Properties

Label 126.2.h.c.79.1
Level $126$
Weight $2$
Character 126.79
Analytic conductor $1.006$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(67,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.h (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 79.1
Root \(0.500000 + 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 126.79
Dual form 126.2.h.c.67.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.349814 - 1.69636i) q^{3} +(-0.500000 + 0.866025i) q^{4} +3.69963 q^{5} +(-1.29418 + 1.15113i) q^{6} +(-1.40545 - 2.24159i) q^{7} +1.00000 q^{8} +(-2.75526 + 1.18682i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.349814 - 1.69636i) q^{3} +(-0.500000 + 0.866025i) q^{4} +3.69963 q^{5} +(-1.29418 + 1.15113i) q^{6} +(-1.40545 - 2.24159i) q^{7} +1.00000 q^{8} +(-2.75526 + 1.18682i) q^{9} +(-1.84981 - 3.20397i) q^{10} -1.47710 q^{11} +(1.64400 + 0.545231i) q^{12} +(-1.34981 - 2.33795i) q^{13} +(-1.23855 + 2.33795i) q^{14} +(-1.29418 - 6.27589i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(3.28799 + 5.69497i) q^{17} +(2.40545 + 1.79272i) q^{18} +(-0.444368 + 0.769668i) q^{19} +(-1.84981 + 3.20397i) q^{20} +(-3.31089 + 3.16828i) q^{21} +(0.738550 + 1.27921i) q^{22} +6.28799 q^{23} +(-0.349814 - 1.69636i) q^{24} +8.68725 q^{25} +(-1.34981 + 2.33795i) q^{26} +(2.97710 + 4.25874i) q^{27} +(2.64400 - 0.0963576i) q^{28} +(1.25526 - 2.17417i) q^{29} +(-4.78799 + 4.25874i) q^{30} +(-3.40545 + 5.89841i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(0.516710 + 2.50569i) q^{33} +(3.28799 - 5.69497i) q^{34} +(-5.19963 - 8.29305i) q^{35} +(0.349814 - 2.97954i) q^{36} +(-1.38874 + 2.40536i) q^{37} +0.888736 q^{38} +(-3.49381 + 3.10761i) q^{39} +3.69963 q^{40} +(-2.05563 - 3.56046i) q^{41} +(4.39926 + 1.28318i) q^{42} +(0.00618986 - 0.0107211i) q^{43} +(0.738550 - 1.27921i) q^{44} +(-10.1934 + 4.39079i) q^{45} +(-3.14400 - 5.44556i) q^{46} +(3.49381 + 6.05146i) q^{47} +(-1.29418 + 1.15113i) q^{48} +(-3.04944 + 6.30087i) q^{49} +(-4.34362 - 7.52338i) q^{50} +(8.51052 - 7.56979i) q^{51} +2.69963 q^{52} +(-1.60507 - 2.78007i) q^{53} +(2.19963 - 4.70761i) q^{54} -5.46472 q^{55} +(-1.40545 - 2.24159i) q^{56} +(1.46108 + 0.484566i) q^{57} -2.51052 q^{58} +(-3.45489 + 5.98404i) q^{59} +(6.08217 + 2.01715i) q^{60} +(2.86652 + 4.96497i) q^{61} +6.81089 q^{62} +(6.53273 + 4.50815i) q^{63} +1.00000 q^{64} +(-4.99381 - 8.64953i) q^{65} +(1.91164 - 1.70033i) q^{66} +(4.73236 - 8.19669i) q^{67} -6.57598 q^{68} +(-2.19963 - 10.6667i) q^{69} +(-4.58217 + 8.64953i) q^{70} -5.46472 q^{71} +(-2.75526 + 1.18682i) q^{72} +(-6.03273 - 10.4490i) q^{73} +2.77747 q^{74} +(-3.03892 - 14.7367i) q^{75} +(-0.444368 - 0.769668i) q^{76} +(2.07598 + 3.31105i) q^{77} +(4.43818 + 1.47192i) q^{78} +(-5.72617 - 9.91802i) q^{79} +(-1.84981 - 3.20397i) q^{80} +(6.18292 - 6.53999i) q^{81} +(-2.05563 + 3.56046i) q^{82} +(2.23855 - 3.87728i) q^{83} +(-1.08836 - 4.45146i) q^{84} +(12.1643 + 21.0693i) q^{85} -0.0123797 q^{86} +(-4.12729 - 1.36881i) q^{87} -1.47710 q^{88} +(-4.43818 + 7.68715i) q^{89} +(8.89926 + 6.63238i) q^{90} +(-3.34362 + 6.31159i) q^{91} +(-3.14400 + 5.44556i) q^{92} +(11.1971 + 3.71351i) q^{93} +(3.49381 - 6.05146i) q^{94} +(-1.64400 + 2.84748i) q^{95} +(1.64400 + 0.545231i) q^{96} +(-6.58836 + 11.4114i) q^{97} +(6.98143 - 0.509538i) q^{98} +(4.06979 - 1.75305i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 4 q^{3} - 3 q^{4} + 10 q^{5} - 2 q^{6} - 2 q^{7} + 6 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{2} + 4 q^{3} - 3 q^{4} + 10 q^{5} - 2 q^{6} - 2 q^{7} + 6 q^{8} - 4 q^{9} - 5 q^{10} + 2 q^{11} - 2 q^{12} - 2 q^{13} - 2 q^{14} - 2 q^{15} - 3 q^{16} - 4 q^{17} + 8 q^{18} - 3 q^{19} - 5 q^{20} - 7 q^{21} - q^{22} + 14 q^{23} + 4 q^{24} + 4 q^{25} - 2 q^{26} + 7 q^{27} + 4 q^{28} - 5 q^{29} - 5 q^{30} - 14 q^{31} - 3 q^{32} - 4 q^{33} - 4 q^{34} - 19 q^{35} - 4 q^{36} - 9 q^{37} + 6 q^{38} - 3 q^{39} + 10 q^{40} - 12 q^{41} + 2 q^{42} + 18 q^{43} - q^{44} - 31 q^{45} - 7 q^{46} + 3 q^{47} - 2 q^{48} - 2 q^{50} + 26 q^{51} + 4 q^{52} + 9 q^{53} + q^{54} + 14 q^{55} - 2 q^{56} + 2 q^{57} + 10 q^{58} + 4 q^{59} + 7 q^{60} + 4 q^{61} + 28 q^{62} + 28 q^{63} + 6 q^{64} - 12 q^{65} + 23 q^{66} + 5 q^{67} + 8 q^{68} - q^{69} + 2 q^{70} + 14 q^{71} - 4 q^{72} - 25 q^{73} + 18 q^{74} - 25 q^{75} - 3 q^{76} - 35 q^{77} + 9 q^{78} + 7 q^{79} - 5 q^{80} + 32 q^{81} - 12 q^{82} + 8 q^{83} + 5 q^{84} + 14 q^{85} - 36 q^{86} - 20 q^{87} + 2 q^{88} - 9 q^{89} + 29 q^{90} + 4 q^{91} - 7 q^{92} - 3 q^{93} + 3 q^{94} + 2 q^{95} - 2 q^{96} - 28 q^{97} - 12 q^{98} - 41 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −0.349814 1.69636i −0.201965 0.979393i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 3.69963 1.65452 0.827262 0.561816i \(-0.189897\pi\)
0.827262 + 0.561816i \(0.189897\pi\)
\(6\) −1.29418 + 1.15113i −0.528348 + 0.469946i
\(7\) −1.40545 2.24159i −0.531209 0.847241i
\(8\) 1.00000 0.353553
\(9\) −2.75526 + 1.18682i −0.918420 + 0.395607i
\(10\) −1.84981 3.20397i −0.584963 1.01318i
\(11\) −1.47710 −0.445362 −0.222681 0.974891i \(-0.571481\pi\)
−0.222681 + 0.974891i \(0.571481\pi\)
\(12\) 1.64400 + 0.545231i 0.474581 + 0.157395i
\(13\) −1.34981 2.33795i −0.374371 0.648430i 0.615862 0.787854i \(-0.288808\pi\)
−0.990233 + 0.139425i \(0.955475\pi\)
\(14\) −1.23855 + 2.33795i −0.331016 + 0.624843i
\(15\) −1.29418 6.27589i −0.334156 1.62043i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.28799 + 5.69497i 0.797455 + 1.38123i 0.921268 + 0.388927i \(0.127154\pi\)
−0.123813 + 0.992306i \(0.539512\pi\)
\(18\) 2.40545 + 1.79272i 0.566969 + 0.422547i
\(19\) −0.444368 + 0.769668i −0.101945 + 0.176574i −0.912486 0.409108i \(-0.865840\pi\)
0.810541 + 0.585682i \(0.199173\pi\)
\(20\) −1.84981 + 3.20397i −0.413631 + 0.716430i
\(21\) −3.31089 + 3.16828i −0.722496 + 0.691375i
\(22\) 0.738550 + 1.27921i 0.157459 + 0.272728i
\(23\) 6.28799 1.31114 0.655568 0.755136i \(-0.272429\pi\)
0.655568 + 0.755136i \(0.272429\pi\)
