Properties

Label 126.2.h.c.67.3
Level $126$
Weight $2$
Character 126.67
Analytic conductor $1.006$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(67,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.h (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.3
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 126.67
Dual form 126.2.h.c.79.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(1.73025 - 0.0789082i) q^{3} +(-0.500000 - 0.866025i) q^{4} -0.460505 q^{5} +(-0.796790 + 1.53790i) q^{6} +(2.25729 + 1.38008i) q^{7} +1.00000 q^{8} +(2.98755 - 0.273062i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(1.73025 - 0.0789082i) q^{3} +(-0.500000 - 0.866025i) q^{4} -0.460505 q^{5} +(-0.796790 + 1.53790i) q^{6} +(2.25729 + 1.38008i) q^{7} +1.00000 q^{8} +(2.98755 - 0.273062i) q^{9} +(0.230252 - 0.398809i) q^{10} -3.64766 q^{11} +(-0.933463 - 1.45899i) q^{12} +(0.730252 - 1.26483i) q^{13} +(-2.32383 + 1.26483i) q^{14} +(-0.796790 + 0.0363376i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.86693 + 3.23361i) q^{17} +(-1.25729 + 2.72382i) q^{18} +(-2.02704 - 3.51094i) q^{19} +(0.230252 + 0.398809i) q^{20} +(4.01459 + 2.20977i) q^{21} +(1.82383 - 3.15897i) q^{22} +1.13307 q^{23} +(1.73025 - 0.0789082i) q^{24} -4.78794 q^{25} +(0.730252 + 1.26483i) q^{26} +(5.14766 - 0.708209i) q^{27} +(0.0665372 - 2.64491i) q^{28} +(-4.48755 - 7.77266i) q^{29} +(0.366926 - 0.708209i) q^{30} +(0.257295 + 0.445647i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-6.31138 + 0.287831i) q^{33} +(-1.86693 - 3.23361i) q^{34} +(-1.03950 - 0.635534i) q^{35} +(-1.73025 - 2.45076i) q^{36} +(-4.55408 - 7.88791i) q^{37} +4.05408 q^{38} +(1.16372 - 2.24611i) q^{39} -0.460505 q^{40} +(-0.472958 + 0.819187i) q^{41} +(-3.92101 + 2.37185i) q^{42} +(4.66372 + 8.07779i) q^{43} +(1.82383 + 3.15897i) q^{44} +(-1.37578 + 0.125747i) q^{45} +(-0.566537 + 0.981271i) q^{46} +(-1.16372 + 2.01561i) q^{47} +(-0.796790 + 1.53790i) q^{48} +(3.19076 + 6.23049i) q^{49} +(2.39397 - 4.14647i) q^{50} +(-2.97509 + 5.74228i) q^{51} -1.46050 q^{52} +(6.21780 - 10.7695i) q^{53} +(-1.96050 + 4.81211i) q^{54} +1.67977 q^{55} +(2.25729 + 1.38008i) q^{56} +(-3.78434 - 5.91486i) q^{57} +8.97509 q^{58} +(6.44805 + 11.1684i) q^{59} +(0.429864 + 0.671871i) q^{60} +(-6.04163 + 10.4644i) q^{61} -0.514589 q^{62} +(7.12062 + 3.50667i) q^{63} +1.00000 q^{64} +(-0.336285 + 0.582462i) q^{65} +(2.90642 - 5.60973i) q^{66} +(1.16012 + 2.00938i) q^{67} +3.73385 q^{68} +(1.96050 - 0.0894089i) q^{69} +(1.07014 - 0.582462i) q^{70} +1.67977 q^{71} +(2.98755 - 0.273062i) q^{72} +(-6.62062 + 11.4673i) q^{73} +9.10817 q^{74} +(-8.28434 + 0.377808i) q^{75} +(-2.02704 + 3.51094i) q^{76} +(-8.23385 - 5.03407i) q^{77} +(1.36333 + 2.13086i) q^{78} +(2.50360 - 4.33636i) q^{79} +(0.230252 - 0.398809i) q^{80} +(8.85087 - 1.63157i) q^{81} +(-0.472958 - 0.819187i) q^{82} +(3.32383 + 5.75705i) q^{83} +(-0.0935793 - 4.58162i) q^{84} +(0.859728 - 1.48909i) q^{85} -9.32743 q^{86} +(-8.37792 - 13.0946i) q^{87} -3.64766 q^{88} +(-1.36333 - 2.36135i) q^{89} +(0.578990 - 1.25433i) q^{90} +(3.39397 - 1.84730i) q^{91} +(-0.566537 - 0.981271i) q^{92} +(0.480350 + 0.750780i) q^{93} +(-1.16372 - 2.01561i) q^{94} +(0.933463 + 1.61680i) q^{95} +(-0.933463 - 1.45899i) q^{96} +(-5.59358 - 9.68836i) q^{97} +(-6.99115 - 0.351971i) q^{98} +(-10.8976 + 0.996040i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 4 q^{3} - 3 q^{4} + 10 q^{5} - 2 q^{6} - 2 q^{7} + 6 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{2} + 4 q^{3} - 3 q^{4} + 10 q^{5} - 2 q^{6} - 2 q^{7} + 6 q^{8} - 4 q^{9} - 5 q^{10} + 2 q^{11} - 2 q^{12} - 2 q^{13} - 2 q^{14} - 2 q^{15} - 3 q^{16} - 4 q^{17} + 8 q^{18} - 3 q^{19} - 5 q^{20} - 7 q^{21} - q^{22} + 14 q^{23} + 4 q^{24} + 4 q^{25} - 2 q^{26} + 7 q^{27} + 4 q^{28} - 5 q^{29} - 5 q^{30} - 14 q^{31} - 3 q^{32} - 4 q^{33} - 4 q^{34} - 19 q^{35} - 4 q^{36} - 9 q^{37} + 6 q^{38} - 3 q^{39} + 10 q^{40} - 12 q^{41} + 2 q^{42} + 18 q^{43} - q^{44} - 31 q^{45} - 7 q^{46} + 3 q^{47} - 2 q^{48} - 2 q^{50} + 26 q^{51} + 4 q^{52} + 9 q^{53} + q^{54} + 14 q^{55} - 2 q^{56} + 2 q^{57} + 10 q^{58} + 4 q^{59} + 7 q^{60} + 4 q^{61} + 28 q^{62} + 28 q^{63} + 6 q^{64} - 12 q^{65} + 23 q^{66} + 5 q^{67} + 8 q^{68} - q^{69} + 2 q^{70} + 14 q^{71} - 4 q^{72} - 25 q^{73} + 18 q^{74} - 25 q^{75} - 3 q^{76} - 35 q^{77} + 9 q^{78} + 7 q^{79} - 5 q^{80} + 32 q^{81} - 12 q^{82} + 8 q^{83} + 5 q^{84} + 14 q^{85} - 36 q^{86} - 20 q^{87} + 2 q^{88} - 9 q^{89} + 29 q^{90} + 4 q^{91} - 7 q^{92} - 3 q^{93} + 3 q^{94} + 2 q^{95} - 2 q^{96} - 28 q^{97} - 12 q^{98} - 41 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 1.73025 0.0789082i 0.998962 0.0455577i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.460505 −0.205944 −0.102972 0.994684i \(-0.532835\pi\)
−0.102972 + 0.994684i \(0.532835\pi\)
\(6\) −0.796790 + 1.53790i −0.325288 + 0.627844i
\(7\) 2.25729 + 1.38008i 0.853177 + 0.521621i
\(8\) 1.00000 0.353553
\(9\) 2.98755 0.273062i 0.995849 0.0910208i
\(10\) 0.230252 0.398809i 0.0728122 0.126114i
\(11\) −3.64766 −1.09981 −0.549906 0.835227i \(-0.685336\pi\)
−0.549906 + 0.835227i \(0.685336\pi\)
\(12\) −0.933463 1.45899i −0.269467 0.421174i
\(13\) 0.730252 1.26483i 0.202536 0.350802i −0.746809 0.665038i \(-0.768415\pi\)
0.949345 + 0.314236i \(0.101748\pi\)
\(14\) −2.32383 + 1.26483i −0.621070 + 0.338041i
\(15\) −0.796790 + 0.0363376i −0.205730 + 0.00938234i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.86693 + 3.23361i −0.452796 + 0.784266i −0.998558 0.0536743i \(-0.982907\pi\)
0.545763 + 0.837940i \(0.316240\pi\)
\(18\) −1.25729 + 2.72382i −0.296347 + 0.642011i
\(19\) −2.02704 3.51094i −0.465035 0.805465i 0.534168 0.845378i \(-0.320625\pi\)
−0.999203 + 0.0399136i \(0.987292\pi\)
\(20\) 0.230252 + 0.398809i 0.0514860 + 0.0891764i
\(21\) 4.01459 + 2.20977i 0.876055 + 0.482211i
\(22\) 1.82383 3.15897i 0.388842 0.673495i
\(23\) 1.13307 0.236262 0.118131 0.992998i \(-0.462310\pi\)
0.118131 + 0.992998i \(0.462310\pi\)
\(24\) 1.73025 0.0789082i 0.353186 0.0161071i
