-0.150186 - 0.260130i) q^{92} +(-0.948699 + 4.60054i) q^{93} +(1.33310 + 2.30900i) q^{94} +(-5.63781 - 9.76497i) q^{95} +(-0.349814 + 1.69636i) q^{96} +(0.712008 + 1.23323i) q^{97} +(3.93199 - 5.79133i) q^{98} +(-0.555632 - 4.73259i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 2 q^{3} - 3 q^{4} - 2 q^{5} - 2 q^{6} - 4 q^{7} - 6 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 3 q^{2} + 2 q^{3} - 3 q^{4} - 2 q^{5} - 2 q^{6} - 4 q^{7} - 6 q^{8} - 4 q^{9} - q^{10} + 2 q^{11} - 4 q^{12} + 8 q^{13} - 2 q^{14} + 12 q^{15} - 3 q^{16} - 4 q^{17} + 4 q^{18} - 3 q^{19} + q^{20} - 7 q^{21} + q^{22} + 14 q^{23} - 2 q^{24} - 4 q^{25} - 8 q^{26} - 7 q^{27} + 2 q^{28} - 5 q^{29} + 15 q^{30} + 20 q^{31} + 3 q^{32} - 12 q^{33} + 4 q^{34} - 13 q^{35} + 8 q^{36} + 3 q^{37} - 6 q^{38} + q^{39} + 2 q^{40} - 2 q^{42} - 6 q^{43} - q^{44} + 3 q^{45} + 7 q^{46} - 9 q^{47} + 2 q^{48} - 12 q^{49} - 2 q^{50} - 18 q^{51} - 16 q^{52} + 15 q^{53} + q^{54} - 26 q^{55} + 4 q^{56} + 22 q^{57} - 10 q^{58} - 14 q^{59} + 3 q^{60} + 8 q^{61} + 40 q^{62} + 26 q^{63} + 6 q^{64} - 12 q^{65} - 15 q^{66} + q^{67} + 8 q^{68} + 3 q^{69} + 10 q^{70} + 14 q^{71} + 4 q^{72} + 19 q^{73} + 6 q^{74} - 25 q^{75} - 3 q^{76} + 13 q^{77} + 5 q^{78} + 5 q^{79} + q^{80} - 40 q^{81} + 2 q^{83} + 5 q^{84} - 2 q^{85} - 12 q^{86} - 36 q^{87} - 2 q^{88} - 9 q^{89} - 9 q^{90} - 46 q^{91} - 7 q^{92} + 37 q^{93} + 9 q^{94} - 4 q^{95} + 4 q^{96} + 28 q^{97} - 12 q^{98} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 1.29418 + 1.15113i 0.747196 + 0.664603i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.58836 0.710338 0.355169 0.934802i \(-0.384423\pi\)
0.355169 + 0.934802i \(0.384423\pi\)
\(6\) 1.64400 0.545231i 0.671159 0.222590i
\(7\) −2.64400 0.0963576i −0.999337 0.0364197i
\(8\) −1.00000 −0.353553
\(9\) 0.349814 + 2.97954i 0.116605 + 0.993178i
\(10\) 0.794182 1.37556i 0.251142 0.434991i
\(11\) −1.58836 −0.478910 −0.239455 0.970907i \(-0.576969\pi\)
−0.239455 + 0.970907i \(0.576969\pi\)
\(12\) 0.349814 1.69636i 0.100983 0.489696i
\(13\) 2.40545 4.16635i 0.667151 1.15554i −0.311547 0.950231i \(-0.600847\pi\)
0.978697 0.205308i \(-0.0658196\pi\)
\(14\) −1.40545 + 2.24159i −0.375621 + 0.599090i
\(15\) 2.05563 + 1.82841i 0.530762 + 0.472093i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.69963 + 4.67589i −0.654756 + 1.13407i 0.327199 + 0.944955i \(0.393895\pi\)
−0.981955 + 0.189115i \(0.939438\pi\)
\(18\) 2.75526 + 1.18682i 0.649421 + 0.279736i
\(19\) −3.54944 6.14781i −0.814298 1.41041i −0.909831 0.414979i \(-0.863789\pi\)
0.0955331 0.995426i \(-0.469544\pi\)
\(20\) −0.794182 1.37556i −0.177584 0.307585i
\(21\) −3.31089 3.16828i −0.722496 0.691375i
\(22\) −0.794182 + 1.37556i −0.169320 + 0.293271i
\(23\) 0.300372 0.0626319 0.0313159 0.999510i \(-0.490030\pi\)
0.0313159 + 0.999510i \(0.490030\pi\)
\(24\) −1.29418 1.15113i −0.264174 0.234973i
\(25\) −2.47710 −0.495420
\(26\) −2.40545 4.16635i −0.471747 0.817089i
\(27\) −2.97710 + 4.25874i −0.572943 + 0.819595i
\(28\) 1.23855 + 2.33795i 0.234064 + 0.441830i
\(29\) 4.13781 + 7.16689i 0.768371 + 1.33086i 0.938446 + 0.345427i \(0.112266\pi\)
−0.170074 + 0.985431i \(0.554401\pi\)
\(30\) 2.61126 0.866025i 0.476749 0.158114i
\(31\) 1.35600 + 2.34867i 0.243545 + 0.421833i 0.961722 0.274028i \(-0.0883561\pi\)
−0.718176 + 0.695861i \(0.755023\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −2.05563 1.82841i −0.357840 0.318285i
\(34\) 2.69963 + 4.67589i 0.462982 + 0.801909i
\(35\) −4.19963 0.153051i −0.709867 0.0258703i
\(36\) 2.40545 1.79272i 0.400908 0.298786i
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −7.09888 −1.15159
\(39\) 7.90909 2.62305i 1.26647 0.420024i
\(40\) −1.58836 −0.251142
\(41\) 2.93818 5.08907i 0.458866 0.794780i −0.540035 0.841643i \(-0.681589\pi\)
0.998901 + 0.0468628i \(0.0149223\pi\)
\(42\) −4.39926 + 1.28318i −0.678820 + 0.197999i
\(43\) −0.833104 1.44298i −0.127047 0.220052i 0.795484 0.605974i \(-0.207217\pi\)
−0.922531 + 0.385922i \(0.873883\pi\)
\(44\) 0.794182 + 1.37556i 0.119727 + 0.207374i
\(45\) 0.555632 + 4.73259i 0.0828287 + 0.705492i
\(46\) 0.150186 0.260130i 0.0221437 0.0383540i
\(47\) −1.33310 + 2.30900i −0.194453 + 0.336803i −0.946721 0.322055i \(-0.895627\pi\)
0.752268 + 0.658857i \(0.228960\pi\)
\(48\) −1.64400 + 0.545231i −0.237290 + 0.0786973i
\(49\) 6.98143 + 0.509538i 0.997347 + 0.0727912i
\(50\) −1.23855 + 2.14523i −0.175157 + 0.303382i
\(51\) −8.87636 + 2.94384i −1.24294 + 0.412220i
\(52\) −4.81089 −0.667151
\(53\) 2.44437 4.23377i 0.335760 0.581553i −0.647871 0.761750i \(-0.724340\pi\)
0.983630 + 0.180197i \(0.0576736\pi\)
\(54\) 2.19963 + 4.70761i 0.299331 + 0.640625i
\(55\) −2.52290 −0.340188
\(56\) 2.64400 + 0.0963576i 0.353319 + 0.0128763i
\(57\) 2.48329 12.0422i 0.328920 1.59503i
\(58\) 8.27561 1.08664
\(59\) −3.23855 5.60933i −0.421623 0.730273i 0.574475 0.818522i \(-0.305206\pi\)
−0.996098 + 0.0882491i \(0.971873\pi\)
\(60\) 0.555632 2.69443i 0.0717318 0.347850i
\(61\) 2.23855 3.87728i 0.286617 0.496435i −0.686383 0.727240i \(-0.740803\pi\)
0.973000 + 0.230805i \(0.0741360\pi\)
\(62\) 2.71201 0.344425
\(63\) −0.637806 7.91159i −0.0803560 0.996766i
\(64\) 1.00000 0.125000
\(65\) 3.82072 6.61769i 0.473902 0.820823i
\(66\) −2.61126 + 0.866025i −0.321424 + 0.106600i
\(67\) 5.02654 + 8.70623i 0.614090 + 1.06363i 0.990543 + 0.137199i \(0.0438101\pi\)
−0.376454 + 0.926435i \(0.622857\pi\)
\(68\) 5.39926 0.654756
\(69\) 0.388736 + 0.345766i 0.0467983 + 0.0416253i
\(70\) −2.23236 + 3.56046i −0.266818 + 0.425556i
\(71\) 12.7207 1.50967 0.754833 0.655917i \(-0.227718\pi\)