\(24\) −0.349814 1.69636i −0.0714055 0.346268i
\(25\) 8.68725 1.73745
\(26\) −1.34981 + 2.33795i −0.264720 + 0.458509i
\(27\) 2.97710 + 4.25874i 0.572943 + 0.819595i
\(28\) 2.64400 0.0963576i 0.499668 0.0182099i
\(29\) 1.25526 2.17417i 0.233096 0.403734i −0.725622 0.688094i \(-0.758448\pi\)
0.958718 + 0.284360i \(0.0917810\pi\)
\(30\) −4.78799 + 4.25874i −0.874164 + 0.777536i
\(31\) −3.40545 + 5.89841i −0.611636 + 1.05938i 0.379329 + 0.925262i \(0.376155\pi\)
−0.990965 + 0.134123i \(0.957178\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0.516710 + 2.50569i 0.0899477 + 0.436185i
\(34\) 3.28799 5.69497i 0.563886 0.976679i
\(35\) −5.19963 8.29305i −0.878898 1.40178i
\(36\) 0.349814 2.97954i 0.0583023 0.496589i
\(37\) −1.38874 + 2.40536i −0.228307 + 0.395439i −0.957306 0.289075i \(-0.906652\pi\)
0.729000 + 0.684514i \(0.239986\pi\)
\(38\) 0.888736 0.144172
\(39\) −3.49381 + 3.10761i −0.559457 + 0.497617i
\(40\) 3.69963 0.584963
\(41\) −2.05563 3.56046i −0.321036 0.556050i 0.659666 0.751559i \(-0.270698\pi\)
−0.980702 + 0.195508i \(0.937364\pi\)
\(42\) 4.39926 + 1.28318i 0.678820 + 0.197999i
\(43\) 0.00618986 0.0107211i 0.000943944 0.00163496i −0.865553 0.500817i \(-0.833033\pi\)
0.866497 + 0.499182i \(0.166366\pi\)
\(44\) 0.738550 1.27921i 0.111341 0.192848i
\(45\) −10.1934 + 4.39079i −1.51955 + 0.654541i
\(46\) −3.14400 5.44556i −0.463557 0.802904i
\(47\) 3.49381 + 6.05146i 0.509625 + 0.882696i 0.999938 + 0.0111494i \(0.00354904\pi\)
−0.490313 + 0.871546i \(0.663118\pi\)
\(48\) −1.29418 + 1.15113i −0.186799 + 0.166151i
\(49\) −3.04944 + 6.30087i −0.435635 + 0.900124i
\(50\) −4.34362 7.52338i −0.614281 1.06397i
\(51\) 8.51052 7.56979i 1.19171 1.05998i
\(52\) 2.69963 0.374371
\(53\) −1.60507 2.78007i −0.220474 0.381872i 0.734478 0.678632i \(-0.237427\pi\)
−0.954952 + 0.296760i \(0.904094\pi\)
\(54\) 2.19963 4.70761i 0.299331 0.640625i
\(55\) −5.46472 −0.736863
\(56\) −1.40545 2.24159i −0.187811 0.299545i
\(57\) 1.46108 + 0.484566i 0.193525 + 0.0641824i
\(58\) −2.51052 −0.329647
\(59\) −3.45489 + 5.98404i −0.449788 + 0.779056i −0.998372 0.0570397i \(-0.981834\pi\)
0.548584 + 0.836096i \(0.315167\pi\)
\(60\) 6.08217 + 2.01715i 0.785205 + 0.260413i
\(61\) 2.86652 + 4.96497i 0.367021 + 0.635699i 0.989098 0.147257i \(-0.0470444\pi\)
−0.622077 + 0.782956i \(0.713711\pi\)
\(62\) 6.81089 0.864984
\(63\) 6.53273 + 4.50815i 0.823047 + 0.567973i
\(64\) 1.00000 0.125000
\(65\) −4.99381 8.64953i −0.619406 1.07284i
\(66\) 1.91164 1.70033i 0.235306 0.209296i
\(67\) 4.73236 8.19669i 0.578150 1.00138i −0.417542 0.908658i \(-0.637108\pi\)
0.995692 0.0927271i \(-0.0295584\pi\)
\(68\) −6.57598 −0.797455
\(69\) −2.19963 10.6667i −0.264804 1.28412i
\(70\) −4.58217 + 8.64953i −0.547675 + 1.03382i
\(71\) −5.46472 −0.648543 −0.324271 0.945964i \(-0.605119\pi\)
−0.324271 + 0.945964i \(0.605119\pi\)
\(72\) −2.75526 + 1.18682i −0.324711 + 0.139868i
\(73\) −6.03273 10.4490i −0.706078 1.22296i −0.966301 0.257414i \(-0.917130\pi\)
0.260223 0.965548i \(-0.416204\pi\)
\(74\) 2.77747 0.322875
\(75\) −3.03892 14.7367i −0.350904 1.70165i
\(76\) −0.444368 0.769668i −0.0509725 0.0882870i
\(77\) 2.07598 + 3.31105i 0.236580 + 0.377329i
\(78\) 4.43818 + 1.47192i 0.502525 + 0.166662i
\(79\) −5.72617 9.91802i −0.644244 1.11586i −0.984475 0.175522i \(-0.943839\pi\)
0.340231 0.940342i \(-0.389495\pi\)
\(80\) −1.84981 3.20397i −0.206816 0.358215i
\(81\) 6.18292 6.53999i 0.686991 0.726666i
\(82\) −2.05563 + 3.56046i −0.227007 + 0.393187i
\(83\) 2.23855 3.87728i 0.245713 0.425587i −0.716619 0.697465i \(-0.754311\pi\)
0.962332 + 0.271878i \(0.0876447\pi\)
\(84\) −1.08836 4.45146i −0.118750 0.485694i
\(85\) 12.1643 + 21.0693i 1.31941 + 2.28528i
\(86\) −0.0123797 −0.00133494
\(87\) −4.12729 1.36881i −0.442491 0.146752i
\(88\) −1.47710 −0.157459
\(89\) −4.43818 + 7.68715i −0.470446 + 0.814836i −0.999429 0.0337963i \(-0.989240\pi\)
0.528983 + 0.848633i \(0.322574\pi\)
\(90\) 8.89926 + 6.63238i 0.938064 + 0.699114i
\(91\) −3.34362 + 6.31159i −0.350507 + 0.661634i
\(92\) −3.14400 + 5.44556i −0.327784 + 0.567739i
\(93\) 11.1971 + 3.71351i 1.16108 + 0.385073i
\(94\) 3.49381 6.05146i 0.360359 0.624160i
\(95\) −1.64400 + 2.84748i −0.168670 + 0.292146i
\(96\) 1.64400 + 0.545231i 0.167790 + 0.0556474i
\(97\) −6.58836 + 11.4114i −0.668947 + 1.15865i 0.309252 + 0.950980i \(0.399921\pi\)
−0.978199 + 0.207670i \(0.933412\pi\)
\(98\) 6.98143 0.509538i 0.705231 0.0514711i
\(99\) 4.06979 1.75305i 0.409030 0.176188i
\(100\) −4.34362 + 7.52338i −0.434362 + 0.752338i
\(101\) 5.25457 0.522849 0.261425 0.965224i \(-0.415808\pi\)
0.261425 + 0.965224i \(0.415808\pi\)
\(102\) −10.8109 3.58543i −1.07044 0.355011i
\(103\) 1.66621 0.164176 0.0820882 0.996625i \(-0.473841\pi\)
0.0820882 + 0.996625i \(0.473841\pi\)
\(104\) −1.34981 2.33795i −0.132360 0.229255i
\(105\) −12.2491 + 11.7215i −1.19539 + 1.14390i
\(106\) −1.60507 + 2.78007i −0.155899 + 0.270024i
\(107\) −5.38255 + 9.32284i −0.520350 + 0.901273i 0.479370 + 0.877613i \(0.340865\pi\)
−0.999720 + 0.0236602i \(0.992468\pi\)
\(108\) −5.17673 + 0.448873i −0.498131 + 0.0431929i
\(109\) −0.0945538 0.163772i −0.00905662 0.0156865i 0.861462 0.507823i \(-0.169550\pi\)
−0.870518 + 0.492136i \(0.836216\pi\)
\(110\) 2.73236 + 4.73259i 0.260520 + 0.451234i
\(111\) 4.56615 + 1.51436i 0.433400 + 0.143737i
\(112\) −1.23855 + 2.33795i −0.117032 + 0.220915i
\(113\) −6.78180 11.7464i −0.637978 1.10501i −0.985876 0.167478i \(-0.946438\pi\)
0.347897 0.937533i \(-0.386896\pi\)
\(114\) −0.310892 1.50761i −0.0291177 0.141201i
\(115\) 23.2632 2.16931
\(116\) 1.25526 + 2.17417i 0.116548 + 0.201867i
\(117\) 6.49381 + 4.83967i 0.600353 + 0.447427i
\(118\) 6.90978 0.636097
\(119\) 8.14468 15.3743i 0.746622 1.40936i
\(120\) −1.29418 6.27589i −0.118142 0.572908i
\(121\) −8.81818 −0.801652
\(122\) 2.86652 4.96497i 0.259523 0.449507i
\(123\) −5.32072 + 4.73259i −0.479754 + 0.426723i
\(124\) −3.40545 5.89841i −0.305818 0.529692i
\(125\) 13.6414 1.22013
\(126\) 0.637806 7.91159i 0.0568203 0.704820i