\(25\) −4.78794 −0.957587
\(26\) 0.730252 + 1.26483i 0.143214 + 0.248054i
\(27\) 5.14766 0.708209i 0.990668 0.136295i
\(28\) 0.0665372 2.64491i 0.0125744 0.499842i
\(29\) −4.48755 7.77266i −0.833317 1.44335i −0.895394 0.445275i \(-0.853106\pi\)
0.0620772 0.998071i \(-0.480228\pi\)
\(30\) 0.366926 0.708209i 0.0669911 0.129301i
\(31\) 0.257295 + 0.445647i 0.0462115 + 0.0800406i 0.888206 0.459446i \(-0.151952\pi\)
−0.841994 + 0.539486i \(0.818619\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −6.31138 + 0.287831i −1.09867 + 0.0501049i
\(34\) −1.86693 3.23361i −0.320175 0.554560i
\(35\) −1.03950 0.635534i −0.175707 0.107425i
\(36\) −1.73025 2.45076i −0.288375 0.408460i
\(37\) −4.55408 7.88791i −0.748687 1.29676i −0.948452 0.316920i \(-0.897351\pi\)
0.199765 0.979844i \(-0.435982\pi\)
\(38\) 4.05408 0.657659
\(39\) 1.16372 2.24611i 0.186344 0.359665i
\(40\) −0.460505 −0.0728122
\(41\) −0.472958 + 0.819187i −0.0738636 + 0.127936i −0.900592 0.434666i \(-0.856866\pi\)
0.826728 + 0.562602i \(0.190200\pi\)
\(42\) −3.92101 + 2.37185i −0.605025 + 0.365985i
\(43\) 4.66372 + 8.07779i 0.711210 + 1.23185i 0.964403 + 0.264436i \(0.0851858\pi\)
−0.253193 + 0.967416i \(0.581481\pi\)
\(44\) 1.82383 + 3.15897i 0.274953 + 0.476233i
\(45\) −1.37578 + 0.125747i −0.205089 + 0.0187452i
\(46\) −0.566537 + 0.981271i −0.0835314 + 0.144681i
\(47\) −1.16372 + 2.01561i −0.169745 + 0.294007i −0.938330 0.345740i \(-0.887628\pi\)
0.768585 + 0.639748i \(0.220961\pi\)
\(48\) −0.796790 + 1.53790i −0.115007 + 0.221976i
\(49\) 3.19076 + 6.23049i 0.455822 + 0.890071i
\(50\) 2.39397 4.14647i 0.338558 0.586400i
\(51\) −2.97509 + 5.74228i −0.416596 + 0.804080i
\(52\) −1.46050 −0.202536
\(53\) 6.21780 10.7695i 0.854080 1.47931i −0.0234151 0.999726i \(-0.507454\pi\)
0.877495 0.479585i \(-0.159213\pi\)
\(54\) −1.96050 + 4.81211i −0.266791 + 0.654845i
\(55\) 1.67977 0.226500
\(56\) 2.25729 + 1.38008i 0.301644 + 0.184421i
\(57\) −3.78434 5.91486i −0.501248 0.783443i
\(58\) 8.97509 1.17849
\(59\) 6.44805 + 11.1684i 0.839465 + 1.45400i 0.890343 + 0.455291i \(0.150465\pi\)
−0.0508779 + 0.998705i \(0.516202\pi\)
\(60\) 0.429864 + 0.671871i 0.0554952 + 0.0867382i
\(61\) −6.04163 + 10.4644i −0.773552 + 1.33983i 0.162053 + 0.986782i \(0.448188\pi\)
−0.935605 + 0.353049i \(0.885145\pi\)
\(62\) −0.514589 −0.0653529
\(63\) 7.12062 + 3.50667i 0.897114 + 0.441799i
\(64\) 1.00000 0.125000
\(65\) −0.336285 + 0.582462i −0.0417110 + 0.0722456i
\(66\) 2.90642 5.60973i 0.357756 0.690510i
\(67\) 1.16012 + 2.00938i 0.141731 + 0.245485i 0.928148 0.372210i \(-0.121400\pi\)
−0.786418 + 0.617695i \(0.788067\pi\)
\(68\) 3.73385 0.452796
\(69\) 1.96050 0.0894089i 0.236017 0.0107636i
\(70\) 1.07014 0.582462i 0.127906 0.0696176i
\(71\) 1.67977 0.199352 0.0996758 0.995020i \(-0.468219\pi\)
0.0996758 + 0.995020i \(0.468219\pi\)
\(72\) 2.98755 0.273062i 0.352086 0.0321807i
\(73\) −6.62062 + 11.4673i −0.774885 + 1.34214i 0.159974 + 0.987121i \(0.448859\pi\)
−0.934859 + 0.355019i \(0.884474\pi\)
\(74\) 9.10817 1.05880
\(75\) −8.28434 + 0.377808i −0.956593 + 0.0436255i
\(76\) −2.02704 + 3.51094i −0.232518 + 0.402732i
\(77\) −8.23385 5.03407i −0.938334 0.573685i
\(78\) 1.36333 + 2.13086i 0.154366 + 0.241272i
\(79\) 2.50360 4.33636i 0.281677 0.487879i −0.690121 0.723694i \(-0.742443\pi\)
0.971798 + 0.235815i \(0.0757761\pi\)
\(80\) 0.230252 0.398809i 0.0257430 0.0445882i
\(81\) 8.85087 1.63157i 0.983430 0.181286i
\(82\) −0.472958 0.819187i −0.0522295 0.0904641i
\(83\) 3.32383 + 5.75705i 0.364838 + 0.631918i 0.988750 0.149577i \(-0.0477911\pi\)
−0.623912 + 0.781494i \(0.714458\pi\)
\(84\) −0.0935793 4.58162i −0.0102103 0.499896i
\(85\) 0.859728 1.48909i 0.0932506 0.161515i
\(86\) −9.32743 −1.00580
\(87\) −8.37792 13.0946i −0.898207 1.40388i
\(88\) −3.64766 −0.388842
\(89\) −1.36333 2.36135i −0.144512 0.250303i 0.784679 0.619903i \(-0.212828\pi\)
−0.929191 + 0.369600i \(0.879495\pi\)
\(90\) 0.578990 1.25433i 0.0610309 0.132218i
\(91\) 3.39397 1.84730i 0.355784 0.193649i
\(92\) −0.566537 0.981271i −0.0590656 0.102305i
\(93\) 0.480350 + 0.750780i 0.0498099 + 0.0778522i
\(94\) −1.16372 2.01561i −0.120028 0.207895i
\(95\) 0.933463 + 1.61680i 0.0957713 + 0.165881i
\(96\) −0.933463 1.45899i −0.0952711 0.148907i
\(97\) −5.59358 9.68836i −0.567942 0.983704i −0.996769 0.0803178i \(-0.974406\pi\)
0.428827 0.903386i \(-0.358927\pi\)
\(98\) −6.99115 0.351971i −0.706212 0.0355544i
\(99\) −10.8976 + 0.996040i −1.09525 + 0.100106i
\(100\) 2.39397 + 4.14647i 0.239397 + 0.414647i
\(101\) 13.7558 1.36876 0.684378 0.729127i \(-0.260074\pi\)
0.684378 + 0.729127i \(0.260074\pi\)
\(102\) −3.48541 5.44765i −0.345107 0.539397i
\(103\) 11.1623 1.09985 0.549925 0.835214i \(-0.314656\pi\)
0.549925 + 0.835214i \(0.314656\pi\)
\(104\) 0.730252 1.26483i 0.0716071 0.124027i
\(105\) −1.84874 1.01761i −0.180418 0.0993085i
\(106\) 6.21780 + 10.7695i 0.603926 + 1.04603i
\(107\) −3.89037 6.73832i −0.376096 0.651418i 0.614394 0.788999i \(-0.289400\pi\)
−0.990490 + 0.137581i \(0.956067\pi\)
\(108\) −3.18716 4.10390i −0.306684 0.394898i
\(109\) −3.75729 + 6.50783i −0.359884 + 0.623337i −0.987941 0.154830i \(-0.950517\pi\)
0.628058 + 0.778167i \(0.283850\pi\)
\(110\) −0.839883 + 1.45472i −0.0800797 + 0.138702i
\(111\) −8.50214 13.2887i −0.806987 1.26131i
\(112\) −2.32383 + 1.26483i −0.219581 + 0.119516i
\(113\) 3.03064 5.24922i 0.285099 0.493805i −0.687534 0.726152i \(-0.741307\pi\)
0.972633 + 0.232346i \(0.0746403\pi\)
\(114\) 7.01459 0.319901i 0.656976 0.0299614i
\(115\) −0.521786 −0.0486568
\(116\) −4.48755 + 7.77266i −0.416658 + 0.721673i
\(117\) 1.83628 3.97816i 0.169765 0.367781i
\(118\) −12.8961 −1.18718
\(119\) −8.67684 + 4.72270i −0.795405 + 0.432929i
\(120\) −0.796790 + 0.0363376i −0.0727366 + 0.00331716i
\(121\) 2.30545 0.209586
\(122\) −6.04163 10.4644i −0.546984 0.947403i
\(123\) −0.753696 + 1.45472i −0.0679585 + 0.131168i
\(124\) 0.257295 0.445647i 0.0231057 0.0400203i
\(125\) 4.50739 0.403153
\(126\) −6.59718 + 4.41330i −0.587723 + 0.393168i
