Properties

Label 126.2.h.c.67.2
Level $126$
Weight $2$
Character 126.67
Analytic conductor $1.006$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(67,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.h (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.2
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 126.67
Dual form 126.2.h.c.79.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.619562 - 1.61745i) q^{3} +(-0.500000 - 0.866025i) q^{4} +1.76088 q^{5} +(1.09097 + 1.34528i) q^{6} +(-1.85185 - 1.88962i) q^{7} +1.00000 q^{8} +(-2.23229 - 2.00422i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(0.619562 - 1.61745i) q^{3} +(-0.500000 - 0.866025i) q^{4} +1.76088 q^{5} +(1.09097 + 1.34528i) q^{6} +(-1.85185 - 1.88962i) q^{7} +1.00000 q^{8} +(-2.23229 - 2.00422i) q^{9} +(-0.880438 + 1.52496i) q^{10} +6.12476 q^{11} +(-1.71053 + 0.272169i) q^{12} +(-0.380438 + 0.658939i) q^{13} +(2.56238 - 0.658939i) q^{14} +(1.09097 - 2.84813i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-3.42107 + 5.92546i) q^{17} +(2.85185 - 0.931107i) q^{18} +(0.971410 + 1.68253i) q^{19} +(-0.880438 - 1.52496i) q^{20} +(-4.20370 + 1.82454i) q^{21} +(-3.06238 + 5.30420i) q^{22} -0.421067 q^{23} +(0.619562 - 1.61745i) q^{24} -1.89931 q^{25} +(-0.380438 - 0.658939i) q^{26} +(-4.62476 + 2.36887i) q^{27} +(-0.710533 + 2.54856i) q^{28} +(0.732287 + 1.26836i) q^{29} +(1.92107 + 2.36887i) q^{30} +(-3.85185 - 6.67160i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(3.79467 - 9.90650i) q^{33} +(-3.42107 - 5.92546i) q^{34} +(-3.26088 - 3.32738i) q^{35} +(-0.619562 + 2.93533i) q^{36} +(1.44282 + 2.49904i) q^{37} -1.94282 q^{38} +(0.830095 + 1.02359i) q^{39} +1.76088 q^{40} +(-3.47141 + 6.01266i) q^{41} +(0.521753 - 4.55278i) q^{42} +(4.33009 + 7.49994i) q^{43} +(-3.06238 - 5.30420i) q^{44} +(-3.93078 - 3.52918i) q^{45} +(0.210533 - 0.364654i) q^{46} +(-0.830095 + 1.43777i) q^{47} +(1.09097 + 1.34528i) q^{48} +(-0.141315 + 6.99857i) q^{49} +(0.949657 - 1.64485i) q^{50} +(7.46457 + 9.20459i) q^{51} +0.760877 q^{52} +(-0.112725 + 0.195246i) q^{53} +(0.260877 - 5.18960i) q^{54} +10.7850 q^{55} +(-1.85185 - 1.88962i) q^{56} +(3.32326 - 0.528775i) q^{57} -1.46457 q^{58} +(-0.993163 - 1.72021i) q^{59} +(-3.01204 + 0.479256i) q^{60} +(5.17511 - 8.96355i) q^{61} +7.70370 q^{62} +(0.346647 + 7.92968i) q^{63} +1.00000 q^{64} +(-0.669905 + 1.16031i) q^{65} +(6.68194 + 8.23953i) q^{66} +(-3.39248 - 5.87594i) q^{67} +6.84213 q^{68} +(-0.260877 + 0.681054i) q^{69} +(4.51204 - 1.16031i) q^{70} +10.7850 q^{71} +(-2.23229 - 2.00422i) q^{72} +(0.153353 - 0.265616i) q^{73} -2.88564 q^{74} +(-1.17674 + 3.07204i) q^{75} +(0.971410 - 1.68253i) q^{76} +(-11.3421 - 11.5735i) q^{77} +(-1.30150 + 0.207087i) q^{78} +(6.72257 - 11.6438i) q^{79} +(-0.880438 + 1.52496i) q^{80} +(0.966208 + 8.94799i) q^{81} +(-3.47141 - 6.01266i) q^{82} +(-1.56238 - 2.70612i) q^{83} +(3.68194 + 2.72824i) q^{84} +(-6.02408 + 10.4340i) q^{85} -8.66019 q^{86} +(2.50520 - 0.398611i) q^{87} +6.12476 q^{88} +(1.30150 + 2.25427i) q^{89} +(5.02175 - 1.63957i) q^{90} +(1.94966 - 0.501371i) q^{91} +(0.210533 + 0.364654i) q^{92} +(-13.1774 + 2.09671i) q^{93} +(-0.830095 - 1.43777i) q^{94} +(1.71053 + 