\(127\) −2.85669 −0.253490 −0.126745 0.991935i \(-0.540453\pi\)
−0.126745 + 0.991935i \(0.540453\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −0.0203522 0.00674980i −0.00179191 0.000594287i
\(130\) −4.99381 + 8.64953i −0.437986 + 0.758614i
\(131\) 0.155687 0.0136024 0.00680122 0.999977i \(-0.497835\pi\)
0.00680122 + 0.999977i \(0.497835\pi\)
\(132\) −2.42835 0.805361i −0.211360 0.0700977i
\(133\) 2.34981 0.0856364i 0.203755 0.00742562i
\(134\) −9.46472 −0.817627
\(135\) 11.0142 + 15.7558i 0.947948 + 1.35604i
\(136\) 3.28799 + 5.69497i 0.281943 + 0.488340i
\(137\) −3.41164 −0.291476 −0.145738 0.989323i \(-0.546556\pi\)
−0.145738 + 0.989323i \(0.546556\pi\)
\(138\) −8.13781 + 7.23828i −0.692736 + 0.616163i
\(139\) −6.75526 11.7005i −0.572974 0.992420i −0.996259 0.0864229i \(-0.972456\pi\)
0.423285 0.905997i \(-0.360877\pi\)
\(140\) 9.78180 0.356487i 0.826713 0.0301287i
\(141\) 9.04325 8.04364i 0.761579 0.677396i
\(142\) 2.73236 + 4.73259i 0.229295 + 0.397150i
\(143\) 1.99381 + 3.45338i 0.166731 + 0.288786i
\(144\) 2.40545 + 1.79272i 0.200454 + 0.149393i
\(145\) 4.64400 8.04364i 0.385663 0.667988i
\(146\) −6.03273 + 10.4490i −0.499272 + 0.864765i
\(147\) 11.7553 + 2.96881i 0.969558 + 0.244864i
\(148\) −1.38874 2.40536i −0.114153 0.197719i
\(149\) 0.333792 0.0273453 0.0136727 0.999907i \(-0.495648\pi\)
0.0136727 + 0.999907i \(0.495648\pi\)
\(150\) −11.2429 + 10.0001i −0.917977 + 0.816507i
\(151\) −19.9098 −1.62023 −0.810117 0.586268i \(-0.800597\pi\)
−0.810117 + 0.586268i \(0.800597\pi\)
\(152\) −0.444368 + 0.769668i −0.0360430 + 0.0624283i
\(153\) −15.8182 11.7889i −1.27882 0.953074i
\(154\) 1.82946 3.45338i 0.147422 0.278281i
\(155\) −12.5989 + 21.8219i −1.01197 + 1.75278i
\(156\) −0.944368 4.57954i −0.0756099 0.366656i
\(157\) 3.48143 6.03001i 0.277848 0.481248i −0.693001 0.720936i \(-0.743712\pi\)
0.970850 + 0.239689i \(0.0770454\pi\)
\(158\) −5.72617 + 9.91802i −0.455550 + 0.789035i
\(159\) −4.15452 + 3.69529i −0.329475 + 0.293055i
\(160\) −1.84981 + 3.20397i −0.146241 + 0.253296i
\(161\) −8.83743 14.0951i −0.696487 1.11085i
\(162\) −8.75526 2.08457i −0.687878 0.163779i
\(163\) 4.03706 6.99240i 0.316207 0.547687i −0.663486 0.748189i \(-0.730924\pi\)
0.979693 + 0.200502i \(0.0642572\pi\)
\(164\) 4.11126 0.321036
\(165\) 1.91164 + 9.27012i 0.148821 + 0.721678i
\(166\) −4.47710 −0.347490
\(167\) 9.74288 + 16.8752i 0.753927 + 1.30584i 0.945906 + 0.324440i \(0.105176\pi\)
−0.191979 + 0.981399i \(0.561491\pi\)
\(168\) −3.31089 + 3.16828i −0.255441 + 0.244438i
\(169\) 2.85600 4.94674i 0.219693 0.380519i
\(170\) 12.1643 21.0693i 0.932963 1.61594i
\(171\) 0.310892 2.64802i 0.0237745 0.202499i
\(172\) 0.00618986 + 0.0107211i 0.000471972 + 0.000817480i
\(173\) −11.2818 19.5407i −0.857740 1.48565i −0.874080 0.485782i \(-0.838535\pi\)
0.0163405 0.999866i \(-0.494798\pi\)
\(174\) 0.878215 + 4.25874i 0.0665773 + 0.322854i
\(175\) −12.2095 19.4732i −0.922948 1.47204i
\(176\) 0.738550 + 1.27921i 0.0556703 + 0.0964238i
\(177\) 11.3596 + 3.76742i 0.853843 + 0.283177i
\(178\) 8.87636 0.665311
\(179\) 0.166896 + 0.289073i 0.0124744 + 0.0216063i 0.872195 0.489158i \(-0.162696\pi\)
−0.859721 + 0.510764i \(0.829363\pi\)
\(180\) 1.29418 11.0232i 0.0964626 0.821619i
\(181\) 23.2422 1.72758 0.863789 0.503853i \(-0.168085\pi\)
0.863789 + 0.503853i \(0.168085\pi\)
\(182\) 7.13781 0.260130i 0.529089 0.0192821i
\(183\) 7.41961 6.59947i 0.548473 0.487847i
\(184\) 6.28799 0.463557
\(185\) −5.13781 + 8.89894i −0.377739 + 0.654263i
\(186\) −2.38255 11.5537i −0.174697 0.847159i
\(187\) −4.85669 8.41204i −0.355157 0.615149i
\(188\) −6.98762 −0.509625
\(189\) 5.36219 12.6589i 0.390042 0.920797i
\(190\) 3.28799 0.238536
\(191\) 8.16071 + 14.1348i 0.590488 + 1.02276i 0.994167 + 0.107854i \(0.0343980\pi\)
−0.403679 + 0.914901i \(0.632269\pi\)
\(192\) −0.349814 1.69636i −0.0252457 0.122424i
\(193\) 7.16071 12.4027i 0.515439 0.892766i −0.484400 0.874846i \(-0.660962\pi\)
0.999839 0.0179200i \(-0.00570443\pi\)
\(194\) 13.1767 0.946034
\(195\) −12.9258 + 11.4970i −0.925636 + 0.823319i
\(196\) −3.93199 5.79133i −0.280856 0.413666i
\(197\) 2.42402 0.172704 0.0863520 0.996265i \(-0.472479\pi\)
0.0863520 + 0.996265i \(0.472479\pi\)
\(198\) −3.55308 2.64802i −0.252507 0.188187i
\(199\) −3.05563 5.29251i −0.216608 0.375176i 0.737161 0.675717i \(-0.236166\pi\)
−0.953769 + 0.300541i \(0.902833\pi\)
\(200\) 8.68725 0.614281
\(201\) −15.5600 5.16046i −1.09752 0.363991i
\(202\) −2.62729 4.55059i −0.184855 0.320179i
\(203\) −6.63781 + 0.241908i −0.465883 + 0.0169786i
\(204\) 2.30037 + 11.1552i 0.161058 + 0.781022i
\(205\) −7.60507 13.1724i −0.531161 0.919999i
\(206\) −0.833104 1.44298i −0.0580451 0.100537i
\(207\) −17.3251 + 7.46271i −1.20417 + 0.518694i
\(208\) −1.34981 + 2.33795i −0.0935928 + 0.162107i
\(209\) 0.656376 1.13688i 0.0454025 0.0786394i
\(210\) 16.2756 + 4.74728i 1.12312 + 0.327593i
\(211\) 5.72253 + 9.91171i 0.393955 + 0.682350i 0.992967 0.118390i \(-0.0377732\pi\)
−0.599012 + 0.800740i \(0.704440\pi\)
\(212\) 3.21015 0.220474
\(213\) 1.91164 + 9.27012i 0.130983 + 0.635178i
\(214\) 10.7651 0.735887
\(215\) 0.0229002 0.0396643i 0.00156178 0.00270508i
\(216\) 2.97710 + 4.25874i 0.202566 + 0.289771i
\(217\) 18.0080 0.656281i 1.22246 0.0445513i
\(218\) −0.0945538 + 0.163772i −0.00640399 + 0.0110920i
\(219\) −15.6149 + 13.8889i −1.05516 + 0.938523i
\(220\) 2.73236 4.73259i 0.184216 0.319071i
\(221\) 8.87636 15.3743i 0.597088 1.03419i
\(222\) −0.971599 4.71159i −0.0652094 0.316221i
\(223\) −3.61126 + 6.25489i −0.241828 + 0.418859i −0.961235 0.275730i \(-0.911080\pi\)
0.719407 + 0.694589i \(0.244414\pi\)
\(224\) 2.64400 0.0963576i 0.176659 0.00643816i
\(225\) −23.9356 + 10.3102i −1.59571 + 0.687347i
\(226\) −6.78180 + 11.7464i −0.451119 + 0.781361i
\(227\) 13.6552 0.906328 0.453164 0.891427i \(-0.350295\pi\)
0.453164 + 0.891427i \(0.350295\pi\)
\(228\) −1.15019 + 1.02305i −0.0761729 + 0.0677530i
\(229\) 17.3745 1.14814 0.574070 0.818807i \(-0.305364\pi\)
0.574070 + 0.818807i \(0.305364\pi\)