0.754833 + 0.655917i \(0.227718\pi\)
\(72\) −0.349814 2.97954i −0.0412260 0.351142i
\(73\) 8.02654 13.9024i 0.939436 1.62715i 0.172909 0.984938i \(-0.444683\pi\)
0.766527 0.642213i \(-0.221983\pi\)
\(74\) 1.00000 0.116248
\(75\) −3.20582 2.85146i −0.370176 0.329258i
\(76\) −3.54944 + 6.14781i −0.407149 + 0.705203i
\(77\) 4.19963 + 0.153051i 0.478592 + 0.0174418i
\(78\) 1.68292 8.16100i 0.190553 0.924051i
\(79\) −4.19344 + 7.26325i −0.471799 + 0.817179i −0.999479 0.0322635i \(-0.989728\pi\)
0.527681 + 0.849443i \(0.323062\pi\)
\(80\) −0.794182 + 1.37556i −0.0887922 + 0.153793i
\(81\) −8.75526 + 2.08457i −0.972807 + 0.231619i
\(82\) −2.93818 5.08907i −0.324467 0.561994i
\(83\) 1.18292 + 2.04887i 0.129842 + 0.224893i 0.923615 0.383321i \(-0.125220\pi\)
−0.793773 + 0.608214i \(0.791886\pi\)
\(84\) −1.08836 + 4.45146i −0.118750 + 0.485694i
\(85\) −4.28799 + 7.42702i −0.465098 + 0.805573i
\(86\) −1.66621 −0.179672
\(87\) −2.89493 + 14.0384i −0.310369 + 1.50507i
\(88\) 1.58836 0.169320
\(89\) 1.60507 + 2.78007i 0.170138 + 0.294687i 0.938468 0.345367i \(-0.112245\pi\)
−0.768330 + 0.640054i \(0.778912\pi\)
\(90\) 4.37636 + 1.88510i 0.461308 + 0.198707i
\(91\) −6.76145 + 10.7840i −0.708793 + 1.13047i
\(92\) −0.150186 0.260130i −0.0156580 0.0271204i
\(93\) −0.948699 + 4.60054i −0.0983755 + 0.477053i
\(94\) 1.33310 + 2.30900i 0.137499 + 0.238156i
\(95\) −5.63781 9.76497i −0.578427 1.00186i
\(96\) −0.349814 + 1.69636i −0.0357027 + 0.173134i
\(97\) 0.712008 + 1.23323i 0.0722934 + 0.125216i 0.899906 0.436084i \(-0.143635\pi\)
−0.827613 + 0.561300i \(0.810302\pi\)
\(98\) 3.93199 5.79133i 0.397191 0.585012i
\(99\) −0.555632 4.73259i −0.0558431 0.475643i
\(100\) 1.23855 + 2.14523i 0.123855 + 0.214523i
\(101\) 12.0334 1.19737 0.598685 0.800985i \(-0.295690\pi\)
0.598685 + 0.800985i \(0.295690\pi\)
\(102\) −1.88874 + 9.15907i −0.187013 + 0.906883i
\(103\) −6.09888 −0.600941 −0.300470 0.953791i \(-0.597144\pi\)
−0.300470 + 0.953791i \(0.597144\pi\)
\(104\) −2.40545 + 4.16635i −0.235873 + 0.408545i
\(105\) −5.25890 5.03238i −0.513216 0.491110i
\(106\) −2.44437 4.23377i −0.237418 0.411220i
\(107\) −1.54325 2.67299i −0.149192 0.258408i 0.781737 0.623608i \(-0.214334\pi\)
−0.930929 + 0.365200i \(0.881001\pi\)
\(108\) 5.17673 + 0.448873i 0.498131 + 0.0431929i
\(109\) 1.14400 1.98146i 0.109575 0.189789i −0.806023 0.591884i \(-0.798384\pi\)
0.915598 + 0.402095i \(0.131718\pi\)
\(110\) −1.26145 + 2.18490i −0.120275 + 0.208322i
\(111\) −0.349814 + 1.69636i −0.0332029 + 0.161011i
\(112\) 1.40545 2.24159i 0.132802 0.211810i
\(113\) −9.73236 + 16.8569i −0.915543 + 1.58577i −0.109440 + 0.993993i \(0.534906\pi\)
−0.806104 + 0.591774i \(0.798428\pi\)
\(114\) −9.18725 8.17172i −0.860465 0.765351i
\(115\) 0.477100 0.0444898
\(116\) 4.13781 7.16689i 0.384186 0.665429i
\(117\) 13.2553 + 5.70966i 1.22545 + 0.527858i
\(118\) −6.47710 −0.596265
\(119\) 7.58836 12.1029i 0.695624 1.10947i
\(120\) −2.05563 1.82841i −0.187653 0.166910i
\(121\) −8.47710 −0.770645
\(122\) −2.23855 3.87728i −0.202669 0.351033i
\(123\) 9.66071 3.20397i 0.871077 0.288892i
\(124\) 1.35600 2.34867i 0.121773 0.210917i
\(125\) −11.8764 −1.06225
\(126\) −7.17054 3.40344i −0.638802 0.303202i
\(127\) −13.4400 −1.19260 −0.596302 0.802760i \(-0.703364\pi\)
−0.596302 + 0.802760i \(0.703364\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0.582863 2.82648i 0.0513182 0.248858i
\(130\) −3.82072 6.61769i −0.335100 0.580410i
\(131\) −3.17673 −0.277552 −0.138776 0.990324i \(-0.544317\pi\)
−0.138776 + 0.990324i \(0.544317\pi\)
\(132\) −0.555632 + 2.69443i −0.0483616 + 0.234520i
\(133\) 8.79232 + 16.5968i 0.762391 + 1.43913i
\(134\) 10.0531 0.868454
\(135\) −4.72872 + 6.76443i −0.406983 + 0.582190i
\(136\) 2.69963 4.67589i 0.231491 0.400955i
\(137\) −21.2632 −1.81664 −0.908320 0.418275i \(-0.862635\pi\)
−0.908320 + 0.418275i \(0.862635\pi\)
\(138\) 0.493810 0.163772i 0.0420359 0.0139412i
\(139\) 6.52654 11.3043i 0.553574 0.958818i −0.444439 0.895809i \(-0.646597\pi\)
0.998013 0.0630092i \(-0.0200698\pi\)
\(140\) 1.96727 + 3.71351i 0.166264 + 0.313849i
\(141\) −4.38323 + 1.45370i −0.369135 + 0.122424i
\(142\) 6.36033 11.0164i 0.533747 0.924478i
\(143\) −3.82072 + 6.61769i −0.319505 + 0.553399i
\(144\) −2.75526 1.18682i −0.229605 0.0989016i
\(145\) 6.57234 + 11.3836i 0.545803 + 0.945359i
\(146\) −8.02654 13.9024i −0.664281 1.15057i
\(147\) 8.44870 + 8.69595i 0.696837 + 0.717230i
\(148\) 0.500000 0.866025i 0.0410997 0.0711868i
\(149\) 5.20877 0.426719 0.213360 0.976974i \(-0.431559\pi\)
0.213360 + 0.976974i \(0.431559\pi\)
\(150\) −4.07234 + 1.35059i −0.332505 + 0.110275i
\(151\) −0.522900 −0.0425530 −0.0212765 0.999774i \(-0.506773\pi\)
−0.0212765 + 0.999774i \(0.506773\pi\)
\(152\) 3.54944 + 6.14781i 0.287898 + 0.498654i
\(153\) −14.8764 6.40794i −1.20268 0.518052i
\(154\) 2.23236 3.56046i 0.179889 0.286910i
\(155\) 2.15383 + 3.73054i 0.173000 + 0.299644i
\(156\) −6.22617 5.53795i −0.498493 0.443391i
\(157\) −4.43199 7.67643i −0.353711 0.612646i 0.633185 0.774000i \(-0.281747\pi\)
−0.986897 + 0.161354i \(0.948414\pi\)
\(158\) 4.19344 + 7.26325i 0.333612 + 0.577833i
\(159\) 8.03706 2.66549i 0.637381 0.211387i
\(160\) 0.794182 + 1.37556i 0.0627856 + 0.108748i
\(161\) −0.794182 0.0289431i −0.0625903 0.00228104i
\(162\) −2.57234 + 8.62456i −0.202102 + 0.677610i
\(163\) 10.9814 + 19.0204i 0.860132 + 1.48979i 0.871801 + 0.489860i \(0.162952\pi\)
−0.0116689 + 0.999932i \(0.503714\pi\)
\(164\) −5.87636 −0.458866
\(165\) −3.26509 2.90418i −0.254187 0.226090i
\(166\) 2.36584 0.183624
\(167\) 1.65019 2.85821i 0.127695 0.221175i −0.795088 0.606494i \(-0.792575\pi\)