\(127\) 8.80992 0.781754 0.390877 0.920443i \(-0.372172\pi\)
0.390877 + 0.920443i \(0.372172\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 8.70681 + 13.6086i 0.766592 + 1.19817i
\(130\) −0.336285 0.582462i −0.0294941 0.0510853i
\(131\) 21.1373 1.84678 0.923389 0.383865i \(-0.125407\pi\)
0.923389 + 0.383865i \(0.125407\pi\)
\(132\) 3.40496 + 5.32190i 0.296364 + 0.463212i
\(133\) 0.269748 10.7227i 0.0233901 0.929777i
\(134\) −2.32023 −0.200438
\(135\) −2.37052 + 0.326134i −0.204022 + 0.0280691i
\(136\) −1.86693 + 3.23361i −0.160088 + 0.277280i
\(137\) −4.40642 −0.376466 −0.188233 0.982124i \(-0.560276\pi\)
−0.188233 + 0.982124i \(0.560276\pi\)
\(138\) −0.902822 + 1.74255i −0.0768533 + 0.148336i
\(139\) −1.01245 + 1.75362i −0.0858751 + 0.148740i −0.905764 0.423783i \(-0.860702\pi\)
0.819889 + 0.572523i \(0.194035\pi\)
\(140\) −0.0306407 + 1.21800i −0.00258961 + 0.102939i
\(141\) −1.85447 + 3.57935i −0.156175 + 0.301435i
\(142\) −0.839883 + 1.45472i −0.0704815 + 0.122077i
\(143\) −2.66372 + 4.61369i −0.222751 + 0.385816i
\(144\) −1.25729 + 2.72382i −0.104775 + 0.226985i
\(145\) 2.06654 + 3.57935i 0.171617 + 0.297249i
\(146\) −6.62062 11.4673i −0.547927 0.949037i
\(147\) 6.01245 + 10.5286i 0.495899 + 0.868380i
\(148\) −4.55408 + 7.88791i −0.374343 + 0.648382i
\(149\) −9.16225 −0.750601 −0.375300 0.926903i \(-0.622460\pi\)
−0.375300 + 0.926903i \(0.622460\pi\)
\(150\) 3.81498 7.36335i 0.311492 0.601215i
\(151\) −0.103896 −0.00845496 −0.00422748 0.999991i \(-0.501346\pi\)
−0.00422748 + 0.999991i \(0.501346\pi\)
\(152\) −2.02704 3.51094i −0.164415 0.284775i
\(153\) −4.69455 + 10.1703i −0.379532 + 0.822224i
\(154\) 8.47656 4.61369i 0.683060 0.371782i
\(155\) −0.118485 0.205223i −0.00951698 0.0164839i
\(156\) −2.52704 + 0.115246i −0.202325 + 0.00922705i
\(157\) −10.4911 18.1712i −0.837285 1.45022i −0.892157 0.451726i \(-0.850808\pi\)
0.0548721 0.998493i \(-0.482525\pi\)
\(158\) 2.50360 + 4.33636i 0.199176 + 0.344982i
\(159\) 9.90856 19.1247i 0.785800 1.51668i
\(160\) 0.230252 + 0.398809i 0.0182031 + 0.0315286i
\(161\) 2.55768 + 1.56373i 0.201574 + 0.123239i
\(162\) −3.01245 + 8.48087i −0.236681 + 0.666320i
\(163\) −11.5182 19.9501i −0.902174 1.56261i −0.824666 0.565620i \(-0.808637\pi\)
−0.0775078 0.996992i \(-0.524696\pi\)
\(164\) 0.945916 0.0738636
\(165\) 2.90642 0.132547i 0.226265 0.0103188i
\(166\) −6.64766 −0.515959
\(167\) −5.31498 + 9.20581i −0.411285 + 0.712367i −0.995031 0.0995698i \(-0.968253\pi\)
0.583745 + 0.811937i \(0.301587\pi\)
\(168\) 4.01459 + 2.20977i 0.309732 + 0.170487i
\(169\) 5.43346 + 9.41103i 0.417959 + 0.723926i
\(170\) 0.859728 + 1.48909i 0.0659382 + 0.114208i
\(171\) −7.01459 9.93559i −0.536419 0.759793i
\(172\) 4.66372 8.07779i 0.355605 0.615926i
\(173\) −1.46936 + 2.54500i −0.111713 + 0.193493i −0.916461 0.400124i \(-0.868967\pi\)
0.804748 + 0.593617i \(0.202301\pi\)
\(174\) 15.5292 0.708209i 1.17726 0.0536892i
\(175\) −10.8078 6.60773i −0.816991 0.499498i
\(176\) 1.82383 3.15897i 0.137476 0.238116i
\(177\) 12.0380 + 18.8153i 0.904834 + 1.41424i
\(178\) 2.72665 0.204371
\(179\) −4.58113 + 7.93474i −0.342409 + 0.593071i −0.984880 0.173240i \(-0.944576\pi\)
0.642470 + 0.766311i \(0.277910\pi\)
\(180\) 0.796790 + 1.12859i 0.0593892 + 0.0841199i
\(181\) 22.4284 1.66709 0.833545 0.552452i \(-0.186308\pi\)
0.833545 + 0.552452i \(0.186308\pi\)
\(182\) −0.0971780 + 3.86291i −0.00720331 + 0.286338i
\(183\) −9.62782 + 18.5828i −0.711709 + 1.37368i
\(184\) 1.13307 0.0835314
\(185\) 2.09718 + 3.63242i 0.154188 + 0.267061i
\(186\) −0.890369 + 0.0406053i −0.0652850 + 0.00297733i
\(187\) 6.80992 11.7951i 0.497990 0.862545i
\(188\) 2.32743 0.169745
\(189\) 12.5972 + 5.50555i 0.916310 + 0.400470i
\(190\) −1.86693 −0.135441
\(191\) −1.24484 + 2.15613i −0.0900736 + 0.156012i −0.907542 0.419962i \(-0.862044\pi\)
0.817468 + 0.575974i \(0.195377\pi\)
\(192\) 1.73025 0.0789082i 0.124870 0.00569471i
\(193\) −2.24484 3.88818i −0.161587 0.279877i 0.773851 0.633368i \(-0.218328\pi\)
−0.935438 + 0.353491i \(0.884995\pi\)
\(194\) 11.1872 0.803191
\(195\) −0.535897 + 1.03434i −0.0383763 + 0.0740708i
\(196\) 3.80039 5.87852i 0.271456 0.419895i
\(197\) 12.7339 0.907249 0.453625 0.891193i \(-0.350131\pi\)
0.453625 + 0.891193i \(0.350131\pi\)
\(198\) 4.58619 9.93559i 0.325926 0.706092i
\(199\) −1.47296 + 2.55124i −0.104415 + 0.180852i −0.913499 0.406841i \(-0.866630\pi\)
0.809084 + 0.587693i \(0.199964\pi\)
\(200\) −4.78794 −0.338558
\(201\) 2.16585 + 3.38519i 0.152767 + 0.238773i
\(202\) −6.87792 + 11.9129i −0.483928 + 0.838189i
\(203\) 0.597178 23.7384i 0.0419137 1.66611i
\(204\) 6.46050 0.294632i 0.452326 0.0206283i
\(205\) 0.217799 0.377240i 0.0152118 0.0263476i
\(206\) −5.58113 + 9.66679i −0.388855 + 0.673517i
\(207\) 3.38511 0.309400i 0.235282 0.0215048i
\(208\) 0.730252 + 1.26483i 0.0506339 + 0.0877005i
\(209\) 7.39397 + 12.8067i 0.511451 + 0.885860i
\(210\) 1.80564 1.09225i 0.124601 0.0753724i
\(211\) −0.608168 + 1.05338i −0.0418680 + 0.0725176i −0.886200 0.463303i \(-0.846664\pi\)
0.844332 + 0.535820i \(0.179998\pi\)
\(212\) −12.4356 −0.854080
\(213\) 2.90642 0.132547i 0.199145 0.00908200i
\(214\) 7.78074 0.531880
\(215\) −2.14766 3.71986i −0.146469 0.253693i
\(216\) 5.14766 0.708209i 0.350254 0.0481875i
\(217\) −0.0342393 + 1.36104i −0.00232432 + 0.0923937i
\(218\) −3.75729 6.50783i −0.254476 0.440766i
\(219\) −10.5505 + 20.3637i −0.712936 + 1.37605i
\(220\) −0.839883 1.45472i −0.0566249 0.0980773i
\(221\) 2.72665 + 4.72270i 0.183415 + 0.317683i
\(222\) 15.7594 0.718710i 1.05770 0.0482366i
\(223\) −0.445916 0.772349i −0.0298607 0.0517203i 0.850709 0.525637i \(-0.176173\pi\)
−0.880570 + 0.473917i \(0.842840\pi\)
\(224\) 0.0665372 2.64491i 0.00444571 0.176721i
\(225\) −14.3042 + 1.30740i −0.953612 + 0.0871603i
\(226\) 3.03064 + 5.24922i 0.201595 + 0.349173i
\(227\) −14.6519 −0.972483 −0.486242 0.873824i \(-0.661632\pi\)
−0.486242 + 0.873824i \(0.661632\pi\)
\(228\) −3.23025 + 6.23476i −0.213929 + 0.412907i
\(229\) −9.57587 −0.632791 −0.316396 0.948627i \(-0.602473\pi\)