2.96273i) q^{95} +(-1.71053 + 0.272169i) q^{96} +(-1.81806 - 3.14897i) q^{97} +(-5.99028 - 3.62167i) q^{98} +(-13.6722 - 12.2754i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 4 q^{3} - 3 q^{4} + 10 q^{5} - 2 q^{6} - 2 q^{7} + 6 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{2} + 4 q^{3} - 3 q^{4} + 10 q^{5} - 2 q^{6} - 2 q^{7} + 6 q^{8} - 4 q^{9} - 5 q^{10} + 2 q^{11} - 2 q^{12} - 2 q^{13} - 2 q^{14} - 2 q^{15} - 3 q^{16} - 4 q^{17} + 8 q^{18} - 3 q^{19} - 5 q^{20} - 7 q^{21} - q^{22} + 14 q^{23} + 4 q^{24} + 4 q^{25} - 2 q^{26} + 7 q^{27} + 4 q^{28} - 5 q^{29} - 5 q^{30} - 14 q^{31} - 3 q^{32} - 4 q^{33} - 4 q^{34} - 19 q^{35} - 4 q^{36} - 9 q^{37} + 6 q^{38} - 3 q^{39} + 10 q^{40} - 12 q^{41} + 2 q^{42} + 18 q^{43} - q^{44} - 31 q^{45} - 7 q^{46} + 3 q^{47} - 2 q^{48} - 2 q^{50} + 26 q^{51} + 4 q^{52} + 9 q^{53} + q^{54} + 14 q^{55} - 2 q^{56} + 2 q^{57} + 10 q^{58} + 4 q^{59} + 7 q^{60} + 4 q^{61} + 28 q^{62} + 28 q^{63} + 6 q^{64} - 12 q^{65} + 23 q^{66} + 5 q^{67} + 8 q^{68} - q^{69} + 2 q^{70} + 14 q^{71} - 4 q^{72} - 25 q^{73} + 18 q^{74} - 25 q^{75} - 3 q^{76} - 35 q^{77} + 9 q^{78} + 7 q^{79} - 5 q^{80} + 32 q^{81} - 12 q^{82} + 8 q^{83} + 5 q^{84} + 14 q^{85} - 36 q^{86} - 20 q^{87} + 2 q^{88} - 9 q^{89} + 29 q^{90} + 4 q^{91} - 7 q^{92} - 3 q^{93} + 3 q^{94} + 2 q^{95} - 2 q^{96} - 28 q^{97} - 12 q^{98} - 41 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0.619562 1.61745i 0.357704 0.933835i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.76088 0.787488 0.393744 0.919220i \(-0.371180\pi\)
0.393744 + 0.919220i \(0.371180\pi\)
\(6\) 1.09097 + 1.34528i 0.445387 + 0.549209i
\(7\) −1.85185 1.88962i −0.699933 0.714209i
\(8\) 1.00000 0.353553
\(9\) −2.23229 2.00422i −0.744096 0.668073i
\(10\) −0.880438 + 1.52496i −0.278419 + 0.482236i
\(11\) 6.12476 1.84669 0.923343 0.383977i \(-0.125446\pi\)
0.923343 + 0.383977i \(0.125446\pi\)
\(12\) −1.71053 + 0.272169i −0.493788 + 0.0785683i
\(13\) −0.380438 + 0.658939i −0.105515 + 0.182757i −0.913948 0.405831i \(-0.866982\pi\)
0.808434 + 0.588587i \(0.200316\pi\)
\(14\) 2.56238 0.658939i 0.684825 0.176109i
\(15\) 1.09097 2.84813i 0.281688 0.735384i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.42107 + 5.92546i −0.829731 + 1.43714i 0.0685191 + 0.997650i \(0.478173\pi\)
−0.898250 + 0.439486i \(0.855161\pi\)
\(18\) 2.85185 0.931107i 0.672187 0.219464i
\(19\) 0.971410 + 1.68253i 0.222857 + 0.385999i 0.955674 0.294426i \(-0.0951285\pi\)
−0.732818 + 0.680425i \(0.761795\pi\)
\(20\) −0.880438 1.52496i −0.196872 0.340992i
\(21\) −4.20370 + 1.82454i −0.917322 + 0.398147i
\(22\) −3.06238 + 5.30420i −0.652902 + 1.13086i
\(23\) −0.421067 −0.0877985 −0.0438992 0.999036i \(-0.513978\pi\)
−0.0438992 + 0.999036i \(0.513978\pi\)
\(24\) 0.619562 1.61745i 0.126467 0.330161i
\(25\) −1.89931 −0.379863
\(26\) −0.380438 0.658939i −0.0746101 0.129228i
\(27\) −4.62476 + 2.36887i −0.890036 + 0.455890i
\(28\) −0.710533 + 2.54856i −0.134278 + 0.481632i
\(29\) 0.732287 + 1.26836i 0.135982 + 0.235528i 0.925972 0.377592i \(-0.123248\pi\)
−0.789990 + 0.613120i \(0.789914\pi\)
\(30\) 1.92107 + 2.36887i 0.350737 + 0.432495i
\(31\) −3.85185 6.67160i −0.691812 1.19825i −0.971243 0.238088i \(-0.923479\pi\)