0.922783 + 0.385319i \(0.125909\pi\)
\(168\) 3.31089 + 3.16828i 0.255441 + 0.244438i
\(169\) −5.07234 8.78555i −0.390180 0.675812i
\(170\) 4.28799 + 7.42702i 0.328874 + 0.569626i
\(171\) 17.0760 12.7263i 1.30583 0.973203i
\(172\) −0.833104 + 1.44298i −0.0635236 + 0.110026i
\(173\) −9.55377 + 16.5476i −0.726360 + 1.25809i 0.232052 + 0.972703i \(0.425456\pi\)
−0.958412 + 0.285389i \(0.907877\pi\)
\(174\) 10.7101 + 9.52628i 0.811934 + 0.722185i
\(175\) 6.54944 + 0.238687i 0.495091 + 0.0180431i
\(176\) 0.794182 1.37556i 0.0598637 0.103687i
\(177\) 2.26578 10.9875i 0.170307 0.825870i
\(178\) 3.21015 0.240611
\(179\) −8.03706 + 13.9206i −0.600718 + 1.04047i 0.391994 + 0.919968i \(0.371785\pi\)
−0.992712 + 0.120507i \(0.961548\pi\)
\(180\) 3.82072 2.84748i 0.284780 0.212239i
\(181\) 8.05308 0.598581 0.299291 0.954162i \(-0.403250\pi\)
0.299291 + 0.954162i \(0.403250\pi\)
\(182\) 5.95853 + 11.2476i 0.441676 + 0.833728i
\(183\) 7.36033 2.44105i 0.544092 0.180448i
\(184\) −0.300372 −0.0221437
\(185\) 0.794182 + 1.37556i 0.0583894 + 0.101133i
\(186\) 3.50983 + 3.12186i 0.257353 + 0.228906i
\(187\) 4.28799 7.42702i 0.313569 0.543118i
\(188\) 2.66621 0.194453
\(189\) 8.28180 10.9732i 0.602412 0.798185i
\(190\) −11.2756 −0.818019
\(191\) 11.9814 20.7524i 0.866946 1.50159i 0.00184390 0.999998i \(-0.499413\pi\)
0.865102 0.501596i \(-0.167254\pi\)
\(192\) 1.29418 + 1.15113i 0.0933995 + 0.0830754i
\(193\) −4.88255 8.45682i −0.351453 0.608735i 0.635051 0.772470i \(-0.280979\pi\)
−0.986504 + 0.163735i \(0.947646\pi\)
\(194\) 1.42402 0.102238
\(195\) 12.5625 4.16635i 0.899620 0.298359i
\(196\) −3.04944 6.30087i −0.217817 0.450062i
\(197\) −18.2436 −1.29980 −0.649900 0.760020i \(-0.725189\pi\)
−0.649900 + 0.760020i \(0.725189\pi\)
\(198\) −4.37636 1.88510i −0.311014 0.133968i
\(199\) 9.04944 15.6741i 0.641498 1.11111i −0.343601 0.939116i \(-0.611647\pi\)
0.985098 0.171991i \(-0.0550200\pi\)
\(200\) 2.47710 0.175157
\(201\) −3.51671 + 17.0536i −0.248050 + 1.20287i
\(202\) 6.01671 10.4212i 0.423334 0.733236i
\(203\) −10.2498 19.3479i −0.719392 1.35796i
\(204\) 6.98762 + 6.21523i 0.489231 + 0.435153i
\(205\) 4.66690 8.08330i 0.325950 0.564562i
\(206\) −3.04944 + 5.28179i −0.212465 + 0.368000i
\(207\) 0.105074 + 0.894969i 0.00730317 + 0.0622046i
\(208\) 2.40545 + 4.16635i 0.166788 + 0.288885i
\(209\) 5.63781 + 9.76497i 0.389975 + 0.675457i
\(210\) −6.98762 + 2.03815i −0.482192 + 0.140646i
\(211\) 0.166208 0.287880i 0.0114422 0.0198185i −0.860248 0.509877i \(-0.829691\pi\)
0.871690 + 0.490058i \(0.163024\pi\)
\(212\) −4.88874 −0.335760
\(213\) 16.4629 + 14.6431i 1.12802 + 1.00333i
\(214\) −3.08650 −0.210989
\(215\) −1.32327 2.29197i −0.0902464 0.156311i
\(216\) 2.97710 4.25874i 0.202566 0.289771i
\(217\) −3.35896 6.34053i −0.228021 0.430423i
\(218\) −1.14400 1.98146i −0.0774812 0.134201i
\(219\) 26.3912 8.75264i 1.78335 0.591449i
\(220\) 1.26145 + 2.18490i 0.0850469 + 0.147306i
\(221\) 12.9876 + 22.4952i 0.873642 + 1.51319i
\(222\) 1.29418 + 1.15113i 0.0868598 + 0.0772586i
\(223\) 3.16621 + 5.48403i 0.212025 + 0.367238i 0.952348 0.305013i \(-0.0986609\pi\)
−0.740323 + 0.672251i \(0.765328\pi\)
\(224\) −1.23855 2.33795i −0.0827541 0.156211i
\(225\) −0.866524 7.38061i −0.0577683 0.492040i
\(226\) 9.73236 + 16.8569i 0.647387 + 1.12131i
\(227\) −23.3090 −1.54707 −0.773537 0.633751i \(-0.781515\pi\)
−0.773537 + 0.633751i \(0.781515\pi\)
\(228\) −11.6705 + 3.87053i −0.772900 + 0.256332i
\(229\) −4.95420 −0.327383 −0.163691 0.986512i \(-0.552340\pi\)
−0.163691 + 0.986512i \(0.552340\pi\)
\(230\) 0.238550 0.413181i 0.0157295 0.0272443i
\(231\) 5.25890 + 5.03238i 0.346010 + 0.331106i
\(232\) −4.13781 7.16689i −0.271660 0.470529i
\(233\) −7.13781 12.3630i −0.467613 0.809930i 0.531702 0.846932i \(-0.321553\pi\)
−0.999315 + 0.0370017i \(0.988219\pi\)
\(234\) 11.5723 8.62456i 0.756508 0.563805i
\(235\) −2.11745 + 3.66754i −0.138127 + 0.239244i
\(236\) −3.23855 + 5.60933i −0.210812 + 0.365136i
\(237\) −13.7880 + 4.57279i −0.895626 + 0.297034i
\(238\) −6.68725 12.6232i −0.433470 0.818239i
\(239\) 2.48762 4.30868i 0.160911 0.278706i −0.774285 0.632837i \(-0.781890\pi\)
0.935196 + 0.354132i \(0.115224\pi\)
\(240\) −2.61126 + 0.866025i −0.168556 + 0.0559017i
\(241\) −13.0000 −0.837404 −0.418702 0.908124i \(-0.637515\pi\)
−0.418702 + 0.908124i \(0.637515\pi\)
\(242\) −4.23855 + 7.34138i −0.272464 + 0.471922i
\(243\) −13.7305 7.38061i −0.880812 0.473466i
\(244\) −4.47710 −0.286617
\(245\) 11.0891 + 0.809332i 0.708454 + 0.0517063i
\(246\) 2.05563 9.96840i 0.131062 0.635562i
\(247\) −34.1520 −2.17304
\(248\) −1.35600 2.34867i −0.0861063 0.149141i
\(249\) −0.827603 + 4.01330i −0.0524472 + 0.254333i
\(250\) −5.93818 + 10.2852i −0.375563 + 0.650495i
\(251\) 2.43268 0.153549 0.0767746 0.997048i \(-0.475538\pi\)
0.0767746 + 0.997048i \(0.475538\pi\)
\(252\) −6.53273 + 4.50815i −0.411523 + 0.283987i
\(253\) −0.477100 −0.0299950
\(254\) −6.71998 + 11.6393i −0.421649 + 0.730318i
\(255\) −14.0989 + 4.67589i −0.882906 + 0.292816i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −0.987620 −0.0616061 −0.0308030 0.999525i \(-0.509806\pi\)
−0.0308030 + 0.999525i \(0.509806\pi\)
\(258\) −2.15638 1.91802i −0.134250 0.119410i
\(259\) −1.23855 2.33795i −0.0769597 0.145273i
\(260\) −7.64145 −0.473902
\(261\) −19.9065 + 14.8358i −1.23218 + 0.918314i
\(262\) −1.58836 + 2.75113i −0.0981295 + 0.169965i
\(263\) 17.1854 1.05970 0.529848 0.848092i \(-0.322249\pi\)
0.529848 + 0.848092i \(0.322249\pi\)
\(264\) 2.05563 + 1.82841i 0.126515 + 0.112531i
\(265\) 3.88255 6.72477i 0.238503 0.413099i