−0.316396 + 0.948627i \(0.602473\pi\)
\(230\) 0.260893 0.451880i 0.0172028 0.0297961i
\(231\) −14.6439 8.06049i −0.963496 0.530341i
\(232\) −4.48755 7.77266i −0.294622 0.510300i
\(233\) 7.21420 + 12.4954i 0.472618 + 0.818598i 0.999509 0.0313345i \(-0.00997571\pi\)
−0.526891 + 0.849933i \(0.676642\pi\)
\(234\) 2.52704 + 3.57935i 0.165198 + 0.233989i
\(235\) 0.535897 0.928200i 0.0349580 0.0605491i
\(236\) 6.44805 11.1684i 0.419732 0.726998i
\(237\) 3.98968 7.70055i 0.259158 0.500205i
\(238\) 0.248440 9.87572i 0.0161040 0.640148i
\(239\) −9.15486 + 15.8567i −0.592179 + 1.02568i 0.401760 + 0.915745i \(0.368399\pi\)
−0.993938 + 0.109938i \(0.964935\pi\)
\(240\) 0.366926 0.708209i 0.0236849 0.0457147i
\(241\) 0.0933847 0.00601544 0.00300772 0.999995i \(-0.499043\pi\)
0.00300772 + 0.999995i \(0.499043\pi\)
\(242\) −1.15272 + 1.99658i −0.0741000 + 0.128345i
\(243\) 15.1855 3.52144i 0.974150 0.225901i
\(244\) 12.0833 0.773552
\(245\) −1.46936 2.86917i −0.0938739 0.183305i
\(246\) −0.882977 1.38008i −0.0562966 0.0879907i
\(247\) −5.92101 −0.376745
\(248\) 0.257295 + 0.445647i 0.0163382 + 0.0282986i
\(249\) 6.20535 + 9.69886i 0.393248 + 0.614641i
\(250\) −2.25370 + 3.90352i −0.142536 + 0.246880i
\(251\) −18.2733 −1.15340 −0.576702 0.816955i \(-0.695661\pi\)
−0.576702 + 0.816955i \(0.695661\pi\)
\(252\) −0.523443 7.91998i −0.0329738 0.498912i
\(253\) −4.13307 −0.259844
\(254\) −4.40496 + 7.62961i −0.276392 + 0.478724i
\(255\) 1.37005 2.64435i 0.0857956 0.165595i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −21.0512 −1.31314 −0.656568 0.754267i \(-0.727992\pi\)
−0.656568 + 0.754267i \(0.727992\pi\)
\(258\) −16.1388 + 0.736011i −1.00476 + 0.0458221i
\(259\) 0.606032 24.0903i 0.0376570 1.49690i
\(260\) 0.672570 0.0417110
\(261\) −15.5292 21.9958i −0.961232 1.36151i
\(262\) −10.5687 + 18.3055i −0.652935 + 1.13092i
\(263\) −5.16518 −0.318499 −0.159249 0.987238i \(-0.550907\pi\)
−0.159249 + 0.987238i \(0.550907\pi\)
\(264\) −6.31138 + 0.287831i −0.388439 + 0.0177148i
\(265\) −2.86333 + 4.95943i −0.175893 + 0.304655i
\(266\) 9.15126 + 5.59496i 0.561100 + 0.343049i
\(267\) −2.54523 3.97816i −0.155766 0.243459i
\(268\) 1.16012 2.00938i 0.0708654 0.122742i
\(269\) 8.42840 14.5984i 0.513889 0.890081i −0.485981 0.873969i \(-0.661538\pi\)
0.999870 0.0161123i \(-0.00512891\pi\)
\(270\) 0.902822 2.21600i 0.0549440 0.134862i
\(271\) 12.5562 + 21.7480i 0.762736 + 1.32110i 0.941435 + 0.337194i \(0.109478\pi\)
−0.178699 + 0.983904i \(0.557189\pi\)
\(272\) −1.86693 3.23361i −0.113199 0.196066i
\(273\) 5.72665 3.46410i 0.346593 0.209657i
\(274\) 2.20321 3.81607i 0.133101 0.230537i
\(275\) 17.4648 1.05317
\(276\) −1.05768 1.65314i −0.0636650 0.0995075i
\(277\) 3.38151 0.203176 0.101588 0.994827i \(-0.467608\pi\)
0.101588 + 0.994827i \(0.467608\pi\)
\(278\) −1.01245 1.75362i −0.0607229 0.105175i
\(279\) 0.890369 + 1.26113i 0.0533050 + 0.0755022i
\(280\) −1.03950 0.635534i −0.0621217 0.0379804i
\(281\) −10.1388 17.5609i −0.604831 1.04760i −0.992078 0.125622i \(-0.959907\pi\)
0.387248 0.921976i \(-0.373426\pi\)
\(282\) −2.17257 3.39569i −0.129375 0.202211i
\(283\) −8.67471 15.0250i −0.515658 0.893145i −0.999835 0.0181754i \(-0.994214\pi\)
0.484177 0.874970i \(-0.339119\pi\)
\(284\) −0.839883 1.45472i −0.0498379 0.0863218i
\(285\) 1.74271 + 2.72382i 0.103229 + 0.161345i
\(286\) −2.66372 4.61369i −0.157509 0.272813i
\(287\) −2.19815 + 1.19643i −0.129753 + 0.0706228i
\(288\) −1.73025 2.45076i −0.101956 0.144412i
\(289\) 1.52918 + 2.64861i 0.0899517 + 0.155801i
\(290\) −4.13307 −0.242702
\(291\) −10.4428 16.3219i −0.612168 0.956809i
\(292\) 13.2412 0.774885
\(293\) −4.93560 + 8.54871i −0.288341 + 0.499421i −0.973414 0.229054i \(-0.926437\pi\)
0.685073 + 0.728474i \(0.259770\pi\)
\(294\) −12.1242 0.0573390i −0.707099 0.00334408i
\(295\) −2.96936 5.14308i −0.172883 0.299442i
\(296\) −4.55408 7.88791i −0.264701 0.458475i
\(297\) −18.7769 + 2.58331i −1.08955 + 0.149899i
\(298\) 4.58113 7.93474i 0.265378 0.459647i
\(299\) 0.827430 1.43315i 0.0478515 0.0828813i
\(300\) 4.46936 + 6.98554i 0.258039 + 0.403310i
\(301\) −0.620621 + 24.6703i −0.0357720 + 1.42197i
\(302\) 0.0519482 0.0899768i 0.00298928 0.00517759i
\(303\) 23.8011 1.08545i 1.36734 0.0623574i
\(304\) 4.05408 0.232518
\(305\) 2.78220 4.81891i 0.159308 0.275930i
\(306\) −6.46050 9.15077i −0.369322 0.523115i
\(307\) 7.78794 0.444481 0.222240 0.974992i \(-0.428663\pi\)
0.222240 + 0.974992i \(0.428663\pi\)
\(308\) −0.242705 + 9.64776i −0.0138294 + 0.549732i
\(309\) 19.3135 0.880794i 1.09871 0.0501066i
\(310\) 0.236971 0.0134590
\(311\) −7.70535 13.3461i −0.436930 0.756785i 0.560521 0.828140i \(-0.310601\pi\)
−0.997451 + 0.0713552i \(0.977268\pi\)
\(312\) 1.16372 2.24611i 0.0658824 0.127161i
\(313\) −4.24844 + 7.35851i −0.240136 + 0.415928i −0.960753 0.277406i \(-0.910525\pi\)
0.720617 + 0.693334i \(0.243859\pi\)
\(314\) 20.9823 1.18410
\(315\) −3.27908 1.61484i −0.184755 0.0909859i
\(316\) −5.00720 −0.281677
\(317\) 7.05262 12.2155i 0.396115 0.686091i −0.597128 0.802146i \(-0.703692\pi\)
0.993243 + 0.116055i \(0.0370249\pi\)
\(318\) 11.6082 + 18.1434i 0.650954 + 1.01743i
\(319\) 16.3691 + 28.3520i 0.916491 + 1.58741i
\(320\) −0.460505 −0.0257430
\(321\) −7.26303 11.3520i −0.405383 0.633607i
\(322\) −2.63307 + 1.43315i −0.146736 + 0.0798664i
\(323\) 15.1373 0.842264
\(324\) −5.83842 6.84929i −0.324357 0.380516i
\(325\) −3.49640 + 6.05594i −0.193945 + 0.335923i
\(326\) 23.0364 1.27587
\(327\) −5.98755 + 11.5567i −0.331112 + 0.639085i
\(328\) −0.472958 + 0.819187i −0.0261147 + 0.0452320i
\(329\) −5.40856 + 2.94381i −0.298183 + 0.162298i
\(330\) −1.33842 + 2.58331i −0.0736776 + 0.142206i
\(331\) −13.7719 + 23.8536i −0.756971 + 1.31111i 0.187417 + 0.982280i \(0.439988\pi\)
−0.944388 + 0.328832i \(0.893345\pi\)
\(332\) 3.32383 5.75705i 0.182419 0.315959i
\(333\) −15.7594 22.3219i −0.863611 1.22323i
\(334\) −5.31498 9.20581i −0.290823 0.503720i
\(335\) −0.534239 0.925330i −0.0291886 0.0505562i
\(336\) −3.92101 + 2.37185i −0.213909 + 0.129395i