\(230\) −11.6316 20.1466i −0.766966 1.32842i
\(231\) 4.89052 4.67986i 0.321772 0.307912i
\(232\) 1.25526 2.17417i 0.0824119 0.142742i
\(233\) 7.62110 13.2001i 0.499275 0.864769i −0.500725 0.865606i \(-0.666933\pi\)
1.00000 0.000837426i \(0.000266561\pi\)
\(234\) 0.944368 8.04364i 0.0617353 0.525829i
\(235\) 12.9258 + 22.3881i 0.843186 + 1.46044i
\(236\) −3.45489 5.98404i −0.224894 0.389528i
\(237\) −14.8214 + 13.1831i −0.962754 + 0.856334i
\(238\) −17.3869 + 0.633646i −1.12702 + 0.0410732i
\(239\) 9.47524 + 16.4116i 0.612902 + 1.06158i 0.990749 + 0.135710i \(0.0433314\pi\)
−0.377846 + 0.925868i \(0.623335\pi\)
\(240\) −4.78799 + 4.25874i −0.309064 + 0.274901i
\(241\) −24.5054 −1.57853 −0.789267 0.614051i \(-0.789539\pi\)
−0.789267 + 0.614051i \(0.789539\pi\)
\(242\) 4.40909 + 7.63676i 0.283427 + 0.490910i
\(243\) −13.2570 8.20066i −0.850440 0.526073i
\(244\) −5.73305 −0.367021
\(245\) −11.2818 + 23.3109i −0.720768 + 1.48928i
\(246\) 6.75890 + 2.24159i 0.430932 + 0.142918i
\(247\) 2.39926 0.152661
\(248\) −3.40545 + 5.89841i −0.216246 + 0.374549i
\(249\) −7.36033 2.44105i −0.466442 0.154696i
\(250\) −6.82072 11.8138i −0.431380 0.747173i
\(251\) −12.1236 −0.765238 −0.382619 0.923906i \(-0.624978\pi\)
−0.382619 + 0.923906i \(0.624978\pi\)
\(252\) −7.17054 + 3.40344i −0.451701 + 0.214396i
\(253\) −9.28799 −0.583931
\(254\) 1.42835 + 2.47397i 0.0896224 + 0.155231i
\(255\) 31.4858 28.0054i 1.97171 1.75377i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −8.20877 −0.512049 −0.256025 0.966670i \(-0.582413\pi\)
−0.256025 + 0.966670i \(0.582413\pi\)
\(258\) 0.00433060 + 0.0210004i 0.000269611 + 0.00130743i
\(259\) 7.34362 0.267630i 0.456311 0.0166297i
\(260\) 9.98762 0.619406
\(261\) −0.878215 + 7.48018i −0.0543602 + 0.463012i
\(262\) −0.0778435 0.134829i −0.00480919 0.00832976i
\(263\) −5.34617 −0.329659 −0.164830 0.986322i \(-0.552707\pi\)
−0.164830 + 0.986322i \(0.552707\pi\)
\(264\) 0.516710 + 2.50569i 0.0318013 + 0.154215i
\(265\) −5.93818 10.2852i −0.364779 0.631816i
\(266\) −1.24907 1.99218i −0.0765854 0.122148i
\(267\) 14.5927 + 4.83967i 0.893058 + 0.296183i
\(268\) 4.73236 + 8.19669i 0.289075 + 0.500692i
\(269\) 9.24219 + 16.0079i 0.563506 + 0.976022i 0.997187 + 0.0749550i \(0.0238813\pi\)
−0.433681 + 0.901067i \(0.642785\pi\)
\(270\) 8.13781 17.4164i 0.495251 1.05993i
\(271\) −3.67742 + 6.36947i −0.223387 + 0.386918i −0.955834 0.293906i \(-0.905045\pi\)
0.732447 + 0.680824i \(0.238378\pi\)
\(272\) 3.28799 5.69497i 0.199364 0.345308i
\(273\) 11.8764 + 3.46410i 0.718790 + 0.209657i
\(274\) 1.70582 + 2.95456i 0.103052 + 0.178492i
\(275\) −12.8319 −0.773795
\(276\) 10.3374 + 3.42841i 0.622240 + 0.206366i
\(277\) −9.09888 −0.546699 −0.273349 0.961915i \(-0.588132\pi\)
−0.273349 + 0.961915i \(0.588132\pi\)
\(278\) −6.75526 + 11.7005i −0.405154 + 0.701747i
\(279\) 2.38255 20.2933i 0.142639 1.21493i
\(280\) −5.19963 8.29305i −0.310737 0.495604i
\(281\) 6.00433 10.3998i 0.358188 0.620400i −0.629470 0.777025i \(-0.716728\pi\)
0.987658 + 0.156624i \(0.0500612\pi\)
\(282\) −11.4876 3.80987i −0.684078 0.226874i
\(283\) −4.92147 + 8.52423i −0.292551 + 0.506713i −0.974412 0.224768i \(-0.927837\pi\)
0.681861 + 0.731481i \(0.261171\pi\)
\(284\) 2.73236 4.73259i 0.162136 0.280827i
\(285\) 5.40545 + 1.79272i 0.320191 + 0.106191i
\(286\) 1.99381 3.45338i 0.117896 0.204203i
\(287\) −5.09201 + 9.61192i −0.300572 + 0.567373i
\(288\) 0.349814 2.97954i 0.0206130 0.175571i
\(289\) −13.1218 + 22.7276i −0.771870 + 1.33692i
\(290\) −9.28799 −0.545410
\(291\) 21.6625 + 7.18436i 1.26988 + 0.421155i
\(292\) 12.0655 0.706078
\(293\) 10.7101 + 18.5505i 0.625694 + 1.08373i 0.988406 + 0.151832i \(0.0485173\pi\)
−0.362713 + 0.931901i \(0.618149\pi\)
\(294\) −3.30656 11.6648i −0.192843 0.680303i
\(295\) −12.7818 + 22.1387i −0.744185 + 1.28897i
\(296\) −1.38874 + 2.40536i −0.0807186 + 0.139809i
\(297\) −4.39747 6.29059i −0.255167 0.365017i
\(298\) −0.166896 0.289073i −0.00966804 0.0167455i
\(299\) −8.48762 14.7010i −0.490852 0.850180i
\(300\) 14.2818 + 4.73656i 0.824560 + 0.273465i
\(301\) −0.0327319 + 0.00119288i −0.00188664 + 6.87564e-5i
\(302\) 9.95489 + 17.2424i 0.572839 + 0.992187i
\(303\) −1.83812 8.91363i −0.105597 0.512075i
\(304\) 0.888736 0.0509725
\(305\) 10.6051 + 18.3685i 0.607245 + 1.05178i
\(306\) −2.30037 + 19.5934i −0.131504 + 1.12008i
\(307\) −5.68725 −0.324588 −0.162294 0.986742i \(-0.551889\pi\)
−0.162294 + 0.986742i \(0.551889\pi\)
\(308\) −3.90545 + 0.142330i −0.222533 + 0.00810999i
\(309\) −0.582863 2.82648i −0.0331579 0.160793i
\(310\) 25.1978 1.43114
\(311\) 5.86033 10.1504i 0.332309 0.575576i −0.650655 0.759373i \(-0.725506\pi\)
0.982964 + 0.183797i \(0.0588390\pi\)
\(312\) −3.49381 + 3.10761i −0.197798 + 0.175934i
\(313\) 13.3869 + 23.1868i 0.756671 + 1.31059i 0.944539 + 0.328398i \(0.106509\pi\)
−0.187868 + 0.982194i \(0.560158\pi\)
\(314\) −6.96286 −0.392937
\(315\) 24.1687 + 16.6785i 1.36175 + 0.939726i
\(316\) 11.4523 0.644244
\(317\) −0.951246 1.64761i −0.0534273 0.0925388i 0.838075 0.545555i \(-0.183681\pi\)
−0.891502 + 0.453016i \(0.850348\pi\)
\(318\) 5.27747 + 1.75027i 0.295946 + 0.0981504i
\(319\) −1.85414 + 3.21147i −0.103812 + 0.179808i
\(320\) 3.69963 0.206816
\(321\) 17.6978 + 5.86946i 0.987793 + 0.327601i
\(322\) −7.78799 + 14.7010i −0.434008 + 0.819254i
\(323\) −5.84431 −0.325186
\(324\) 2.57234 + 8.62456i 0.142908 + 0.479142i
\(325\) −11.7262 20.3103i −0.650451 1.12661i
\(326\) −8.07413 −0.447184
\(327\) −0.244740 + 0.217687i −0.0135341 + 0.0120381i
\(328\) −2.05563 3.56046i −0.113503 0.196593i
\(329\) 8.65452 16.3367i 0.477139 0.900670i
\(330\) 7.07234 6.29059i 0.389320 0.346285i
\(331\) −2.78366 4.82144i −0.153004 0.265010i 0.779327 0.626618i \(-0.215561\pi\)
−0.932330 + 0.361608i \(0.882228\pi\)
\(332\) 2.23855 + 3.87728i 0.122856 + 0.212794i
\(333\) 0.971599 8.27557i 0.0532433 0.453499i
\(334\) 9.74288 16.8752i 0.533107 0.923368i
\(335\) 17.5080 30.3247i 0.956563 1.65682i
\(336\) 4.39926 + 1.28318i 0.239999 + 0.0700031i