\(266\) 18.7694 + 0.684031i 1.15083 + 0.0419407i
\(267\) −1.12296 + 5.44556i −0.0687237 + 0.333263i
\(268\) 5.02654 8.70623i 0.307045 0.531817i
\(269\) 11.4523 19.8360i 0.698262 1.20942i −0.270807 0.962634i \(-0.587291\pi\)
0.969069 0.246791i \(-0.0793761\pi\)
\(270\) 3.49381 + 7.47741i 0.212627 + 0.455060i
\(271\) 7.00364 + 12.1307i 0.425441 + 0.736885i 0.996462 0.0840504i \(-0.0267857\pi\)
−0.571021 + 0.820936i \(0.693452\pi\)
\(272\) −2.69963 4.67589i −0.163689 0.283518i
\(273\) −21.1643 + 6.17323i −1.28092 + 0.373621i
\(274\) −10.6316 + 18.4145i −0.642279 + 1.11246i
\(275\) 3.93454 0.237261
\(276\) 0.105074 0.509538i 0.00632473 0.0306706i
\(277\) 28.2953 1.70010 0.850049 0.526703i \(-0.176572\pi\)
0.850049 + 0.526703i \(0.176572\pi\)
\(278\) −6.52654 11.3043i −0.391436 0.677987i
\(279\) −6.52359 + 4.86186i −0.390557 + 0.291072i
\(280\) 4.19963 + 0.153051i 0.250976 + 0.00914654i
\(281\) −8.79782 15.2383i −0.524834 0.909039i −0.999582 0.0289175i \(-0.990794\pi\)
0.474748 0.880122i \(-0.342539\pi\)
\(282\) −0.932677 + 4.52284i −0.0555401 + 0.269331i
\(283\) 9.26145 + 16.0413i 0.550536 + 0.953556i 0.998236 + 0.0593725i \(0.0189100\pi\)
−0.447700 + 0.894184i \(0.647757\pi\)
\(284\) −6.36033 11.0164i −0.377416 0.653704i
\(285\) 3.94437 19.1275i 0.233644 1.13301i
\(286\) 3.82072 + 6.61769i 0.225924 + 0.391312i
\(287\) −8.25890 + 13.1724i −0.487508 + 0.777541i
\(288\) −2.40545 + 1.79272i −0.141742 + 0.105637i
\(289\) −6.07598 10.5239i −0.357411 0.619054i
\(290\) 13.1447 0.771882
\(291\) −0.498141 + 2.41564i −0.0292015 + 0.141607i
\(292\) −16.0531 −0.939436
\(293\) −7.04256 + 12.1981i −0.411431 + 0.712619i −0.995046 0.0994108i \(-0.968304\pi\)
0.583616 + 0.812030i \(0.301638\pi\)
\(294\) 11.7553 2.96881i 0.685581 0.173145i
\(295\) −5.14400 8.90966i −0.299495 0.518741i
\(296\) −0.500000 0.866025i −0.0290619 0.0503367i
\(297\) 4.72872 6.76443i 0.274388 0.392512i
\(298\) 2.60439 4.51093i 0.150868 0.261311i
\(299\) 0.722528 1.25146i 0.0417849 0.0723736i
\(300\) −0.866524 + 4.20205i −0.0500288 + 0.242605i
\(301\) 2.06368 + 3.89550i 0.118949 + 0.224533i
\(302\) −0.261450 + 0.452845i −0.0150448 + 0.0260583i
\(303\) 15.5734 + 13.8520i 0.894671 + 0.795776i
\(304\) 7.09888 0.407149
\(305\) 3.55563 6.15854i 0.203595 0.352637i
\(306\) −12.9876 + 9.67933i −0.742453 + 0.553330i
\(307\) −5.85532 −0.334180 −0.167090 0.985942i \(-0.553437\pi\)
−0.167090 + 0.985942i \(0.553437\pi\)
\(308\) −1.96727 3.71351i −0.112096 0.211597i
\(309\) −7.89307 7.02059i −0.449021 0.399387i
\(310\) 4.30766 0.244658
\(311\) −0.405446 0.702253i −0.0229907 0.0398211i 0.854301 0.519778i \(-0.173985\pi\)
−0.877292 + 0.479957i \(0.840652\pi\)
\(312\) −7.90909 + 2.62305i −0.447764 + 0.148501i
\(313\) −5.28799 + 9.15907i −0.298895 + 0.517701i −0.975883 0.218292i \(-0.929951\pi\)
0.676988 + 0.735994i \(0.263285\pi\)
\(314\) −8.86398 −0.500223
\(315\) −1.01307 12.5665i −0.0570799 0.708041i
\(316\) 8.38688 0.471799
\(317\) −6.09820 + 10.5624i −0.342509 + 0.593243i −0.984898 0.173136i \(-0.944610\pi\)
0.642389 + 0.766379i \(0.277943\pi\)
\(318\) 1.71015 8.29305i 0.0959004 0.465051i
\(319\) −6.57234 11.3836i −0.367981 0.637361i
\(320\) 1.58836 0.0887922
\(321\) 1.07970 5.23582i 0.0602631 0.292235i
\(322\) −0.422156 + 0.673310i −0.0235259 + 0.0375221i
\(323\) 38.3287 2.13267
\(324\) 6.18292 + 6.53999i 0.343495 + 0.363333i
\(325\) −5.95853 + 10.3205i −0.330520 + 0.572477i
\(326\) 21.9629 1.21641
\(327\) 3.76145 1.24748i 0.208009 0.0689860i
\(328\) −2.93818 + 5.08907i −0.162234 + 0.280997i
\(329\) 3.74721 5.97654i 0.206590 0.329497i
\(330\) −4.14764 + 1.37556i −0.228320 + 0.0757223i
\(331\) 7.83310 13.5673i 0.430546 0.745728i −0.566374 0.824148i \(-0.691654\pi\)
0.996920 + 0.0784202i \(0.0249876\pi\)
\(332\) 1.18292 2.04887i 0.0649211 0.112447i
\(333\) −2.40545 + 1.79272i −0.131818 + 0.0982402i
\(334\) −1.65019 2.85821i −0.0902942 0.156394i
\(335\) 7.98398 + 13.8287i 0.436211 + 0.755540i
\(336\) 4.39926 1.28318i 0.239999 0.0700031i
\(337\) −4.21201 + 7.29541i −0.229443 + 0.397406i −0.957643 0.287958i \(-0.907024\pi\)
0.728200 + 0.685364i \(0.240357\pi\)
\(338\) −10.1447 −0.551798
\(339\) −31.9999 + 10.6128i −1.73800 + 0.576407i
\(340\) 8.57598 0.465098
\(341\) −2.15383 3.73054i −0.116636 0.202020i
\(342\) −2.48329 21.1514i −0.134281 1.14374i
\(343\) −18.4098 2.01993i −0.994035 0.109066i
\(344\) 0.833104 + 1.44298i 0.0449179 + 0.0778002i
\(345\) 0.617454 + 0.549202i 0.0332426 + 0.0295681i
\(346\) 9.55377 + 16.5476i 0.513614 + 0.889606i
\(347\) −0.283662 0.491316i −0.0152277 0.0263752i 0.858311 0.513130i \(-0.171514\pi\)
−0.873539 + 0.486754i \(0.838181\pi\)
\(348\) 13.6051 4.51212i 0.729309 0.241875i
\(349\) −0.00364189 0.00630794i −0.000194946 0.000337656i 0.865928 0.500169i \(-0.166729\pi\)
−0.866123 + 0.499831i \(0.833395\pi\)
\(350\) 3.48143 5.55264i 0.186090 0.296801i
\(351\) 10.5822 + 22.6478i 0.564835 + 1.20885i
\(352\) −0.794182 1.37556i −0.0423300 0.0733178i
\(353\) 6.65383 0.354148 0.177074 0.984198i \(-0.443337\pi\)
0.177074 + 0.984198i \(0.443337\pi\)
\(354\) −8.38255 7.45596i −0.445527 0.396280i
\(355\) 20.2051 1.07237
\(356\) 1.60507 2.78007i 0.0850688 0.147343i
\(357\) 23.7527 6.92820i 1.25713 0.366679i
\(358\) 8.03706 + 13.9206i 0.424772 + 0.735727i
\(359\) −0.398568 0.690339i −0.0210356 0.0364347i 0.855316 0.518107i \(-0.173363\pi\)
−0.876352 + 0.481672i \(0.840030\pi\)
\(360\) −0.555632 4.73259i −0.0292844 0.249429i
\(361\) −15.6971 + 27.1881i −0.826162 + 1.43095i
\(362\) 4.02654 6.97418i 0.211630 0.366555i
\(363\) −10.9709 9.75822i −0.575823 0.512174i