\(337\) 0.748440 1.29634i 0.0407701 0.0706159i −0.844920 0.534892i \(-0.820352\pi\)
0.885690 + 0.464276i \(0.153686\pi\)
\(338\) −10.8669 −0.591083
\(339\) 4.82957 9.32162i 0.262306 0.506281i
\(340\) −1.71946 −0.0932506
\(341\) −0.938524 1.62557i −0.0508239 0.0880296i
\(342\) 12.1118 1.10702i 0.654929 0.0598607i
\(343\) −1.39610 + 18.4676i −0.0753825 + 0.997155i
\(344\) 4.66372 + 8.07779i 0.251451 + 0.435525i
\(345\) −0.902822 + 0.0411732i −0.0486063 + 0.00221669i
\(346\) −1.46936 2.54500i −0.0789932 0.136820i
\(347\) 9.14406 + 15.8380i 0.490879 + 0.850228i 0.999945 0.0105001i \(-0.00334233\pi\)
−0.509066 + 0.860728i \(0.670009\pi\)
\(348\) −7.15126 + 13.8028i −0.383348 + 0.739906i
\(349\) −3.90136 6.75735i −0.208835 0.361713i 0.742513 0.669832i \(-0.233634\pi\)
−0.951348 + 0.308119i \(0.900300\pi\)
\(350\) 11.1264 6.05594i 0.594729 0.323704i
\(351\) 2.86333 7.02811i 0.152833 0.375133i
\(352\) 1.82383 + 3.15897i 0.0972106 + 0.168374i
\(353\) 26.9253 1.43309 0.716544 0.697542i \(-0.245723\pi\)
0.716544 + 0.697542i \(0.245723\pi\)
\(354\) −22.3135 + 1.01761i −1.18595 + 0.0540853i
\(355\) −0.773541 −0.0410553
\(356\) −1.36333 + 2.36135i −0.0722562 + 0.125151i
\(357\) −14.6405 + 8.85614i −0.774856 + 0.468717i
\(358\) −4.58113 7.93474i −0.242120 0.419364i
\(359\) −3.13161 5.42411i −0.165280 0.286274i 0.771475 0.636260i \(-0.219519\pi\)
−0.936755 + 0.349987i \(0.886186\pi\)
\(360\) −1.37578 + 0.125747i −0.0725100 + 0.00662743i
\(361\) 1.28220 2.22084i 0.0674842 0.116886i
\(362\) −11.2142 + 19.4236i −0.589405 + 1.02088i
\(363\) 3.98901 0.181919i 0.209369 0.00954827i
\(364\) −3.29679 2.01561i −0.172799 0.105647i
\(365\) 3.04883 5.28073i 0.159583 0.276406i
\(366\) −11.2793 17.6293i −0.589577 0.921500i
\(367\) 29.2733 1.52806 0.764028 0.645183i \(-0.223219\pi\)
0.764028 + 0.645183i \(0.223219\pi\)
\(368\) −0.566537 + 0.981271i −0.0295328 + 0.0511523i
\(369\) −1.18929 + 2.57651i −0.0619122 + 0.134128i
\(370\) −4.19436 −0.218054
\(371\) 28.8982 15.7290i 1.50032 0.816608i
\(372\) 0.410019 0.791385i 0.0212585 0.0410314i
\(373\) 17.8597 0.924742 0.462371 0.886687i \(-0.346999\pi\)
0.462371 + 0.886687i \(0.346999\pi\)
\(374\) 6.80992 + 11.7951i 0.352132 + 0.609911i
\(375\) 7.79893 0.355670i 0.402735 0.0183667i
\(376\) −1.16372 + 2.01561i −0.0600140 + 0.103947i
\(377\) −13.1082 −0.675105
\(378\) −11.0665 + 8.15670i −0.569201 + 0.419535i
\(379\) −22.4255 −1.15192 −0.575960 0.817478i \(-0.695371\pi\)
−0.575960 + 0.817478i \(0.695371\pi\)
\(380\) 0.933463 1.61680i 0.0478856 0.0829403i
\(381\) 15.2434 0.695175i 0.780942 0.0356149i
\(382\) −1.24484 2.15613i −0.0636916 0.110317i
\(383\) −14.1403 −0.722534 −0.361267 0.932462i \(-0.617656\pi\)
−0.361267 + 0.932462i \(0.617656\pi\)
\(384\) −0.796790 + 1.53790i −0.0406610 + 0.0784805i
\(385\) 3.79173 + 2.31821i 0.193244 + 0.118147i
\(386\) 4.48968 0.228519
\(387\) 16.1388 + 22.8593i 0.820382 + 1.16200i
\(388\) −5.59358 + 9.68836i −0.283971 + 0.491852i
\(389\) −23.1301 −1.17275 −0.586373 0.810041i \(-0.699445\pi\)
−0.586373 + 0.810041i \(0.699445\pi\)
\(390\) −0.627819 0.981271i −0.0317908 0.0496886i
\(391\) −2.11537 + 3.66392i −0.106979 + 0.185292i
\(392\) 3.19076 + 6.23049i 0.161158 + 0.314688i
\(393\) 36.5729 1.66791i 1.84486 0.0841350i
\(394\) −6.36693 + 11.0278i −0.320761 + 0.555574i
\(395\) −1.15292 + 1.99691i −0.0580097 + 0.100476i
\(396\) 6.31138 + 8.93955i 0.317159 + 0.449229i
\(397\) −5.13307 8.89075i −0.257622 0.446214i 0.707983 0.706230i \(-0.249605\pi\)
−0.965604 + 0.260016i \(0.916272\pi\)
\(398\) −1.47296 2.55124i −0.0738327 0.127882i
\(399\) −0.379379 18.5743i −0.0189927 0.929877i
\(400\) 2.39397 4.14647i 0.119698 0.207324i
\(401\) 34.0335 1.69955 0.849775 0.527146i \(-0.176738\pi\)
0.849775 + 0.527146i \(0.176738\pi\)
\(402\) −4.01459 + 0.183086i −0.200230 + 0.00913148i
\(403\) 0.751560 0.0374379
\(404\) −6.87792 11.9129i −0.342189 0.592689i
\(405\) −4.07587 + 0.751347i −0.202532 + 0.0373348i
\(406\) 20.2594 + 12.3863i 1.00546 + 0.614724i
\(407\) 16.6118 + 28.7724i 0.823415 + 1.42620i
\(408\) −2.97509 + 5.74228i −0.147289 + 0.284285i
\(409\) 1.74484 + 3.02215i 0.0862769 + 0.149436i 0.905935 0.423418i \(-0.139170\pi\)
−0.819658 + 0.572854i \(0.805836\pi\)
\(410\) 0.217799 + 0.377240i 0.0107563 + 0.0186305i
\(411\) −7.62422 + 0.347703i −0.376075 + 0.0171509i
\(412\) −5.58113 9.66679i −0.274962 0.476249i
\(413\) −0.858071 + 34.1091i −0.0422229 + 1.67840i
\(414\) −1.42461 + 3.08629i −0.0700157 + 0.151683i
\(415\) −1.53064 2.65115i −0.0751362 0.130140i
\(416\) −1.46050 −0.0716071
\(417\) −1.61342 + 3.11410i −0.0790097 + 0.152498i
\(418\) −14.7879 −0.723302
\(419\) 14.4897 25.0969i 0.707867 1.22606i −0.257779 0.966204i \(-0.582991\pi\)
0.965647 0.259858i \(-0.0836759\pi\)
\(420\) 0.0430937 + 2.10986i 0.00210276 + 0.102951i
\(421\) −1.06128 1.83819i −0.0517237 0.0895881i 0.839004 0.544125i \(-0.183138\pi\)
−0.890728 + 0.454537i \(0.849805\pi\)
\(422\) −0.608168 1.05338i −0.0296052 0.0512777i
\(423\) −2.92627 + 6.33951i −0.142280 + 0.308237i
\(424\) 6.21780 10.7695i 0.301963 0.523015i
\(425\) 8.93872 15.4823i 0.433592 0.751003i
\(426\) −1.33842 + 2.58331i −0.0648467 + 0.125162i
\(427\) −28.0795 + 15.2833i −1.35886 + 0.739612i
\(428\) −3.89037 + 6.73832i −0.188048 + 0.325709i
\(429\) −4.24484 + 8.19304i −0.204943 + 0.395564i
\(430\) 4.29533 0.207139
\(431\) 10.9356 18.9410i 0.526749 0.912356i −0.472765 0.881189i \(-0.656744\pi\)
0.999514 0.0311679i \(-0.00992265\pi\)
\(432\) −1.96050 + 4.81211i −0.0943248 + 0.231523i
\(433\) −13.0512 −0.627199 −0.313599 0.949555i \(-0.601535\pi\)
−0.313599 + 0.949555i \(0.601535\pi\)
\(434\) −1.16158 0.710174i −0.0557576 0.0340895i
\(435\) 3.85807 + 6.03011i 0.184980 + 0.289122i
\(436\) 7.51459 0.359884
\(437\) −2.29679 3.97816i −0.109870 0.190301i
\(438\) −12.3602 19.3188i −0.590594 0.923089i
\(439\) −2.43200 + 4.21235i −0.116073 + 0.201044i −0.918208 0.396098i \(-0.870364\pi\)
0.802135 + 0.597143i \(0.203697\pi\)
\(440\) 1.67977 0.0800797
\(441\) 11.2339 + 17.7426i 0.534945 + 0.844887i
\(442\) −5.45331 −0.259387