\(337\) −16.8869 29.2489i −0.919887 1.59329i −0.799585 0.600553i \(-0.794947\pi\)
−0.120302 0.992737i \(-0.538386\pi\)
\(338\) −5.71201 −0.310692
\(339\) −17.5538 + 15.6134i −0.953390 + 0.848005i
\(340\) −24.3287 −1.31941
\(341\) 5.03018 8.71253i 0.272400 0.471810i
\(342\) −2.44870 + 1.05477i −0.132410 + 0.0570354i
\(343\) 18.4098 2.01993i 0.994035 0.109066i
\(344\) 0.00618986 0.0107211i 0.000333735 0.000578045i
\(345\) −8.13781 39.4628i −0.438125 2.12460i
\(346\) −11.2818 + 19.5407i −0.606513 + 1.05051i
\(347\) 15.2033 26.3328i 0.816154 1.41362i −0.0923418 0.995727i \(-0.529435\pi\)
0.908496 0.417893i \(-0.137231\pi\)
\(348\) 3.24907 2.88993i 0.174168 0.154916i
\(349\) −6.29782 + 10.9082i −0.337115 + 0.583900i −0.983889 0.178782i \(-0.942784\pi\)
0.646774 + 0.762682i \(0.276118\pi\)
\(350\) −10.7596 + 20.3103i −0.575124 + 1.08563i
\(351\) 5.93818 12.7088i 0.316956 0.678346i
\(352\) 0.738550 1.27921i 0.0393648 0.0681819i
\(353\) −7.53156 −0.400865 −0.200432 0.979708i \(-0.564235\pi\)
−0.200432 + 0.979708i \(0.564235\pi\)
\(354\) −2.41714 11.7215i −0.128469 0.622988i
\(355\) −20.2174 −1.07303
\(356\) −4.43818 7.68715i −0.235223 0.407418i
\(357\) −28.9294 8.43815i −1.53111 0.446594i
\(358\) 0.166896 0.289073i 0.00882074 0.0152780i
\(359\) −3.44801 + 5.97213i −0.181979 + 0.315197i −0.942554 0.334053i \(-0.891584\pi\)
0.760575 + 0.649250i \(0.224917\pi\)
\(360\) −10.1934 + 4.39079i −0.537241 + 0.231415i
\(361\) 9.10507 + 15.7705i 0.479214 + 0.830024i
\(362\) −11.6211 20.1283i −0.610791 1.05792i
\(363\) 3.08472 + 14.9588i 0.161906 + 0.785132i
\(364\) −3.79418 6.05146i −0.198869 0.317183i
\(365\) −22.3189 38.6574i −1.16822 2.02342i
\(366\) −9.42511 3.12584i −0.492658 0.163390i
\(367\) 23.1236 1.20704 0.603522 0.797346i \(-0.293763\pi\)
0.603522 + 0.797346i \(0.293763\pi\)
\(368\) −3.14400 5.44556i −0.163892 0.283869i
\(369\) 9.88942 + 7.37033i 0.514823 + 0.383684i
\(370\) 10.2756 0.534204
\(371\) −3.97593 + 7.50516i −0.206420 + 0.389648i
\(372\) −8.81453 + 7.84020i −0.457012 + 0.406495i
\(373\) 29.1643 1.51007 0.755036 0.655683i \(-0.227619\pi\)
0.755036 + 0.655683i \(0.227619\pi\)
\(374\) −4.85669 + 8.41204i −0.251134 + 0.434976i
\(375\) −4.77197 23.1408i −0.246423 1.19498i
\(376\) 3.49381 + 6.05146i 0.180180 + 0.312080i
\(377\) −6.77747 −0.349058
\(378\) −13.6440 + 1.68564i −0.701771 + 0.0866998i
\(379\) −13.5622 −0.696645 −0.348322 0.937375i \(-0.613249\pi\)
−0.348322 + 0.937375i \(0.613249\pi\)
\(380\) −1.64400 2.84748i −0.0843352 0.146073i
\(381\) 0.999311 + 4.84597i 0.0511963 + 0.248267i
\(382\) 8.16071 14.1348i 0.417538 0.723197i
\(383\) −2.83565 −0.144895 −0.0724475 0.997372i \(-0.523081\pi\)
−0.0724475 + 0.997372i \(0.523081\pi\)
\(384\) −1.29418 + 1.15113i −0.0660434 + 0.0587432i
\(385\) 7.68037 + 12.2497i 0.391428 + 0.624300i
\(386\) −14.3214 −0.728941
\(387\) −0.00433060 + 0.0368858i −0.000220137 + 0.00187501i
\(388\) −6.58836 11.4114i −0.334474 0.579325i
\(389\) −18.6080 −0.943464 −0.471732 0.881742i \(-0.656371\pi\)
−0.471732 + 0.881742i \(0.656371\pi\)
\(390\) 16.4196 + 5.44556i 0.831439 + 0.275747i
\(391\) 20.6749 + 35.8099i 1.04557 + 1.81099i
\(392\) −3.04944 + 6.30087i −0.154020 + 0.318242i
\(393\) −0.0544615 0.264101i −0.00274722 0.0133221i
\(394\) −1.21201 2.09926i −0.0610601 0.105759i
\(395\) −21.1847 36.6930i −1.06592 1.84622i
\(396\) −0.516710 + 4.40107i −0.0259657 + 0.221162i
\(397\) −10.2880 + 17.8193i −0.516340 + 0.894326i 0.483481 + 0.875355i \(0.339372\pi\)
−0.999820 + 0.0189712i \(0.993961\pi\)
\(398\) −3.05563 + 5.29251i −0.153165 + 0.265290i
\(399\) −0.967268 3.95617i −0.0484240 0.198056i
\(400\) −4.34362 7.52338i −0.217181 0.376169i
\(401\) −6.75409 −0.337283 −0.168642 0.985677i \(-0.553938\pi\)
−0.168642 + 0.985677i \(0.553938\pi\)
\(402\) 3.31089 + 16.0556i 0.165132 + 0.800778i
\(403\) 18.3869 0.915916
\(404\) −2.62729 + 4.55059i −0.130712 + 0.226400i
\(405\) 22.8745 24.1955i 1.13664 1.20229i
\(406\) 3.52840 + 5.62755i 0.175112 + 0.279291i
\(407\) 2.05130 3.55296i 0.101679 0.176114i
\(408\) 8.51052 7.56979i 0.421334 0.374761i
\(409\) −7.66071 + 13.2687i −0.378798 + 0.656097i −0.990888 0.134691i \(-0.956996\pi\)
0.612090 + 0.790788i \(0.290329\pi\)
\(410\) −7.60507 + 13.1724i −0.375588 + 0.650537i
\(411\) 1.19344 + 5.78736i 0.0588680 + 0.285469i
\(412\) −0.833104 + 1.44298i −0.0410441 + 0.0710904i
\(413\) 18.2694 0.665809i 0.898980 0.0327623i
\(414\) 15.1254 + 11.2726i 0.743374 + 0.554017i
\(415\) 8.28180 14.3445i 0.406538 0.704144i
\(416\) 2.69963 0.132360
\(417\) −17.4851 + 15.5523i −0.856248 + 0.761601i
\(418\) −1.31275 −0.0642088
\(419\) −4.32141 7.48491i −0.211115 0.365662i 0.740949 0.671561i \(-0.234376\pi\)
−0.952064 + 0.305900i \(0.901043\pi\)
\(420\) −4.02654 16.4687i −0.196475 0.803592i
\(421\) 18.5636 32.1531i 0.904735 1.56705i 0.0834618 0.996511i \(-0.473402\pi\)
0.821273 0.570536i \(-0.193264\pi\)
\(422\) 5.72253 9.91171i 0.278568 0.482494i
\(423\) −16.8083 12.5268i −0.817250 0.609075i
\(424\) −1.60507 2.78007i −0.0779493 0.135012i
\(425\) 28.5636 + 49.4736i 1.38554 + 2.39982i
\(426\) 7.07234 6.29059i 0.342656 0.304780i
\(427\) 7.10067 13.4036i 0.343625 0.648644i
\(428\) −5.38255 9.32284i −0.260175 0.450637i
\(429\) 5.16071 4.59026i 0.249161 0.221620i
\(430\) −0.0458003 −0.00220869
\(431\) −4.71015 8.15822i −0.226880 0.392967i 0.730002 0.683445i \(-0.239519\pi\)
−0.956882 + 0.290478i \(0.906186\pi\)
\(432\) 2.19963 4.70761i 0.105830 0.226495i
\(433\) −0.208771 −0.0100329 −0.00501645 0.999987i \(-0.501597\pi\)
−0.00501645 + 0.999987i \(0.501597\pi\)
\(434\) −9.57234 15.2672i −0.459487 0.732850i
\(435\) −15.2694 5.06410i −0.732113 0.242805i
\(436\) 0.189108 0.00905662
\(437\) −2.79418 + 4.83967i −0.133664 + 0.231513i
\(438\) 19.8356 + 6.57847i 0.947780 + 0.314331i
\(439\) 4.98398 + 8.63250i 0.237872 + 0.412007i 0.960104 0.279645i \(-0.0902167\pi\)
−0.722231 + 0.691652i \(0.756883\pi\)
\(440\) −5.46472 −0.260520
\(441\) 0.924016 20.9797i 0.0440007 0.999031i
\(442\) −17.7527 −0.844410