\(364\) 12.7200 + 0.463566i 0.666708 + 0.0242975i
\(365\) 12.7491 22.0820i 0.667317 1.15583i
\(366\) 1.56615 7.59476i 0.0818641 0.396985i
\(367\) −15.4327 −0.805579 −0.402790 0.915293i \(-0.631959\pi\)
−0.402790 + 0.915293i \(0.631959\pi\)
\(368\) −0.150186 + 0.260130i −0.00782898 + 0.0135602i
\(369\) 16.1909 + 6.97418i 0.842864 + 0.363061i
\(370\) 1.58836 0.0825751
\(371\) −6.87085 + 10.9585i −0.356717 + 0.568939i
\(372\) 4.45853 1.47867i 0.231164 0.0766655i
\(373\) 10.2422 0.530321 0.265160 0.964204i \(-0.414575\pi\)
0.265160 + 0.964204i \(0.414575\pi\)
\(374\) −4.28799 7.42702i −0.221727 0.384042i
\(375\) −15.3702 13.6712i −0.793712 0.705977i
\(376\) 1.33310 2.30900i 0.0687496 0.119078i
\(377\) 39.8131 2.05048
\(378\) −5.36219 12.6589i −0.275801 0.651102i
\(379\) 25.0087 1.28461 0.642304 0.766450i \(-0.277979\pi\)
0.642304 + 0.766450i \(0.277979\pi\)
\(380\) −5.63781 + 9.76497i −0.289213 + 0.500932i
\(381\) −17.3938 15.4711i −0.891109 0.792608i
\(382\) −11.9814 20.7524i −0.613023 1.06179i
\(383\) −6.26695 −0.320226 −0.160113 0.987099i \(-0.551186\pi\)
−0.160113 + 0.987099i \(0.551186\pi\)
\(384\) 1.64400 0.545231i 0.0838948 0.0278237i
\(385\) 6.67054 + 0.243101i 0.339962 + 0.0123896i
\(386\) −9.76509 −0.497030
\(387\) 4.00797 2.98704i 0.203737 0.151840i
\(388\) 0.712008 1.23323i 0.0361467 0.0626080i
\(389\) −21.6342 −1.09690 −0.548448 0.836185i \(-0.684781\pi\)
−0.548448 + 0.836185i \(0.684781\pi\)
\(390\) 2.67309 12.9626i 0.135357 0.656388i
\(391\) −0.810892 + 1.40451i −0.0410086 + 0.0710290i
\(392\) −6.98143 0.509538i −0.352615 0.0257356i
\(393\) −4.11126 3.65682i −0.207386 0.184462i
\(394\) −9.12178 + 15.7994i −0.459549 + 0.795962i
\(395\) −6.66071 + 11.5367i −0.335137 + 0.580473i
\(396\) −3.82072 + 2.84748i −0.191999 + 0.143091i
\(397\) 2.05308 + 3.55605i 0.103041 + 0.178473i 0.912936 0.408102i \(-0.133809\pi\)
−0.809895 + 0.586575i \(0.800476\pi\)
\(398\) −9.04944 15.6741i −0.453608 0.785671i
\(399\) −7.72617 + 31.6004i −0.386792 + 1.58200i
\(400\) 1.23855 2.14523i 0.0619275 0.107262i
\(401\) 16.7417 0.836041 0.418021 0.908438i \(-0.362724\pi\)
0.418021 + 0.908438i \(0.362724\pi\)
\(402\) 13.0105 + 11.5724i 0.648906 + 0.577178i
\(403\) 13.0472 0.649926
\(404\) −6.01671 10.4212i −0.299343 0.518476i
\(405\) −13.9065 + 3.31105i −0.691022 + 0.164527i
\(406\) −21.8807 0.797418i −1.08592 0.0395752i
\(407\) −0.794182 1.37556i −0.0393661 0.0681842i
\(408\) 8.87636 2.94384i 0.439445 0.145742i
\(409\) 4.38255 + 7.59079i 0.216703 + 0.375341i 0.953798 0.300449i \(-0.0971364\pi\)
−0.737095 + 0.675789i \(0.763803\pi\)
\(410\) −4.66690 8.08330i −0.230482 0.399206i
\(411\) −27.5185 24.4767i −1.35739 1.20735i
\(412\) 3.04944 + 5.28179i 0.150235 + 0.260215i
\(413\) 8.02221 + 15.1431i 0.394747 + 0.745144i
\(414\) 0.827603 + 0.356487i 0.0406744 + 0.0175204i
\(415\) 1.87890 + 3.25436i 0.0922318 + 0.159750i
\(416\) 4.81089 0.235873
\(417\) 21.4592 7.11695i 1.05086 0.348518i
\(418\) 11.2756 0.551508
\(419\) −0.210149 + 0.363988i −0.0102664 + 0.0177820i −0.871113 0.491083i \(-0.836601\pi\)
0.860847 + 0.508865i \(0.169935\pi\)
\(420\) −1.72872 + 7.07053i −0.0843528 + 0.345007i
\(421\) 3.28799 + 5.69497i 0.160247 + 0.277556i 0.934957 0.354761i \(-0.115438\pi\)
−0.774710 + 0.632316i \(0.782104\pi\)
\(422\) −0.166208 0.287880i −0.00809086 0.0140138i
\(423\) −7.34610 3.16431i −0.357179 0.153854i
\(424\) −2.44437 + 4.23377i −0.118709 + 0.205610i
\(425\) 6.68725 11.5827i 0.324379 0.561841i
\(426\) 20.9127 6.93570i 1.01323 0.336036i
\(427\) −6.29232 + 10.0358i −0.304507 + 0.485667i
\(428\) −1.54325 + 2.67299i −0.0745959 + 0.129204i
\(429\) −12.5625 + 4.16635i −0.606524 + 0.201154i
\(430\) −2.64654 −0.127628
\(431\) 11.0439 19.1287i 0.531968 0.921395i −0.467336 0.884080i \(-0.654786\pi\)
0.999304 0.0373155i \(-0.0118806\pi\)
\(432\) −2.19963 4.70761i −0.105830 0.226495i
\(433\) −9.43268 −0.453306 −0.226653 0.973976i \(-0.572778\pi\)
−0.226653 + 0.973976i \(0.572778\pi\)
\(434\) −7.17054 0.261323i −0.344197 0.0125439i
\(435\) −4.59820 + 22.2981i −0.220467 + 1.06911i
\(436\) −2.28799 −0.109575
\(437\) −1.06615 1.84663i −0.0510010 0.0883363i
\(438\) 5.61559 27.2318i 0.268323 1.30118i
\(439\) 15.6032 27.0256i 0.744701 1.28986i −0.205634 0.978629i \(-0.565926\pi\)
0.950334 0.311231i \(-0.100741\pi\)
\(440\) 2.52290 0.120275
\(441\) 0.924016 + 20.9797i 0.0440007 + 0.999031i
\(442\) 25.9752 1.23552
\(443\) −6.52723 + 11.3055i −0.310118 + 0.537140i −0.978388 0.206779i \(-0.933702\pi\)
0.668270 + 0.743919i \(0.267035\pi\)
\(444\) 1.64400 0.545231i 0.0780206 0.0258755i
\(445\) 2.54944 + 4.41576i 0.120855 + 0.209327i
\(446\) 6.33242 0.299849
\(447\) 6.74110 + 5.99596i 0.318843 + 0.283599i
\(448\) −2.64400 0.0963576i −0.124917 0.00455247i
\(449\) −9.91706 −0.468015 −0.234008 0.972235i \(-0.575184\pi\)
−0.234008 + 0.972235i \(0.575184\pi\)
\(450\) −6.82505 2.93987i −0.321736 0.138587i
\(451\) −4.66690 + 8.08330i −0.219756 + 0.380628i
\(452\) 19.4647 0.915543
\(453\) −0.676728 0.601924i −0.0317955 0.0282809i
\(454\) −11.6545 + 20.1862i −0.546974 + 0.947386i
\(455\) −10.7396 + 17.1290i −0.503482 + 0.803019i
\(456\) −2.48329 + 12.0422i −0.116291 + 0.563930i
\(457\) 12.2615 21.2375i 0.573566 0.993446i −0.422629 0.906303i \(-0.638893\pi\)
0.996196 0.0871436i \(-0.0277739\pi\)
\(458\) −2.47710 + 4.29046i −0.115747 + 0.200480i
\(459\) −11.8764 25.4176i −0.554341 1.18639i
\(460\) −0.238550 0.413181i −0.0111224 0.0192646i
\(461\) 1.75526 + 3.04020i 0.0817506 + 0.141596i 0.904002 0.427528i \(-0.140616\pi\)
−0.822251 + 0.569125i \(0.807282\pi\)
\(462\) 6.98762 2.03815i 0.325094 0.0948234i