\(443\) 5.76975 9.99350i 0.274129 0.474805i −0.695786 0.718249i \(-0.744944\pi\)
0.969915 + 0.243444i \(0.0782771\pi\)
\(444\) −7.25729 + 14.0074i −0.344416 + 0.664763i
\(445\) 0.627819 + 1.08741i 0.0297615 + 0.0515484i
\(446\) 0.891832 0.0422294
\(447\) −15.8530 + 0.722977i −0.749822 + 0.0341957i
\(448\) 2.25729 + 1.38008i 0.106647 + 0.0652027i
\(449\) −26.4251 −1.24708 −0.623538 0.781793i \(-0.714306\pi\)
−0.623538 + 0.781793i \(0.714306\pi\)
\(450\) 6.01984 13.0415i 0.283778 0.614782i
\(451\) 1.72519 2.98812i 0.0812361 0.140705i
\(452\) −6.06128 −0.285099
\(453\) −0.179767 + 0.00819828i −0.00844618 + 0.000385189i
\(454\) 7.32597 12.6889i 0.343825 0.595522i
\(455\) −1.56294 + 0.850689i −0.0732717 + 0.0398809i
\(456\) −3.78434 5.91486i −0.177218 0.276989i
\(457\) 1.86906 3.23731i 0.0874310 0.151435i −0.818994 0.573803i \(-0.805468\pi\)
0.906425 + 0.422368i \(0.138801\pi\)
\(458\) 4.78794 8.29295i 0.223726 0.387504i
\(459\) −7.32023 + 17.9677i −0.341679 + 0.838661i
\(460\) 0.260893 + 0.451880i 0.0121642 + 0.0210690i
\(461\) −7.90496 13.6918i −0.368171 0.637690i 0.621109 0.783724i \(-0.286682\pi\)
−0.989280 + 0.146034i \(0.953349\pi\)
\(462\) 14.3025 8.65172i 0.665414 0.402514i
\(463\) 19.1965 33.2493i 0.892137 1.54523i 0.0548278 0.998496i \(-0.482539\pi\)
0.837309 0.546730i \(-0.184128\pi\)
\(464\) 8.97509 0.416658
\(465\) −0.221203 0.345738i −0.0102581 0.0160332i
\(466\) −14.4284 −0.668383
\(467\) 3.15652 + 5.46725i 0.146066 + 0.252994i 0.929770 0.368140i \(-0.120005\pi\)
−0.783704 + 0.621134i \(0.786672\pi\)
\(468\) −4.36333 + 0.398809i −0.201695 + 0.0184349i
\(469\) −0.154382 + 6.13682i −0.00712869 + 0.283372i
\(470\) 0.535897 + 0.928200i 0.0247191 + 0.0428147i
\(471\) −19.5862 30.6129i −0.902484 1.41057i
\(472\) 6.44805 + 11.1684i 0.296796 + 0.514065i
\(473\) −17.0117 29.4651i −0.782197 1.35481i
\(474\) 4.67403 + 7.30544i 0.214685 + 0.335550i
\(475\) 9.70535 + 16.8102i 0.445312 + 0.771303i
\(476\) 8.42840 + 5.15301i 0.386315 + 0.236188i
\(477\) 15.6352 33.8724i 0.715887 1.55091i
\(478\) −9.15486 15.8567i −0.418734 0.725268i
\(479\) −20.4136 −0.932722 −0.466361 0.884594i \(-0.654435\pi\)
−0.466361 + 0.884594i \(0.654435\pi\)
\(480\) 0.429864 + 0.671871i 0.0196205 + 0.0306666i
\(481\) −13.3025 −0.606543
\(482\) −0.0466924 + 0.0808735i −0.00212678 + 0.00368369i
\(483\) 4.54883 + 2.50383i 0.206979 + 0.113928i
\(484\) −1.15272 1.99658i −0.0523966 0.0907535i
\(485\) 2.57587 + 4.46154i 0.116964 + 0.202588i
\(486\) −4.54309 + 14.9118i −0.206079 + 0.676411i
\(487\) 6.18190 10.7074i 0.280129 0.485197i −0.691287 0.722580i \(-0.742956\pi\)
0.971416 + 0.237383i \(0.0762895\pi\)
\(488\) −6.04163 + 10.4644i −0.273492 + 0.473702i
\(489\) −21.5036 33.6098i −0.972426 1.51989i
\(490\) 3.21946 + 0.162084i 0.145440 + 0.00732222i
\(491\) 0.207004 0.358541i 0.00934194 0.0161807i −0.861317 0.508069i \(-0.830360\pi\)
0.870659 + 0.491888i \(0.163693\pi\)
\(492\) 1.63667 0.0746406i 0.0737869 0.00336506i
\(493\) 33.5117 1.50929
\(494\) 2.96050 5.12774i 0.133199 0.230708i
\(495\) 5.01838 0.458681i 0.225560 0.0206162i
\(496\) −0.514589 −0.0231057
\(497\) 3.79173 + 2.31821i 0.170082 + 0.103986i
\(498\) −11.5021 + 0.524555i −0.515423 + 0.0235059i
\(499\) −0.923935 −0.0413610 −0.0206805 0.999786i \(-0.506583\pi\)
−0.0206805 + 0.999786i \(0.506583\pi\)
\(500\) −2.25370 3.90352i −0.100788 0.174571i
\(501\) −8.46984 + 16.3478i −0.378404 + 0.730365i
\(502\) 9.13667 15.8252i 0.407790 0.706312i
\(503\) −23.8142 −1.06182 −0.530911 0.847428i \(-0.678150\pi\)
−0.530911 + 0.847428i \(0.678150\pi\)
\(504\) 7.12062 + 3.50667i 0.317178 + 0.156200i
\(505\) −6.33463 −0.281887
\(506\) 2.06654 3.57935i 0.0918688 0.159121i
\(507\) 10.1439 + 15.8547i 0.450505 + 0.704133i
\(508\) −4.40496 7.62961i −0.195438 0.338509i
\(509\) −30.6342 −1.35784 −0.678919 0.734213i \(-0.737551\pi\)
−0.678919 + 0.734213i \(0.737551\pi\)
\(510\) 1.60505 + 2.50867i 0.0710728 + 0.111086i
\(511\) −30.7704 + 16.7480i −1.36120 + 0.740887i
\(512\) 1.00000 0.0441942
\(513\) −12.9210 16.6376i −0.570477 0.734567i
\(514\) 10.5256 18.2308i 0.464263 0.804128i
\(515\) −5.14027 −0.226507
\(516\) 7.43200 14.3446i 0.327176 0.631487i
\(517\) 4.24484 7.35228i 0.186688 0.323353i
\(518\) 20.5598 + 12.5700i 0.903347 + 0.552294i
\(519\) −2.34154 + 4.51945i −0.102782 + 0.198382i
\(520\) −0.336285 + 0.582462i −0.0147471 + 0.0255427i
\(521\) −13.4518 + 23.2993i −0.589336 + 1.02076i 0.404984 + 0.914324i \(0.367277\pi\)
−0.994320 + 0.106436i \(0.966056\pi\)
\(522\) 26.8135 2.45076i 1.17360 0.107267i
\(523\) −7.85301 13.6018i −0.343388 0.594766i 0.641671 0.766980i \(-0.278241\pi\)
−0.985060 + 0.172214i \(0.944908\pi\)
\(524\) −10.5687 18.3055i −0.461695 0.799679i
\(525\) −19.2216 10.5802i −0.838899 0.461759i
\(526\) 2.58259 4.47318i 0.112606 0.195040i
\(527\) −1.92140 −0.0836975
\(528\) 2.90642 5.60973i 0.126486 0.244132i
\(529\) −21.7161 −0.944180
\(530\) −2.86333 4.95943i −0.124375 0.215424i
\(531\) 22.3135 + 31.6053i 0.968324 + 1.37155i
\(532\) −9.42101 + 5.12774i −0.408453 + 0.222316i
\(533\) 0.690757 + 1.19643i 0.0299200 + 0.0518230i
\(534\) 4.71780 0.215155i 0.204159 0.00931069i
\(535\) 1.79153 + 3.10303i 0.0774548 + 0.134156i
\(536\) 1.16012 + 2.00938i 0.0501094 + 0.0867920i
\(537\) −7.30039 + 14.0906i −0.315035 + 0.608054i
\(538\) 8.42840 + 14.5984i 0.363374 + 0.629383i
\(539\) −11.6388 22.7267i −0.501319 0.978910i
\(540\) 1.46770 + 1.88987i 0.0631598 + 0.0813269i
\(541\) −2.05934 3.56688i −0.0885379 0.153352i 0.818355 0.574713i \(-0.194886\pi\)
−0.906893 + 0.421360i \(0.861553\pi\)
\(542\) −25.1124 −1.07867
\(543\) 38.8068 1.76979i 1.66536 0.0759488i
\(544\) 3.73385 0.160088
\(545\) 1.73025 2.99689i 0.0741159 0.128372i
\(546\) 0.136673 + 6.69148i 0.00584907 + 0.286369i
\(547\) −11.8602 20.5425i −0.507106 0.878333i −0.999966 0.00822465i \(-0.997382\pi\)
0.492860 0.870108i \(-0.335951\pi\)
\(548\) 2.20321 + 3.81607i 0.0941165 + 0.163015i
\(549\) −15.1922 + 32.9127i −0.648388 + 1.40468i
\(550\) −8.73239 + 15.1249i −0.372350 + 0.644930i