\(443\) 7.84981 + 13.5963i 0.372956 + 0.645979i 0.990019 0.140935i \(-0.0450109\pi\)
−0.617063 + 0.786914i \(0.711678\pi\)
\(444\) −3.59455 + 3.19722i −0.170590 + 0.151733i
\(445\) −16.4196 + 28.4396i −0.778364 + 1.34817i
\(446\) 7.22253 0.341997
\(447\) −0.116765 0.566231i −0.00552281 0.0267818i
\(448\) −1.40545 2.24159i −0.0664011 0.105905i
\(449\) 33.6253 1.58688 0.793439 0.608650i \(-0.208288\pi\)
0.793439 + 0.608650i \(0.208288\pi\)
\(450\) 20.8967 + 15.5738i 0.985080 + 0.734154i
\(451\) 3.03637 + 5.25915i 0.142977 + 0.247644i
\(452\) 13.5636 0.637978
\(453\) 6.96472 + 33.7741i 0.327231 + 1.58685i
\(454\) −6.82760 11.8258i −0.320435 0.555010i
\(455\) −12.3702 + 23.3505i −0.579922 + 1.09469i
\(456\) 1.46108 + 0.484566i 0.0684213 + 0.0226919i
\(457\) −16.3541 28.3262i −0.765015 1.32504i −0.940239 0.340516i \(-0.889398\pi\)
0.175224 0.984529i \(-0.443935\pi\)
\(458\) −8.68725 15.0468i −0.405928 0.703089i
\(459\) −14.4647 + 30.9572i −0.675155 + 1.44496i
\(460\) −11.6316 + 20.1466i −0.542327 + 0.939338i
\(461\) −2.07165 + 3.58821i −0.0964865 + 0.167120i −0.910228 0.414107i \(-0.864094\pi\)
0.813742 + 0.581227i \(0.197427\pi\)
\(462\) −6.49814 1.89538i −0.302321 0.0881811i
\(463\) −8.34176 14.4484i −0.387675 0.671472i 0.604462 0.796634i \(-0.293388\pi\)
−0.992136 + 0.125162i \(0.960055\pi\)
\(464\) −2.51052 −0.116548
\(465\) 41.4250 + 13.7386i 1.92104 + 0.637113i
\(466\) −15.2422 −0.706081
\(467\) 14.9585 25.9089i 0.692198 1.19892i −0.278918 0.960315i \(-0.589976\pi\)
0.971116 0.238608i \(-0.0766909\pi\)
\(468\) −7.43818 + 3.20397i −0.343830 + 0.148104i
\(469\) −25.0247 + 0.911998i −1.15553 + 0.0421121i
\(470\) 12.9258 22.3881i 0.596223 1.03269i
\(471\) −11.4469 3.79637i −0.527446 0.174927i
\(472\) −3.45489 + 5.98404i −0.159024 + 0.275438i
\(473\) −0.00914304 + 0.0158362i −0.000420397 + 0.000728149i
\(474\) 18.8276 + 6.24417i 0.864780 + 0.286804i
\(475\) −3.86033 + 6.68630i −0.177124 + 0.306788i
\(476\) 9.24219 + 14.7407i 0.423615 + 0.675637i
\(477\) 7.72184 + 5.75488i 0.353559 + 0.263498i
\(478\) 9.47524 16.4116i 0.433387 0.750649i
\(479\) −2.95930 −0.135214 −0.0676068 0.997712i \(-0.521536\pi\)
−0.0676068 + 0.997712i \(0.521536\pi\)
\(480\) 6.08217 + 2.01715i 0.277612 + 0.0920700i
\(481\) 7.49814 0.341886
\(482\) 12.2527 + 21.2223i 0.558096 + 0.966650i
\(483\) −20.8189 + 19.9221i −0.947291 + 0.906488i
\(484\) 4.40909 7.63676i 0.200413 0.347126i
\(485\) −24.3745 + 42.2179i −1.10679 + 1.91701i
\(486\) −0.473458 + 15.5813i −0.0214765 + 0.706781i
\(487\) −14.0309 24.3022i −0.635800 1.10124i −0.986345 0.164691i \(-0.947337\pi\)
0.350546 0.936546i \(-0.385996\pi\)
\(488\) 2.86652 + 4.96497i 0.129761 + 0.224753i
\(489\) −13.2738 4.40226i −0.600263 0.199077i
\(490\) 25.8287 1.88510i 1.16682 0.0851602i
\(491\) 17.0734 + 29.5721i 0.770513 + 1.33457i 0.937282 + 0.348572i \(0.113333\pi\)
−0.166769 + 0.985996i \(0.553333\pi\)
\(492\) −1.43818 6.97418i −0.0648381 0.314420i
\(493\) 16.5091 0.743534
\(494\) −1.19963 2.07782i −0.0539738 0.0934854i
\(495\) 15.0567 6.48564i 0.676750 0.291508i
\(496\) 6.81089 0.305818
\(497\) 7.68037 + 12.2497i 0.344512 + 0.549472i
\(498\) 1.56615 + 7.59476i 0.0701810 + 0.340329i
\(499\) −2.28071 −0.102099 −0.0510493 0.998696i \(-0.516257\pi\)
−0.0510493 + 0.998696i \(0.516257\pi\)
\(500\) −6.82072 + 11.8138i −0.305032 + 0.528331i
\(501\) 25.2181 22.4306i 1.12666 1.00212i
\(502\) 6.06182 + 10.4994i 0.270552 + 0.468610i
\(503\) 13.9890 0.623739 0.311869 0.950125i \(-0.399045\pi\)
0.311869 + 0.950125i \(0.399045\pi\)
\(504\) 6.53273 + 4.50815i 0.290991 + 0.200809i
\(505\) 19.4400 0.865067
\(506\) 4.64400 + 8.04364i 0.206451 + 0.357583i
\(507\) −9.39052 3.11436i −0.417048 0.138314i
\(508\) 1.42835 2.47397i 0.0633726 0.109765i
\(509\) 25.6181 1.13550 0.567750 0.823201i \(-0.307814\pi\)
0.567750 + 0.823201i \(0.307814\pi\)
\(510\) −39.9963 13.2648i −1.77107 0.587374i
\(511\) −14.9437 + 28.2084i −0.661069 + 1.24787i
\(512\) 1.00000 0.0441942
\(513\) −4.60074 + 0.398930i −0.203128 + 0.0176132i
\(514\) 4.10439 + 7.10900i 0.181037 + 0.313565i
\(515\) 6.16435 0.271634
\(516\) 0.0160216 0.0142506i 0.000705312 0.000627349i
\(517\) −5.16071 8.93861i −0.226968 0.393119i
\(518\) −3.90359 6.22595i −0.171514 0.273553i
\(519\) −29.2014 + 25.9736i −1.28180 + 1.14011i
\(520\) −4.99381 8.64953i −0.218993 0.379307i
\(521\) −20.9127 36.2219i −0.916203 1.58691i −0.805130 0.593099i \(-0.797904\pi\)
−0.111073 0.993812i \(-0.535429\pi\)
\(522\) 6.91714 2.97954i 0.302755 0.130411i
\(523\) 7.88323 13.6542i 0.344710 0.597055i −0.640591 0.767882i \(-0.721311\pi\)
0.985301 + 0.170827i \(0.0546440\pi\)
\(524\) −0.0778435 + 0.134829i −0.00340061 + 0.00589003i
\(525\) −28.7625 + 27.5236i −1.25530 + 1.20123i
\(526\) 2.67309 + 4.62992i 0.116552 + 0.201874i
\(527\) −44.7883 −1.95101
\(528\) 1.91164 1.70033i 0.0831933 0.0739973i
\(529\) 16.5388 0.719080
\(530\) −5.93818 + 10.2852i −0.257938 + 0.446762i
\(531\) 2.41714 20.5879i 0.104895 0.893440i
\(532\) −1.10074 + 2.07782i −0.0477233 + 0.0900848i
\(533\) −5.54944 + 9.61192i −0.240373 + 0.416338i
\(534\) −3.10507 15.0575i −0.134370 0.651601i
\(535\) −19.9134 + 34.4911i −0.860932 + 1.49118i
\(536\) 4.73236 8.19669i 0.204407 0.354043i
\(537\) 0.431988 0.384237i 0.0186417 0.0165811i
\(538\) 9.24219 16.0079i 0.398459 0.690152i
\(539\) 4.50433 9.30701i 0.194015 0.400881i
\(540\) −19.1520 + 1.66066i −0.824170 + 0.0714636i
\(541\) −21.0963 + 36.5399i −0.907002 + 1.57097i −0.0887957 + 0.996050i \(0.528302\pi\)
−0.818207 + 0.574924i \(0.805031\pi\)
\(542\) 7.35483 0.315917
\(543\) −8.13045 39.4271i −0.348911 1.69198i
\(544\) −6.57598 −0.281943
\(545\) −0.349814 0.605896i −0.0149844 0.0259537i
\(546\) −2.93818 12.0173i −0.125742 0.514292i
\(547\) 20.3356 35.2222i 0.869486 1.50599i 0.00696400 0.999976i \(-0.497783\pi\)
0.862522 0.506019i \(-0.168883\pi\)
\(548\) 1.70582 2.95456i 0.0728689 0.126213i
\(549\) −13.7905 10.2777i −0.588566 0.438643i
\(550\) 6.41597 + 11.1128i 0.273578 + 0.473851i