\(463\) 8.69413 15.0587i 0.404050 0.699836i −0.590160 0.807286i \(-0.700935\pi\)
0.994210 + 0.107451i \(0.0342687\pi\)
\(464\) −8.27561 −0.384186
\(465\) −1.50688 + 7.30733i −0.0698798 + 0.338869i
\(466\) −14.2756 −0.661305
\(467\) 6.69894 + 11.6029i 0.309990 + 0.536918i 0.978360 0.206911i \(-0.0663410\pi\)
−0.668370 + 0.743829i \(0.733008\pi\)
\(468\) −1.68292 14.3342i −0.0777929 0.662600i
\(469\) −12.4512 23.5036i −0.574945 1.08529i
\(470\) 2.11745 + 3.66754i 0.0976709 + 0.169171i
\(471\) 3.10074 15.0365i 0.142875 0.692844i
\(472\) 3.23855 + 5.60933i 0.149066 + 0.258190i
\(473\) 1.32327 + 2.29197i 0.0608441 + 0.105385i
\(474\) −2.93385 + 14.2271i −0.134756 + 0.653474i
\(475\) 8.79232 + 15.2287i 0.403419 + 0.698743i
\(476\) −14.2756 0.520259i −0.654322 0.0238460i
\(477\) 13.4697 + 5.80205i 0.616737 + 0.265658i
\(478\) −2.48762 4.30868i −0.113781 0.197075i
\(479\) 20.8058 0.950641 0.475321 0.879813i \(-0.342332\pi\)
0.475321 + 0.879813i \(0.342332\pi\)
\(480\) −0.555632 + 2.69443i −0.0253610 + 0.122984i
\(481\) 4.81089 0.219358
\(482\) −6.50000 + 11.2583i −0.296067 + 0.512803i
\(483\) −0.994499 0.951662i −0.0452513 0.0433021i
\(484\) 4.23855 + 7.34138i 0.192661 + 0.333699i
\(485\) 1.13093 + 1.95882i 0.0513528 + 0.0889456i
\(486\) −13.2570 + 8.20066i −0.601352 + 0.371989i
\(487\) 16.2472 28.1410i 0.736231 1.27519i −0.217950 0.975960i \(-0.569937\pi\)
0.954181 0.299230i \(-0.0967298\pi\)
\(488\) −2.23855 + 3.87728i −0.101334 + 0.175516i
\(489\) −7.68292 + 37.2569i −0.347434 + 1.68481i
\(490\) 6.24543 9.19874i 0.282140 0.415557i
\(491\) −9.66071 + 16.7328i −0.435982 + 0.755142i −0.997375 0.0724067i \(-0.976932\pi\)
0.561394 + 0.827549i \(0.310265\pi\)
\(492\) −7.60507 6.76443i −0.342863 0.304964i
\(493\) −44.6822 −2.01238
\(494\) −17.0760 + 29.5765i −0.768285 + 1.33071i
\(495\) −0.882546 7.51707i −0.0396675 0.337867i
\(496\) −2.71201 −0.121773
\(497\) −33.6334 1.22573i −1.50866 0.0549816i
\(498\) 3.06182 + 2.72338i 0.137204 + 0.122037i
\(499\) −11.1506 −0.499169 −0.249585 0.968353i \(-0.580294\pi\)
−0.249585 + 0.968353i \(0.580294\pi\)
\(500\) 5.93818 + 10.2852i 0.265563 + 0.459969i
\(501\) 5.42580 1.79947i 0.242407 0.0803942i
\(502\) 1.21634 2.10676i 0.0542878 0.0940293i
\(503\) −40.7651 −1.81763 −0.908813 0.417204i \(-0.863010\pi\)
−0.908813 + 0.417204i \(0.863010\pi\)
\(504\) 0.637806 + 7.91159i 0.0284101 + 0.352410i
\(505\) 19.1135 0.850537
\(506\) −0.238550 + 0.413181i −0.0106048 + 0.0183681i
\(507\) 3.54875 17.2090i 0.157606 0.764279i
\(508\) 6.71998 + 11.6393i 0.298151 + 0.516413i
\(509\) 1.44506 0.0640510 0.0320255 0.999487i \(-0.489804\pi\)
0.0320255 + 0.999487i \(0.489804\pi\)
\(510\) −3.00000 + 14.5479i −0.132842 + 0.644194i
\(511\) −22.5617 + 35.9844i −0.998073 + 1.59186i
\(512\) −1.00000 −0.0441942
\(513\) 36.7490 + 3.18650i 1.62251 + 0.140687i
\(514\) −0.493810 + 0.855304i −0.0217810 + 0.0377259i
\(515\) −9.68725 −0.426871
\(516\) −2.73924 + 0.908468i −0.120588 + 0.0399931i
\(517\) 2.11745 3.66754i 0.0931255 0.161298i
\(518\) −2.64400 0.0963576i −0.116171 0.00423371i
\(519\) −31.4127 + 10.4180i −1.37887 + 0.457301i
\(520\) −3.82072 + 6.61769i −0.167550 + 0.290205i
\(521\) 9.64214 16.7007i 0.422430 0.731670i −0.573747 0.819033i \(-0.694511\pi\)
0.996177 + 0.0873630i \(0.0278440\pi\)
\(522\) 2.89493 + 24.6575i 0.126707 + 1.07923i
\(523\) −18.3454 31.7752i −0.802189 1.38943i −0.918173 0.396180i \(-0.870335\pi\)
0.115984 0.993251i \(-0.462998\pi\)
\(524\) 1.58836 + 2.75113i 0.0693880 + 0.120184i
\(525\) 8.20141 + 7.84814i 0.357939 + 0.342521i
\(526\) 8.59269 14.8830i 0.374659 0.648929i
\(527\) −14.6428 −0.637851
\(528\) 2.61126 0.866025i 0.113641 0.0376889i
\(529\) −22.9098 −0.996077
\(530\) −3.88255 6.72477i −0.168647 0.292105i
\(531\) 15.5803 11.6116i 0.676128 0.503900i
\(532\) 9.97710 15.9128i 0.432562 0.689907i
\(533\) −14.1353 24.4830i −0.612266 1.06048i
\(534\) 4.15452 + 3.69529i 0.179784 + 0.159911i
\(535\) −2.45125 4.24568i −0.105977 0.183557i
\(536\) −5.02654 8.70623i −0.217114 0.376052i
\(537\) −26.4258 + 8.76411i −1.14036 + 0.378199i
\(538\) −11.4523 19.8360i −0.493745 0.855192i
\(539\) −11.0891 0.809332i −0.477639 0.0348604i
\(540\) 8.22253 + 0.712974i 0.353841 + 0.0306815i
\(541\) −1.62543 2.81532i −0.0698825 0.121040i 0.828967 0.559298i \(-0.188929\pi\)
−0.898849 + 0.438258i \(0.855596\pi\)
\(542\) 14.0073 0.601664
\(543\) 10.4222 + 9.27012i 0.447258 + 0.397819i
\(544\) −5.39926 −0.231491
\(545\) 1.81708 3.14728i 0.0778352 0.134815i
\(546\) −5.23600 + 21.4155i −0.224080 + 0.916498i
\(547\) −2.95853 5.12432i −0.126498 0.219100i 0.795820 0.605534i \(-0.207040\pi\)
−0.922317 + 0.386433i \(0.873707\pi\)
\(548\) 10.6316 + 18.4145i 0.454160 + 0.786628i
\(549\) 12.3356 + 5.31351i 0.526470 + 0.226775i
\(550\) 1.96727 3.40741i 0.0838846 0.145292i
\(551\) 29.3738 50.8769i 1.25137 2.16743i
\(552\) −0.388736 0.345766i −0.0165457 0.0147168i
\(553\) 11.7873 18.7999i 0.501247 0.799454i
\(554\) 14.1476 24.5044i 0.601076 1.04109i
\(555\) −0.555632 + 2.69443i −0.0235853 + 0.114372i
\(556\) −13.0531 −0.553574
\(557\) 12.8040 22.1772i 0.542523 0.939678i −0.456235 0.889859i \(-0.650802\pi\)
0.998758 0.0498188i \(-0.0158644\pi\)
\(558\) 0.948699 + 8.08052i 0.0401616 + 0.342076i
\(559\) −8.01594 −0.339038
\(560\) 2.23236 3.56046i 0.0943344 0.150457i
\(561\) 14.0989 4.67589i 0.595255 0.197416i
\(562\) −17.5956 −0.742228
\(563\) 23.3189 + 40.3895i 0.982773 + 1.70221i 0.651443 + 0.758698i \(0.274164\pi\)
0.331330 + 0.943515i \(0.392503\pi\)
\(564\) 3.45056 + 3.06914i 0.145295 + 0.129234i
\(565\) −15.4585 + 26.7750i −0.650345 + 1.12643i
\(566\) 18.5229 0.778576