\(551\) −18.1929 + 31.5110i −0.775043 + 1.34241i
\(552\) 1.96050 0.0894089i 0.0834446 0.00380550i
\(553\) 11.6359 6.33327i 0.494808 0.269318i
\(554\) −1.69076 + 2.92848i −0.0718334 + 0.124419i
\(555\) 3.91528 + 6.11952i 0.166194 + 0.259759i
\(556\) 2.02491 0.0858751
\(557\) −21.0313 + 36.4273i −0.891125 + 1.54347i −0.0525975 + 0.998616i \(0.516750\pi\)
−0.838528 + 0.544859i \(0.816583\pi\)
\(558\) −1.53736 + 0.140515i −0.0650816 + 0.00594847i
\(559\) 13.6228 0.576181
\(560\) 1.07014 0.582462i 0.0452215 0.0246135i
\(561\) 10.8521 20.9459i 0.458178 0.884336i
\(562\) 20.2776 0.855360
\(563\) −5.91216 10.2402i −0.249168 0.431571i 0.714127 0.700016i \(-0.246824\pi\)
−0.963295 + 0.268445i \(0.913490\pi\)
\(564\) 4.02704 0.183653i 0.169569 0.00773321i
\(565\) −1.39562 + 2.41729i −0.0587144 + 0.101696i
\(566\) 17.3494 0.729250
\(567\) 22.2307 + 8.53197i 0.933603 + 0.358309i
\(568\) 1.67977 0.0704815
\(569\) −7.10078 + 12.2989i −0.297680 + 0.515597i −0.975605 0.219534i \(-0.929546\pi\)
0.677925 + 0.735131i \(0.262880\pi\)
\(570\) −3.23025 + 0.147316i −0.135300 + 0.00617038i
\(571\) −5.97869 10.3554i −0.250200 0.433360i 0.713380 0.700777i \(-0.247163\pi\)
−0.963581 + 0.267417i \(0.913830\pi\)
\(572\) 5.32743 0.222751
\(573\) −1.98375 + 3.82888i −0.0828725 + 0.159954i
\(574\) 0.0629386 2.50187i 0.00262701 0.104426i
\(575\) −5.42509 −0.226242
\(576\) 2.98755 0.273062i 0.124481 0.0113776i
\(577\) 21.3135 36.9161i 0.887293 1.53684i 0.0442307 0.999021i \(-0.485916\pi\)
0.843062 0.537816i \(-0.180750\pi\)
\(578\) −3.05836 −0.127211
\(579\) −4.19095 6.55040i −0.174170 0.272225i
\(580\) 2.06654 3.57935i 0.0858083 0.148624i
\(581\) −0.442317 + 17.5825i −0.0183504 + 0.729445i
\(582\) 19.3566 0.882759i 0.802357 0.0365915i
\(583\) −22.6804 + 39.2837i −0.939328 + 1.62696i
\(584\) −6.62062 + 11.4673i −0.273963 + 0.474518i
\(585\) −0.845618 + 1.83196i −0.0349620 + 0.0757422i
\(586\) −4.93560 8.54871i −0.203888 0.353144i
\(587\) 20.5328 + 35.5638i 0.847478 + 1.46788i 0.883451 + 0.468523i \(0.155214\pi\)
−0.0359730 + 0.999353i \(0.511453\pi\)
\(588\) 6.11177 10.4712i 0.252045 0.431826i
\(589\) 1.04309 1.80669i 0.0429799 0.0744434i
\(590\) 5.93872 0.244493
\(591\) 22.0328 1.00481i 0.906307 0.0413322i
\(592\) 9.10817 0.374343
\(593\) 16.1008 + 27.8874i 0.661180 + 1.14520i 0.980306 + 0.197485i \(0.0632772\pi\)
−0.319126 + 0.947712i \(0.603389\pi\)
\(594\) 7.15126 17.5530i 0.293420 0.720207i
\(595\) 3.99573 2.17483i 0.163809 0.0891592i
\(596\) 4.58113 + 7.93474i 0.187650 + 0.325020i
\(597\) −2.34728 + 4.53051i −0.0960676 + 0.185422i
\(598\) 0.827430 + 1.43315i 0.0338361 + 0.0586059i
\(599\) −9.53590 16.5167i −0.389626 0.674852i 0.602773 0.797913i \(-0.294062\pi\)
−0.992399 + 0.123060i \(0.960729\pi\)
\(600\) −8.28434 + 0.377808i −0.338207 + 0.0154239i
\(601\) 4.27188 + 7.39912i 0.174254 + 0.301816i 0.939903 0.341442i \(-0.110915\pi\)
−0.765649 + 0.643259i \(0.777582\pi\)
\(602\) −21.0548 12.8726i −0.858128 0.524648i
\(603\) 4.01459 + 5.68634i 0.163487 + 0.231565i
\(604\) 0.0519482 + 0.0899768i 0.00211374 + 0.00366111i
\(605\) −1.06167 −0.0431631
\(606\) −10.9605 + 21.1550i −0.445240 + 0.859365i
\(607\) 38.0115 1.54284 0.771419 0.636328i \(-0.219547\pi\)
0.771419 + 0.636328i \(0.219547\pi\)
\(608\) −2.02704 + 3.51094i −0.0822074 + 0.142387i
\(609\) −0.839883 41.1205i −0.0340338 1.66629i
\(610\) 2.78220 + 4.81891i 0.112648 + 0.195112i
\(611\) 1.69961 + 2.94381i 0.0687589 + 0.119094i
\(612\) 11.1551 1.01957i 0.450916 0.0412138i
\(613\) 11.3296 19.6234i 0.457597 0.792581i −0.541237 0.840870i \(-0.682044\pi\)
0.998833 + 0.0482894i \(0.0153770\pi\)
\(614\) −3.89397 + 6.74455i −0.157148 + 0.272188i
\(615\) 0.347081 0.669906i 0.0139956 0.0270132i
\(616\) −8.23385 5.03407i −0.331751 0.202828i
\(617\) −10.1388 + 17.5609i −0.408173 + 0.706977i −0.994685 0.102964i \(-0.967167\pi\)
0.586512 + 0.809941i \(0.300501\pi\)
\(618\) −8.89397 + 17.1664i −0.357768 + 0.690534i
\(619\) 2.06128 0.0828499 0.0414249 0.999142i \(-0.486810\pi\)
0.0414249 + 0.999142i \(0.486810\pi\)
\(620\) −0.118485 + 0.205223i −0.00475849 + 0.00824194i
\(621\) 5.83269 0.802453i 0.234058 0.0322013i
\(622\) 15.4107 0.617912
\(623\) 0.181424 7.21177i 0.00726860 0.288933i
\(624\) 1.36333 + 2.13086i 0.0545768 + 0.0853027i
\(625\) 21.8640 0.874560
\(626\) −4.24844 7.35851i −0.169802 0.294105i
\(627\) 13.8040 + 21.5754i 0.551278 + 0.861640i
\(628\) −10.4911 + 18.1712i −0.418642 + 0.725110i
\(629\) 34.0085 1.35601
\(630\) 3.03803 2.03235i 0.121038 0.0809707i
\(631\) 1.63715 0.0651740 0.0325870 0.999469i \(-0.489625\pi\)
0.0325870 + 0.999469i \(0.489625\pi\)
\(632\) 2.50360 4.33636i 0.0995878 0.172491i
\(633\) −0.969165 + 1.87060i −0.0385208 + 0.0743497i
\(634\) 7.05262 + 12.2155i 0.280095 + 0.485139i
\(635\) −4.05701 −0.160998
\(636\) −21.5167 + 0.981271i −0.853194 + 0.0389099i
\(637\) 10.2106 + 0.514055i 0.404559 + 0.0203676i
\(638\) −32.7381 −1.29611
\(639\) 5.01838 0.458681i 0.198524 0.0181451i
\(640\) 0.230252 0.398809i 0.00910153 0.0157643i
\(641\) 21.9325 0.866281 0.433140 0.901326i \(-0.357405\pi\)
0.433140 + 0.901326i \(0.357405\pi\)
\(642\) 13.4626 0.613964i 0.531328 0.0242312i
\(643\) −14.1819 + 24.5638i −0.559280 + 0.968701i 0.438277 + 0.898840i \(0.355589\pi\)
−0.997557 + 0.0698609i \(0.977744\pi\)
\(644\) 0.0753916 2.99689i 0.00297085 0.118094i
\(645\) −4.00953 6.26683i −0.157875 0.246756i
\(646\) −7.56867 + 13.1093i −0.297785 + 0.515780i
\(647\) 17.3904 30.1210i 0.683686 1.18418i −0.290162 0.956978i \(-0.593709\pi\)
0.973848 0.227201i \(-0.0729575\pi\)
\(648\) 8.85087 1.63157i 0.347695 0.0640943i
\(649\) −23.5203 40.7384i −0.923253 1.59912i
\(650\) −3.49640 6.05594i −0.137140 0.237534i
\(651\) 0.0481549 + 2.35765i 0.00188734 + 0.0924037i
\(652\) −11.5182 + 19.9501i −0.451087 + 0.781306i
\(653\) −3.19863 −0.125172 −0.0625860 0.998040i \(-0.519935\pi\)
−0.0625860 + 0.998040i \(0.519935\pi\)
\(654\) −7.01459 10.9637i −0.274292 0.428715i
\(655\) −9.73385 −0.380333
\(656\) −0.472958 0.819187i −0.0184659 0.0319839i
\(657\) −16.6481 + 36.0668i −0.649506 + 1.40710i