\(551\) 1.11559 + 1.93227i 0.0475259 + 0.0823173i
\(552\) −2.19963 10.6667i −0.0936224 0.454004i
\(553\) −14.1843 + 26.7750i −0.603178 + 1.13859i
\(554\) 4.54944 + 7.87987i 0.193287 + 0.334783i
\(555\) 16.8931 + 5.60258i 0.717071 + 0.237816i
\(556\) 13.5105 0.572974
\(557\) 6.68794 + 11.5838i 0.283377 + 0.490823i 0.972214 0.234093i \(-0.0752119\pi\)
−0.688837 + 0.724916i \(0.741879\pi\)
\(558\) −18.7658 + 8.08330i −0.794419 + 0.342193i
\(559\) −0.0334206 −0.00141354
\(560\) −4.58217 + 8.64953i −0.193632 + 0.365509i
\(561\) −12.5709 + 11.1813i −0.530743 + 0.472076i
\(562\) −12.0087 −0.506555
\(563\) 16.3807 28.3722i 0.690364 1.19574i −0.281355 0.959604i \(-0.590784\pi\)
0.971719 0.236141i \(-0.0758828\pi\)
\(564\) 2.44437 + 11.8535i 0.102926 + 0.499123i
\(565\) −25.0901 43.4574i −1.05555 1.82827i
\(566\) 9.84294 0.413729
\(567\) −23.3497 4.66795i −0.980597 0.196035i
\(568\) −5.46472 −0.229295
\(569\) 8.36398 + 14.4868i 0.350636 + 0.607320i 0.986361 0.164596i \(-0.0526321\pi\)
−0.635725 + 0.771916i \(0.719299\pi\)
\(570\) −1.15019 5.57761i −0.0481760 0.233620i
\(571\) 13.7367 23.7926i 0.574863 0.995691i −0.421194 0.906971i \(-0.638389\pi\)
0.996057 0.0887207i \(-0.0282778\pi\)
\(572\) −3.98762 −0.166731
\(573\) 21.1229 18.7880i 0.882421 0.784881i
\(574\) 10.8702 0.396151i 0.453712 0.0165350i
\(575\) 54.6253 2.27803
\(576\) −2.75526 + 1.18682i −0.114803 + 0.0494508i
\(577\) 1.41714 + 2.45455i 0.0589962 + 0.102184i 0.894015 0.448037i \(-0.147877\pi\)
−0.835019 + 0.550221i \(0.814543\pi\)
\(578\) 26.2436 1.09159
\(579\) −23.5443 7.80848i −0.978470 0.324509i
\(580\) 4.64400 + 8.04364i 0.192831 + 0.333994i
\(581\) −11.8374 + 0.431403i −0.491100 + 0.0178976i
\(582\) −4.60940 22.3524i −0.191066 0.926539i
\(583\) 2.37085 + 4.10644i 0.0981908 + 0.170071i
\(584\) −6.03273 10.4490i −0.249636 0.432383i
\(585\) 24.0247 + 17.9050i 0.993298 + 0.740279i
\(586\) 10.7101 18.5505i 0.442432 0.766315i
\(587\) −2.34795 + 4.06678i −0.0969105 + 0.167854i −0.910404 0.413720i \(-0.864229\pi\)
0.813494 + 0.581573i \(0.197563\pi\)
\(588\) −8.44870 + 8.69595i −0.348418 + 0.358615i
\(589\) −3.02654 5.24212i −0.124706 0.215998i
\(590\) 25.5636 1.05244
\(591\) −0.847955 4.11200i −0.0348802 0.169145i
\(592\) 2.77747 0.114153
\(593\) 0.636024 1.10163i 0.0261184 0.0452383i −0.852671 0.522449i \(-0.825019\pi\)
0.878789 + 0.477210i \(0.158352\pi\)
\(594\) −3.24907 + 6.95362i −0.133311 + 0.285310i
\(595\) 30.1323 56.8792i 1.23530 2.33182i
\(596\) −0.166896 + 0.289073i −0.00683634 + 0.0118409i
\(597\) −7.90909 + 7.03484i −0.323697 + 0.287917i
\(598\) −8.48762 + 14.7010i −0.347085 + 0.601168i
\(599\) −21.9258 + 37.9766i −0.895864 + 1.55168i −0.0631320 + 0.998005i \(0.520109\pi\)
−0.832732 + 0.553676i \(0.813224\pi\)
\(600\) −3.03892 14.7367i −0.124063 0.601623i
\(601\) −6.71634 + 11.6330i −0.273965 + 0.474522i −0.969874 0.243609i \(-0.921669\pi\)
0.695908 + 0.718131i \(0.255002\pi\)
\(602\) 0.0173990 + 0.0277502i 0.000709131 + 0.00113101i
\(603\) −3.31089 + 28.2005i −0.134830 + 1.14841i
\(604\) 9.95489 17.2424i 0.405059 0.701582i
\(605\) −32.6240 −1.32635
\(606\) −6.80037 + 6.04868i −0.276246 + 0.245711i
\(607\) −4.58465 −0.186085 −0.0930425 0.995662i \(-0.529659\pi\)
−0.0930425 + 0.995662i \(0.529659\pi\)
\(608\) −0.444368 0.769668i −0.0180215 0.0312142i
\(609\) 2.73236 + 11.1755i 0.110721 + 0.452853i
\(610\) 10.6051 18.3685i 0.429387 0.743720i
\(611\) 9.43199 16.3367i 0.381577 0.660911i
\(612\) 18.1185 7.80451i 0.732399 0.315479i
\(613\) −11.0538 19.1457i −0.446458 0.773287i 0.551695 0.834046i \(-0.313981\pi\)
−0.998152 + 0.0607587i \(0.980648\pi\)
\(614\) 2.84362 + 4.92530i 0.114759 + 0.198769i
\(615\) −19.6847 + 17.5088i −0.793764 + 0.706023i
\(616\) 2.07598 + 3.31105i 0.0836438 + 0.133406i
\(617\) 6.00433 + 10.3998i 0.241725 + 0.418680i 0.961206 0.275832i \(-0.0889534\pi\)
−0.719481 + 0.694513i \(0.755620\pi\)
\(618\) −2.15638 + 1.91802i −0.0867422 + 0.0771539i
\(619\) −17.5636 −0.705941 −0.352970 0.935634i \(-0.614828\pi\)
−0.352970 + 0.935634i \(0.614828\pi\)
\(620\) −12.5989 21.8219i −0.505983 0.876389i
\(621\) 18.7200 + 26.7789i 0.751207 + 1.07460i
\(622\) −11.7207 −0.469956
\(623\) 23.4691 0.855304i 0.940268 0.0342670i
\(624\) 4.43818 + 1.47192i 0.177669 + 0.0589240i
\(625\) 7.03204 0.281282
\(626\) 13.3869 23.1868i 0.535047 0.926729i
\(627\) −2.15816 0.715753i −0.0861885 0.0285844i
\(628\) 3.48143 + 6.03001i 0.138924 + 0.240624i
\(629\) −18.2646 −0.728258
\(630\) 2.35965 29.2699i 0.0940105 1.16614i
\(631\) −44.9381 −1.78896 −0.894479 0.447110i \(-0.852453\pi\)
−0.894479 + 0.447110i \(0.852453\pi\)
\(632\) −5.72617 9.91802i −0.227775 0.394518i
\(633\) 14.8120 13.1747i 0.588724 0.523648i
\(634\) −0.951246 + 1.64761i −0.0377788 + 0.0654348i
\(635\) −10.5687 −0.419406
\(636\) −1.12296 5.44556i −0.0445281 0.215931i
\(637\) 18.8473 1.37556i 0.746756 0.0545018i
\(638\) 3.70829 0.146813
\(639\) 15.0567 6.48564i 0.595635 0.256568i
\(640\) −1.84981 3.20397i −0.0731203 0.126648i
\(641\) −28.9839 −1.14480 −0.572398 0.819976i \(-0.693987\pi\)
−0.572398 + 0.819976i \(0.693987\pi\)
\(642\) −3.76578 18.2614i −0.148624 0.720722i
\(643\) 6.03087 + 10.4458i 0.237834 + 0.411941i 0.960093 0.279682i \(-0.0902291\pi\)
−0.722258 + 0.691623i \(0.756896\pi\)
\(644\) 16.6254 0.605896i 0.655134 0.0238756i
\(645\) −0.0752956 0.0249718i −0.00296476 0.000983262i
\(646\) 2.92216 + 5.06132i 0.114971 + 0.199135i
\(647\) 18.8825 + 32.7055i 0.742349 + 1.28579i 0.951423 + 0.307887i \(0.0996219\pi\)
−0.209073 + 0.977900i \(0.567045\pi\)
\(648\) 6.18292 6.53999i 0.242888 0.256915i
\(649\) 5.10322 8.83903i 0.200319 0.346962i
\(650\) −11.7262 + 20.3103i −0.459938 + 0.796636i
\(651\) −7.41273 30.3184i −0.290528 1.18827i
\(652\) 4.03706 + 6.99240i 0.158104 + 0.273843i
\(653\) 37.4079 1.46388 0.731942 0.681366i \(-0.238614\pi\)
0.731942 + 0.681366i \(0.238614\pi\)
\(654\) 0.310892 + 0.103107i 0.0121569 + 0.00403182i
\(655\) 0.575984 0.0225056
\(656\) −2.05563 + 3.56046i −0.0802589 + 0.139013i
\(657\) 29.0228 + 21.6299i 1.13229 + 0.843864i