\(567\) 23.3497 4.66795i 0.980597 0.196035i
\(568\) −12.7207 −0.533747
\(569\) −15.5989 + 27.0181i −0.653939 + 1.13266i 0.328219 + 0.944602i \(0.393551\pi\)
−0.982159 + 0.188054i \(0.939782\pi\)
\(570\) −14.5927 12.9797i −0.611221 0.543658i
\(571\) 7.83812 + 13.5760i 0.328015 + 0.568139i 0.982118 0.188267i \(-0.0602869\pi\)
−0.654103 + 0.756406i \(0.726954\pi\)
\(572\) 7.64145 0.319505
\(573\) 39.3948 13.0653i 1.64574 0.545811i
\(574\) 7.27816 + 13.7386i 0.303785 + 0.573438i
\(575\) −0.744051 −0.0310291
\(576\) 0.349814 + 2.97954i 0.0145756 + 0.124147i
\(577\) 6.99567 12.1169i 0.291234 0.504431i −0.682868 0.730542i \(-0.739268\pi\)
0.974102 + 0.226110i \(0.0726010\pi\)
\(578\) −12.1520 −0.505455
\(579\) 3.41597 16.5651i 0.141963 0.688422i
\(580\) 6.57234 11.3836i 0.272902 0.472680i
\(581\) −2.93021 5.53120i −0.121565 0.229473i
\(582\) 1.84294 + 1.63922i 0.0763921 + 0.0679480i
\(583\) −3.88255 + 6.72477i −0.160799 + 0.278511i
\(584\) −8.02654 + 13.9024i −0.332141 + 0.575285i
\(585\) 21.0542 + 9.06902i 0.870483 + 0.374958i
\(586\) 7.04256 + 12.1981i 0.290926 + 0.503898i
\(587\) 1.44801 + 2.50803i 0.0597658 + 0.103517i 0.894360 0.447348i \(-0.147631\pi\)
−0.834594 + 0.550865i \(0.814298\pi\)
\(588\) 3.30656 11.6648i 0.136360 0.481047i
\(589\) 9.62612 16.6729i 0.396637 0.686996i
\(590\) −10.2880 −0.423550
\(591\) −23.6105 21.0007i −0.971206 0.863852i
\(592\) −1.00000 −0.0410997
\(593\) −2.04394 3.54021i −0.0839346 0.145379i 0.821002 0.570925i \(-0.193415\pi\)
−0.904937 + 0.425546i \(0.860082\pi\)
\(594\) −3.49381 7.47741i −0.143353 0.306802i
\(595\) 12.0531 19.2238i 0.494128 0.788100i
\(596\) −2.60439 4.51093i −0.106680 0.184775i
\(597\) 29.7545 9.86807i 1.21777 0.403873i
\(598\) −0.722528 1.25146i −0.0295464 0.0511758i
\(599\) 9.88255 + 17.1171i 0.403790 + 0.699385i 0.994180 0.107734i \(-0.0343593\pi\)
−0.590390 + 0.807118i \(0.701026\pi\)
\(600\) 3.20582 + 2.85146i 0.130877 + 0.116410i
\(601\) −13.4320 23.2649i −0.547902 0.948994i −0.998418 0.0562261i \(-0.982093\pi\)
0.450516 0.892768i \(-0.351240\pi\)
\(602\) 4.40545 + 0.160552i 0.179553 + 0.00654360i
\(603\) −24.1822 + 18.0223i −0.984773 + 0.733926i
\(604\) 0.261450 + 0.452845i 0.0106383 + 0.0184260i
\(605\) −13.4647 −0.547419
\(606\) 19.7829 6.56099i 0.803625 0.266522i
\(607\) −15.2422 −0.618661 −0.309331 0.950955i \(-0.600105\pi\)
−0.309331 + 0.950955i \(0.600105\pi\)
\(608\) 3.54944 6.14781i 0.143949 0.249327i
\(609\) 9.00688 36.8385i 0.364977 1.49277i
\(610\) −3.55563 6.15854i −0.143963 0.249352i
\(611\) 6.41342 + 11.1084i 0.259459 + 0.449396i
\(612\) 1.88874 + 16.0873i 0.0763476 + 0.650290i
\(613\) −1.36033 + 2.35617i −0.0549434 + 0.0951648i −0.892189 0.451662i \(-0.850831\pi\)
0.837246 + 0.546827i \(0.184165\pi\)
\(614\) −2.92766 + 5.07085i −0.118151 + 0.204643i
\(615\) 15.3447 5.08907i 0.618759 0.205211i
\(616\) −4.19963 0.153051i −0.169208 0.00616660i
\(617\) −9.21812 + 15.9663i −0.371108 + 0.642777i −0.989736 0.142906i \(-0.954355\pi\)
0.618629 + 0.785684i \(0.287689\pi\)
\(618\) −10.0265 + 3.32530i −0.403327 + 0.133763i
\(619\) 0.107546 0.00432262 0.00216131 0.999998i \(-0.499312\pi\)
0.00216131 + 0.999998i \(0.499312\pi\)
\(620\) 2.15383 3.73054i 0.0864998 0.149822i
\(621\) −0.894237 + 1.27921i −0.0358845 + 0.0513328i
\(622\) −0.810892 −0.0325138
\(623\) −3.97593 7.50516i −0.159292 0.300688i
\(624\) −1.68292 + 8.16100i −0.0673706 + 0.326701i
\(625\) −6.47848 −0.259139
\(626\) 5.28799 + 9.15907i 0.211351 + 0.366070i
\(627\) −3.94437 + 19.1275i −0.157523 + 0.763878i
\(628\) −4.43199 + 7.67643i −0.176856 + 0.306323i
\(629\) −5.39926 −0.215282
\(630\) −11.3894 5.40590i −0.453766 0.215376i
\(631\) 35.7266 1.42225 0.711126 0.703064i \(-0.248185\pi\)
0.711126 + 0.703064i \(0.248185\pi\)
\(632\) 4.19344 7.26325i 0.166806 0.288916i
\(633\) 0.546489 0.181243i 0.0217210 0.00720376i
\(634\) 6.09820 + 10.5624i 0.242190 + 0.419486i
\(635\) −21.3475 −0.847152
\(636\) −6.32691 5.62755i −0.250878 0.223147i
\(637\) 18.9164 27.8615i 0.749494 1.10391i
\(638\) −13.1447 −0.520403
\(639\) 4.44987 + 37.9017i 0.176034 + 1.49937i
\(640\) 0.794182 1.37556i 0.0313928 0.0543739i
\(641\) 17.3128 0.683813 0.341906 0.939734i \(-0.388927\pi\)
0.341906 + 0.939734i \(0.388927\pi\)
\(642\) −3.99450 3.55296i −0.157650 0.140224i
\(643\) 14.4821 25.0838i 0.571119 0.989207i −0.425332 0.905037i \(-0.639843\pi\)
0.996451 0.0841700i \(-0.0268239\pi\)
\(644\) 0.372026 + 0.702253i 0.0146599 + 0.0276727i
\(645\) 0.925798 4.48949i 0.0364533 0.176773i
\(646\) 19.1643 33.1936i 0.754011 1.30599i
\(647\) 1.27816 2.21384i 0.0502497 0.0870350i −0.839807 0.542886i \(-0.817332\pi\)
0.890056 + 0.455851i \(0.150665\pi\)
\(648\) 8.75526 2.08457i 0.343939 0.0818895i
\(649\) 5.14400 + 8.90966i 0.201920 + 0.349735i
\(650\) 5.95853 + 10.3205i 0.233713 + 0.404802i
\(651\) 2.95165 12.0724i 0.115684 0.473154i
\(652\) 10.9814 19.0204i 0.430066 0.744896i
\(653\) 29.9766 1.17308 0.586538 0.809922i \(-0.300491\pi\)
0.586538 + 0.809922i \(0.300491\pi\)
\(654\) 0.800372 3.88125i 0.0312970 0.151769i
\(655\) −5.04580 −0.197156
\(656\) 2.93818 + 5.08907i 0.114717 + 0.198695i
\(657\) 44.2304 + 19.0521i 1.72559 + 0.743294i
\(658\) −3.30223 6.23345i −0.128734 0.243005i
\(659\) −7.63162 13.2183i −0.297286 0.514914i 0.678228 0.734851i \(-0.262748\pi\)
−0.975514 + 0.219937i \(0.929415\pi\)
\(660\) −0.882546 + 4.27974i −0.0343531 + 0.166589i
\(661\) 13.6261 + 23.6011i 0.529994 + 0.917977i 0.999388 + 0.0349881i \(0.0111393\pi\)
−0.469393 + 0.882989i \(0.655527\pi\)
\(662\) −7.83310 13.5673i −0.304442 0.527309i
\(663\) −9.08650 + 44.0633i −0.352891 + 1.71128i