\(658\) 0.154861 6.15585i 0.00603710 0.239980i
\(659\) 5.30418 + 9.18711i 0.206622 + 0.357879i 0.950648 0.310271i \(-0.100420\pi\)
−0.744027 + 0.668150i \(0.767086\pi\)
\(660\) −1.56800 2.45076i −0.0610343 0.0953957i
\(661\) −5.06507 8.77297i −0.197009 0.341229i 0.750549 0.660815i \(-0.229789\pi\)
−0.947557 + 0.319586i \(0.896456\pi\)
\(662\) −13.7719 23.8536i −0.535259 0.927097i
\(663\) 5.09046 + 7.95631i 0.197697 + 0.308998i
\(664\) 3.32383 + 5.75705i 0.128990 + 0.223417i
\(665\) −0.124220 + 4.93786i −0.00481705 + 0.191482i
\(666\) 27.2111 2.48710i 1.05441 0.0963731i
\(667\) −5.08472 8.80700i −0.196881 0.341008i
\(668\) 10.6300 0.411285
\(669\) −0.832492 1.30117i −0.0321860 0.0503062i
\(670\) 1.06848 0.0412789
\(671\) 22.0378 38.1707i 0.850761 1.47356i
\(672\) −0.0935793 4.58162i −0.00360990 0.176740i
\(673\) 1.60817 + 2.78543i 0.0619903 + 0.107370i 0.895355 0.445353i \(-0.146922\pi\)
−0.833365 + 0.552724i \(0.813589\pi\)
\(674\) 0.748440 + 1.29634i 0.0288288 + 0.0499330i
\(675\) −24.6467 + 3.39086i −0.948651 + 0.130514i
\(676\) 5.43346 9.41103i 0.208979 0.361963i
\(677\) 14.6819 25.4298i 0.564271 0.977347i −0.432846 0.901468i \(-0.642491\pi\)
0.997117 0.0758786i \(-0.0241762\pi\)
\(678\) 5.65798 + 8.84334i 0.217293 + 0.339626i
\(679\) 0.744363 29.5891i 0.0285660 1.13552i
\(680\) 0.859728 1.48909i 0.0329691 0.0571041i
\(681\) −25.3515 + 1.15616i −0.971473 + 0.0443041i
\(682\) 1.87705 0.0718759
\(683\) 12.6278 21.8720i 0.483190 0.836910i −0.516624 0.856213i \(-0.672811\pi\)
0.999814 + 0.0193029i \(0.00614468\pi\)
\(684\) −5.09718 + 11.0426i −0.194895 + 0.422225i
\(685\) 2.02918 0.0775309
\(686\) −15.2953 10.4428i −0.583978 0.398710i
\(687\) −16.5687 + 0.755615i −0.632134 + 0.0288285i
\(688\) −9.32743 −0.355605
\(689\) −9.08113 15.7290i −0.345963 0.599226i
\(690\) 0.415754 0.802453i 0.0158275 0.0305489i
\(691\) 7.68190 13.3054i 0.292233 0.506163i −0.682104 0.731255i \(-0.738935\pi\)
0.974338 + 0.225092i \(0.0722683\pi\)
\(692\) 2.93872 0.111713
\(693\) −25.9736 12.7912i −0.986657 0.485896i
\(694\) −18.2881 −0.694208
\(695\) 0.466240 0.807551i 0.0176855 0.0306321i
\(696\) −8.37792 13.0946i −0.317564 0.496348i
\(697\) −1.76595 3.05872i −0.0668903 0.115857i
\(698\) 7.80272 0.295337
\(699\) 13.4684 + 21.0509i 0.509421 + 0.796217i
\(700\) −0.318576 + 12.6637i −0.0120410 + 0.478642i
\(701\) −13.3700 −0.504980 −0.252490 0.967600i \(-0.581249\pi\)
−0.252490 + 0.967600i \(0.581249\pi\)
\(702\) 4.65486 + 5.99377i 0.175686 + 0.226220i
\(703\) −18.4626 + 31.9782i −0.696332 + 1.20608i
\(704\) −3.64766 −0.137476
\(705\) 0.853994 1.64831i 0.0321633 0.0620788i
\(706\) −13.4626 + 23.3180i −0.506673 + 0.877584i
\(707\) 31.0510 + 18.9842i 1.16779 + 0.713972i
\(708\) 10.2755 19.8329i 0.386176 0.745365i
\(709\) 0.562939 0.975038i 0.0211416 0.0366183i −0.855261 0.518197i \(-0.826603\pi\)
0.876403 + 0.481579i \(0.159937\pi\)
\(710\) 0.386770 0.669906i 0.0145152 0.0251411i
\(711\) 6.29552 13.6387i 0.236101 0.511492i
\(712\) −1.36333 2.36135i −0.0510928 0.0884954i
\(713\) 0.291534 + 0.504951i 0.0109180 + 0.0189106i
\(714\) −0.349411 17.1071i −0.0130764 0.640217i
\(715\) 1.22665 2.12463i 0.0458743 0.0794565i
\(716\) 9.16225 0.342409
\(717\) −14.5890 + 28.1585i −0.544836 + 1.05160i
\(718\) 6.26322 0.233741
\(719\) 9.13667 + 15.8252i 0.340740 + 0.590180i 0.984570 0.174989i \(-0.0559889\pi\)
−0.643830 + 0.765169i \(0.722656\pi\)
\(720\) 0.578990 1.25433i 0.0215777 0.0467463i
\(721\) 25.1965 + 15.4048i 0.938366 + 0.573705i
\(722\) 1.28220 + 2.22084i 0.0477186 + 0.0826510i
\(723\) 0.161579 0.00736882i 0.00600919 0.000274050i
\(724\) −11.2142 19.4236i −0.416772 0.721871i
\(725\) 21.4861 + 37.2150i 0.797973 + 1.38213i
\(726\) −1.83696 + 3.54554i −0.0681759 + 0.131587i
\(727\) −14.8478 25.7171i −0.550673 0.953793i −0.998226 0.0595359i \(-0.981038\pi\)
0.447553 0.894257i \(-0.352295\pi\)
\(728\) 3.39397 1.84730i 0.125789 0.0684654i
\(729\) 25.9969 7.29124i 0.962847 0.270046i
\(730\) 3.04883 + 5.28073i 0.112842 + 0.195448i
\(731\) −34.8272 −1.28813
\(732\) 20.9071 0.953469i 0.772748 0.0352412i
\(733\) 19.2278 0.710195 0.355098 0.934829i \(-0.384448\pi\)
0.355098 + 0.934829i \(0.384448\pi\)
\(734\) −14.6367 + 25.3515i −0.540249 + 0.935740i
\(735\) −2.76876 4.84845i −0.102127 0.178838i
\(736\) −0.566537 0.981271i −0.0208828 0.0361701i
\(737\) −4.23171 7.32955i −0.155877 0.269987i
\(738\) −1.63667 2.31821i −0.0602468 0.0853346i
\(739\) −15.1336 + 26.2121i −0.556697 + 0.964227i 0.441073 + 0.897471i \(0.354598\pi\)
−0.997769 + 0.0667556i \(0.978735\pi\)
\(740\) 2.09718 3.63242i 0.0770938 0.133530i
\(741\) −10.2448 + 0.467216i −0.376354 + 0.0171636i
\(742\) −0.827430 + 32.8911i −0.0303759 + 1.20747i
\(743\) −11.8815 + 20.5794i −0.435890 + 0.754984i −0.997368 0.0725076i \(-0.976900\pi\)
0.561477 + 0.827492i \(0.310233\pi\)
\(744\) 0.480350 + 0.750780i 0.0176105 + 0.0275249i
\(745\) 4.21926 0.154582
\(746\) −8.92986 + 15.4670i −0.326946 + 0.566286i
\(747\) 11.5021 + 16.2918i 0.420841 + 0.596087i
\(748\) −13.6198 −0.497990
\(749\) 0.517709 20.5794i 0.0189167 0.751954i
\(750\) −3.59144 + 6.93190i −0.131141 + 0.253117i
\(751\) 12.6683 0.462273 0.231136 0.972921i \(-0.425756\pi\)
0.231136 + 0.972921i \(0.425756\pi\)
\(752\) −1.16372 2.01561i −0.0424363 0.0735019i
\(753\) −31.6175 + 1.44192i −1.15221 + 0.0525464i
\(754\) 6.55408 11.3520i 0.238686 0.413416i
\(755\) 0.0478448 0.00174125
\(756\) −1.53064 13.6623i −0.0556689 0.496891i
\(757\) −29.0799 −1.05693 −0.528464 0.848955i \(-0.677232\pi\)
−0.528464 + 0.848955i \(0.677232\pi\)
\(758\) 11.2127 19.4210i 0.407265 0.705404i
\(759\) −7.15126 + 0.326134i −0.259574 + 0.0118379i
\(760\) 0.933463 + 1.61680i 0.0338603 + 0.0586477i
\(761\) 29.2029 1.05860 0.529302 0.848433i \(-0.322454\pi\)
0.529302 + 0.848433i \(0.322454\pi\)
\(762\) −7.01965 + 13.5487i −0.254295 + 0.490819i
\(763\) −17.4626 + 9.50471i −0.632190 + 0.344094i
\(764\) 2.48968 0.0900736
\(765\) 2.16186 4.68350i 0.0781623 0.169332i
\(766\) 7.07014 12.2458i 0.255454 0.442460i
\(767\) 18.8348 <