\(658\) −18.4752 + 0.673310i −0.720240 + 0.0262484i
\(659\) 14.9356 25.8693i 0.581810 1.00772i −0.413455 0.910524i \(-0.635678\pi\)
0.995265 0.0971993i \(-0.0309884\pi\)
\(660\) −8.98398 2.97954i −0.349701 0.115978i
\(661\) −2.80401 + 4.85669i −0.109063 + 0.188904i −0.915391 0.402566i \(-0.868119\pi\)
0.806328 + 0.591469i \(0.201452\pi\)
\(662\) −2.78366 + 4.82144i −0.108190 + 0.187391i
\(663\) −29.1854 9.67933i −1.13347 0.375914i
\(664\) 2.23855 3.87728i 0.0868726 0.150468i
\(665\) 8.69344 0.316823i 0.337117 0.0122859i
\(666\) −7.65266 + 3.29636i −0.296534 + 0.127731i
\(667\) 7.89307 13.6712i 0.305621 0.529351i
\(668\) −19.4858 −0.753927
\(669\) 11.8738 + 3.93795i 0.459068 + 0.152250i
\(670\) −35.0159 −1.35278
\(671\) −4.23414 7.33375i −0.163457 0.283116i
\(672\) −1.08836 4.45146i −0.0419846 0.171719i
\(673\) −4.72253 + 8.17966i −0.182040 + 0.315303i −0.942575 0.333994i \(-0.891603\pi\)
0.760535 + 0.649297i \(0.224937\pi\)
\(674\) −16.8869 + 29.2489i −0.650458 + 1.12663i
\(675\) 25.8628 + 36.9967i 0.995460 + 1.42401i
\(676\) 2.85600 + 4.94674i 0.109846 + 0.190259i
\(677\) −5.53087 9.57975i −0.212569 0.368180i 0.739949 0.672663i \(-0.234850\pi\)
−0.952518 + 0.304483i \(0.901516\pi\)
\(678\) 22.2985 + 7.39530i 0.856369 + 0.284015i
\(679\) 34.8392 1.26968i 1.33701 0.0487258i
\(680\) 12.1643 + 21.0693i 0.466481 + 0.807970i
\(681\) −4.77678 23.1641i −0.183047 0.887651i
\(682\) −10.0604 −0.385231
\(683\) −4.41961 7.65499i −0.169112 0.292910i 0.768996 0.639253i \(-0.220757\pi\)
−0.938108 + 0.346343i \(0.887423\pi\)
\(684\) 2.13781 + 1.59325i 0.0817411 + 0.0609195i
\(685\) −12.6218 −0.482254
\(686\) −10.9542 14.9334i −0.418233 0.570159i
\(687\) −6.07784 29.4734i −0.231884 1.12448i
\(688\) −0.0123797 −0.000471972
\(689\) −4.33310 + 7.50516i −0.165078 + 0.285924i
\(690\) −30.1069 + 26.7789i −1.14615 + 1.01946i
\(691\) −12.5309 21.7041i −0.476697 0.825663i 0.522947 0.852365i \(-0.324833\pi\)
−0.999643 + 0.0267023i \(0.991499\pi\)
\(692\) 22.5636 0.857740
\(693\) −9.64950 6.65899i −0.366554 0.252954i
\(694\) −30.4065 −1.15422
\(695\) −24.9920 43.2873i −0.947999 1.64198i
\(696\) −4.12729 1.36881i −0.156444 0.0518848i
\(697\) 13.5178 23.4135i 0.512023 0.886850i
\(698\) 12.5956 0.476752
\(699\) −25.0581 8.31052i −0.947785 0.314333i
\(700\) 22.9691 0.837082i 0.868149 0.0316387i
\(701\) −43.4858 −1.64243 −0.821217 0.570616i \(-0.806705\pi\)
−0.821217 + 0.570616i \(0.806705\pi\)
\(702\) −13.9752 + 1.21179i −0.527461 + 0.0457361i
\(703\) −1.23422 2.13773i −0.0465495 0.0806260i
\(704\) −1.47710 −0.0556703
\(705\) 33.4567 29.7585i 1.26005 1.12077i
\(706\) 3.76578 + 6.52252i 0.141727 + 0.245478i
\(707\) −7.38502 11.7786i −0.277742 0.442979i
\(708\) −8.94251 + 7.95403i −0.336080 + 0.298931i
\(709\) 11.3702 + 19.6937i 0.427016 + 0.739613i 0.996606 0.0823158i \(-0.0262316\pi\)
−0.569591 + 0.821928i \(0.692898\pi\)
\(710\) 10.1087 + 17.5088i 0.379373 + 0.657094i
\(711\) 27.5480 + 20.5308i 1.03313 + 0.769965i
\(712\) −4.43818 + 7.68715i −0.166328 + 0.288088i
\(713\) −21.4134 + 37.0891i −0.801939 + 1.38900i
\(714\) 7.15706 + 29.2727i 0.267846 + 1.09550i
\(715\) 7.37636 + 12.7762i 0.275860 + 0.477804i
\(716\) −0.333792 −0.0124744
\(717\) 24.5254 21.8144i 0.915917 0.814674i
\(718\) 6.89602 0.257357
\(719\) 6.06182 10.4994i 0.226068 0.391561i −0.730571 0.682836i \(-0.760746\pi\)
0.956639 + 0.291275i \(0.0940796\pi\)
\(720\) 8.89926 + 6.63238i 0.331656 + 0.247174i
\(721\) −2.34176 3.73495i −0.0872119 0.139097i
\(722\) 9.10507 15.7705i 0.338856 0.586915i
\(723\) 8.57234 + 41.5700i 0.318809 + 1.54600i
\(724\) −11.6211 + 20.1283i −0.431895 + 0.748063i
\(725\) 10.9048 18.8876i 0.404993 0.701468i
\(726\) 11.4123 10.1508i 0.423551 0.376733i
\(727\) 23.0908 39.9945i 0.856392 1.48331i −0.0189562 0.999820i \(-0.506034\pi\)
0.875348 0.483494i \(-0.160632\pi\)
\(728\) −3.34362 + 6.31159i −0.123923 + 0.233923i
\(729\) −9.27375 + 25.3574i −0.343472 + 0.939163i
\(730\) −22.3189 + 38.6574i −0.826058 + 1.43077i
\(731\) 0.0814088 0.00301101
\(732\) 2.00550 + 9.72530i 0.0741255 + 0.359458i
\(733\) −36.0297 −1.33079 −0.665394 0.746493i \(-0.731736\pi\)
−0.665394 + 0.746493i \(0.731736\pi\)
\(734\) −11.5618 20.0257i −0.426755 0.739161i
\(735\) 43.4901 + 10.9835i 1.60416 + 0.405133i
\(736\) −3.14400 + 5.44556i −0.115889 + 0.200726i
\(737\) −6.99017 + 12.1073i −0.257486 + 0.445979i
\(738\) 1.43818 12.2497i 0.0529401 0.450916i
\(739\) 23.2119 + 40.2042i 0.853865 + 1.47894i 0.877694 + 0.479221i \(0.159081\pi\)
−0.0238296 + 0.999716i \(0.507586\pi\)
\(740\) −5.13781 8.89894i −0.188870 0.327132i
\(741\) −0.839294 4.07000i −0.0308322 0.149515i
\(742\) 8.48762 0.309322i 0.311590 0.0113556i
\(743\) 0.598884 + 1.03730i 0.0219709 + 0.0380548i 0.876802 0.480852i \(-0.159673\pi\)
−0.854831 + 0.518907i \(0.826339\pi\)
\(744\) 11.1971 + 3.71351i 0.410505 + 0.136144i
\(745\) 1.23491 0.0452435
\(746\) −14.5822 25.2571i −0.533891 0.924727i
\(747\) −1.56615 + 13.3397i −0.0573025 + 0.488073i
\(748\) 9.71339 0.355157
\(749\) 28.4629 1.03730i 1.04001 0.0379021i
\(750\) −17.6545 + 15.7030i −0.644652 + 0.573394i
\(751\) 48.1199 1.75592 0.877961 0.478733i \(-0.158904\pi\)
0.877961 + 0.478733i \(0.158904\pi\)
\(752\) 3.49381 6.05146i 0.127406 0.220674i
\(753\) 4.24102 + 20.5660i 0.154551 + 0.749468i
\(754\) 3.38874 + 5.86946i 0.123410 + 0.213753i
\(755\) −73.6588 −2.68072
\(756\) 8.28180 + 10.9732i 0.301206 + 0.399092i
\(757\) 49.6006 1.80276 0.901382 0.433025i \(-0.142554\pi\)
0.901382 + 0.433025i \(0.142554\pi\)
\(758\) 6.78111 + 11.7452i 0.246301 + 0.426606i
\(759\) 3.24907 + 15.7558i 0.117934 + 0.571898i
\(760\) −1.64400 + 2.84748i −0.0596340 + 0.103289i
\(761\) −37.5402 −1.36083 −0.680416 0.732826i \(-0.738201\pi\)
−0.680416 + 0.732826i \(0.738201\pi\)
\(762\) 3.69708 3.28842i 0.133931 0.119127i
\(763\) −0.234219 + 0.442124i −0.00847931 + 0.0160060i
\(764\) −16.3214 −0.590488
\(765\) −58.5214 43.6144i −2.11584 1.57688i
\(766\) 1.41783 + 2.45575i 0.0512281 + 0.0887297i
\(767\) 18.6538 0.673551