\(664\) −1.18292 2.04887i −0.0459061 0.0795117i
\(665\) 13.9654 + 26.3618i 0.541555 + 1.02227i
\(666\) 0.349814 + 2.97954i 0.0135550 + 0.115455i
\(667\) 1.24288 + 2.15273i 0.0481245 + 0.0833541i
\(668\) −3.30037 −0.127695
\(669\) −2.21517 + 10.7420i −0.0856433 + 0.415311i
\(670\) 15.9680 0.616896
\(671\) −3.55563 + 6.15854i −0.137264 + 0.237748i
\(672\) 1.08836 4.45146i 0.0419846 0.171719i
\(673\) 23.2280 + 40.2320i 0.895372 + 1.55083i 0.833344 + 0.552755i \(0.186423\pi\)
0.0620280 + 0.998074i \(0.480243\pi\)
\(674\) 4.21201 + 7.29541i 0.162240 + 0.281009i
\(675\) 7.37457 10.5493i 0.283847 0.406044i
\(676\) −5.07234 + 8.78555i −0.195090 + 0.337906i
\(677\) −2.54944 + 4.41576i −0.0979830 + 0.169712i −0.910850 0.412738i \(-0.864572\pi\)
0.812867 + 0.582450i \(0.197906\pi\)
\(678\) −6.80903 + 33.0191i −0.261499 + 1.26809i
\(679\) −1.76371 3.32927i −0.0676852 0.127766i
\(680\) 4.28799 7.42702i 0.164437 0.284813i
\(681\) −30.1661 26.8317i −1.15597 1.02819i
\(682\) −4.30766 −0.164949
\(683\) −7.77197 + 13.4614i −0.297386 + 0.515088i −0.975537 0.219835i \(-0.929448\pi\)
0.678151 + 0.734923i \(0.262782\pi\)
\(684\) −19.5593 8.42510i −0.747868 0.322142i
\(685\) −33.7738 −1.29043
\(686\) −10.9542 + 14.9334i −0.418233 + 0.570159i
\(687\) −6.41164 5.70291i −0.244619 0.217580i
\(688\) 1.66621 0.0635236
\(689\) −11.7596 20.3682i −0.448005 0.775967i
\(690\) 0.784350 0.260130i 0.0298597 0.00990297i
\(691\) −11.6483 + 20.1755i −0.443123 + 0.767512i −0.997919 0.0644744i \(-0.979463\pi\)
0.554796 + 0.831986i \(0.312796\pi\)
\(692\) 19.1075 0.726360
\(693\) 1.01307 + 12.5665i 0.0384833 + 0.477361i
\(694\) −0.567323 −0.0215353
\(695\) 10.3665 17.9553i 0.393225 0.681085i
\(696\) 2.89493 14.0384i 0.109732 0.532124i
\(697\) 15.8640 + 27.4772i 0.600891 + 1.04077i
\(698\) −0.00728378 −0.000275695
\(699\) 4.99381 24.2165i 0.188883 0.915954i
\(700\) −3.06801 5.79133i −0.115960 0.218892i
\(701\) −45.6464 −1.72404 −0.862020 0.506874i \(-0.830801\pi\)
−0.862020 + 0.506874i \(0.830801\pi\)
\(702\) 24.9047 + 2.15948i 0.939967 + 0.0815044i
\(703\) 3.54944 6.14781i 0.133870 0.231869i
\(704\) −1.58836 −0.0598637
\(705\) −6.96217 + 2.30900i −0.262211 + 0.0869621i
\(706\) 3.32691 5.76238i 0.125210 0.216870i
\(707\) −31.8163 1.15951i −1.19658 0.0436079i
\(708\) −10.6483 + 3.53152i −0.400189 + 0.132723i
\(709\) −9.00069 + 15.5897i −0.338028 + 0.585482i −0.984062 0.177827i \(-0.943093\pi\)
0.646034 + 0.763309i \(0.276427\pi\)
\(710\) 10.1025 17.4981i 0.379141 0.656692i
\(711\) −23.1080 9.95371i −0.866619 0.373293i
\(712\) −1.60507 2.78007i −0.0601527 0.104188i
\(713\) 0.407305 + 0.705474i 0.0152537 + 0.0264202i
\(714\) 5.87636 24.0346i 0.219917 0.899471i
\(715\) −6.06870 + 10.5113i −0.226957 + 0.393100i
\(716\) 16.0741 0.600718
\(717\) 8.17928 2.71266i 0.305461 0.101306i
\(718\) −0.797135 −0.0297488
\(719\) 18.4389 + 31.9371i 0.687654 + 1.19105i 0.972595 + 0.232506i \(0.0746926\pi\)
−0.284941 + 0.958545i \(0.591974\pi\)
\(720\) −4.37636 1.88510i −0.163097 0.0702536i
\(721\) 16.1254 + 0.587674i 0.600542 + 0.0218861i
\(722\) 15.6971 + 27.1881i 0.584185 + 1.01184i
\(723\) −16.8244 14.9646i −0.625705 0.556541i
\(724\) −4.02654 6.97418i −0.149645 0.259193i
\(725\) −10.2498 17.7531i −0.380666 0.659334i
\(726\) −13.9363 + 4.62198i −0.517225 + 0.171538i
\(727\) 15.2429 + 26.4014i 0.565327 + 0.979175i 0.997019 + 0.0771543i \(0.0245834\pi\)
−0.431692 + 0.902021i \(0.642083\pi\)
\(728\) 6.76145 10.7840i 0.250596 0.399683i
\(729\) −9.27375 25.3574i −0.343472 0.939163i
\(730\) −12.7491 22.0820i −0.471864 0.817293i
\(731\) 8.99628 0.332739
\(732\) −5.79418 5.15371i −0.214159 0.190487i
\(733\) 6.15059 0.227177 0.113589 0.993528i \(-0.463765\pi\)
0.113589 + 0.993528i \(0.463765\pi\)
\(734\) −7.71634 + 13.3651i −0.284815 + 0.493314i
\(735\) 13.4196 + 13.8123i 0.494990 + 0.509475i
\(736\) 0.150186 + 0.260130i 0.00553593 + 0.00958851i
\(737\) −7.98398 13.8287i −0.294094 0.509385i
\(738\) 14.1353 10.5346i 0.520326 0.387785i
\(739\) −20.3912 + 35.3186i −0.750103 + 1.29922i 0.197670 + 0.980269i \(0.436663\pi\)
−0.947772 + 0.318947i \(0.896671\pi\)
\(740\) 0.794182 1.37556i 0.0291947 0.0505667i
\(741\) −44.1989 39.3132i −1.62369 1.44421i
\(742\) 6.05494 + 11.4296i 0.222284 + 0.419594i
\(743\) 7.25271 12.5621i 0.266076 0.460858i −0.701769 0.712405i \(-0.747606\pi\)
0.967845 + 0.251547i \(0.0809394\pi\)
\(744\) 0.948699 4.60054i 0.0347810 0.168664i
\(745\) 8.27342 0.303115
\(746\) 5.12110 8.87000i 0.187497 0.324754i
\(747\) −5.69089 + 4.24127i −0.208219 + 0.155180i
\(748\) −8.57598 −0.313569
\(749\) 3.82279 + 7.21608i 0.139682 + 0.263670i
\(750\) −19.5247 + 6.47536i −0.712941 + 0.236447i
\(751\) 4.18911 0.152863 0.0764314 0.997075i \(-0.475647\pi\)
0.0764314 + 0.997075i \(0.475647\pi\)
\(752\) −1.33310 2.30900i −0.0486133 0.0842007i
\(753\) 3.14833 + 2.80032i 0.114731 + 0.102049i
\(754\) 19.9065 34.4791i 0.724953 1.25566i
\(755\) −0.830556 −0.0302270
\(756\) −13.6440 1.68564i −0.496227 0.0613060i
\(757\) 2.38688 0.0867525 0.0433763 0.999059i \(-0.486189\pi\)
0.0433763 + 0.999059i \(0.486189\pi\)
\(758\) 12.5043 21.6581i 0.454178 0.786659i
\(759\) −0.617454 0.549202i −0.0224122 0.0199348i
\(760\) 5.63781 + 9.76497i 0.204505 + 0.354213i
\(761\) 3.63416 0.131738 0.0658692 0.997828i \(-0.479018\pi\)
0.0658692 + 0.997828i \(0.479018\pi\)
\(762\) −22.0952 + 7.32788i −0.800426 + 0.265461i
\(763\) −3.21565 + 5.12874i −0.116414 + 0.185673i
\(764\) −23.9629 −0.866946
\(765\) −23.6291 10.1781i −0.854311 0.367992i
\(766\) −3.13348 + 5.42734i −0.113217 + 0.196098i
\(767\) −31.1606 −1.12515
\(768\) 0.349814 1.69636i