0.279431 0.960166i \(-0.409854\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 3.79467 9.90650i 0.660567 1.72450i
\(34\) −3.42107 5.92546i −0.586708 1.01621i
\(35\) −3.26088 3.32738i −0.551189 0.562431i
\(36\) −0.619562 + 2.93533i −0.103260 + 0.489221i
\(37\) 1.44282 + 2.49904i 0.237198 + 0.410839i 0.959909 0.280311i \(-0.0904376\pi\)
−0.722711 + 0.691150i \(0.757104\pi\)
\(38\) −1.94282 −0.315167
\(39\) 0.830095 + 1.02359i 0.132922 + 0.163906i
\(40\) 1.76088 0.278419
\(41\) −3.47141 + 6.01266i −0.542143 + 0.939020i 0.456638 + 0.889653i \(0.349054\pi\)
−0.998781 + 0.0493667i \(0.984280\pi\)
\(42\) 0.521753 4.55278i 0.0805083 0.702509i
\(43\) 4.33009 + 7.49994i 0.660333 + 1.14373i 0.980528 + 0.196379i \(0.0629183\pi\)
−0.320195 + 0.947352i \(0.603748\pi\)
\(44\) −3.06238 5.30420i −0.461671 0.799638i
\(45\) −3.93078 3.52918i −0.585966 0.526100i
\(46\) 0.210533 0.364654i 0.0310414 0.0537654i
\(47\) −0.830095 + 1.43777i −0.121082 + 0.209720i −0.920195 0.391461i \(-0.871970\pi\)
0.799113 + 0.601181i \(0.205303\pi\)
\(48\) 1.09097 + 1.34528i 0.157468 + 0.194175i
\(49\) −0.141315 + 6.99857i −0.0201879 + 0.999796i
\(50\) 0.949657 1.64485i 0.134302 0.232617i
\(51\) 7.46457 + 9.20459i 1.04525 + 1.28890i
\(52\) 0.760877 0.105515
\(53\) −0.112725 + 0.195246i −0.0154840 + 0.0268190i −0.873664 0.486531i \(-0.838262\pi\)
0.858180 + 0.513350i \(0.171596\pi\)
\(54\) 0.260877 5.18960i 0.0355008 0.706215i
\(55\) 10.7850 1.45424
\(56\) −1.85185 1.88962i −0.247464 0.252511i
\(57\) 3.32326 0.528775i 0.440176 0.0700379i
\(58\) −1.46457 −0.192308
\(59\) −0.993163 1.72021i −0.129299 0.223952i 0.794106 0.607779i \(-0.207939\pi\)
−0.923405 + 0.383827i \(0.874606\pi\)
\(60\) −3.01204 + 0.479256i −0.388852 + 0.0618716i
\(61\) 5.17511 8.96355i 0.662605 1.14766i −0.317324 0.948317i \(-0.602784\pi\)
0.979929 0.199348i \(-0.0638823\pi\)
\(62\) 7.70370 0.978370
\(63\) 0.346647 + 7.92968i 0.0436734 + 0.999046i
\(64\) 1.00000 0.125000
\(65\) −0.669905 + 1.16031i −0.0830915 + 0.143919i
\(66\) 6.68194 + 8.23953i 0.822490 + 1.01422i
\(67\) −3.39248 5.87594i −0.414457 0.717861i 0.580914 0.813965i \(-0.302695\pi\)
−0.995371 + 0.0961042i \(0.969362\pi\)
\(68\) 6.84213 0.829731
\(69\) −0.260877 + 0.681054i −0.0314059 + 0.0819893i
\(70\) 4.51204 1.16031i 0.539292 0.138684i
\(71\) 10.7850 1.27994 0.639969 0.768401i \(-0.278947\pi\)
0.639969 + 0.768401i \(0.278947\pi\)
\(72\) −2.23229 2.00422i −0.263078 0.236200i
\(73\) 0.153353 0.265616i 0.0179487 0.0310880i −0.856912 0.515463i \(-0.827620\pi\)
0.874860 + 0.484375i \(0.160953\pi\)
\(74\) −2.88564 −0.335449
\(75\) −1.17674 + 3.07204i −0.135878 + 0.354729i
\(76\) 0.971410 1.68253i 0.111428 0.193000i
\(77\) −11.3421 11.5735i −1.29256 1.31892i
\(78\) −1.30150 + 0.207087i −0.147366 + 0.0234480i
\(79\) 6.72257 11.6438i 0.756348 1.31003i −0.188353 0.982101i \(-0.560315\pi\)
0.944701 0.327932i \(-0.106352\pi\)
\(80\) −0.880438 + 1.52496i −0.0984360 + 0.170496i
\(81\) 0.966208 + 8.94799i 0.107356 + 0.994221i
\(82\) −3.47141 6.01266i −0.383353 0.663987i
\(83\) −1.56238 2.70612i −0.171494 0.297036i 0.767449 0.641110i \(-0.221526\pi\)
−0.938942 + 0.344075i \(0.888193\pi\)
\(84\) 3.68194 + 2.72824i 0.401733 + 0.297675i
\(85\) −6.02408 + 10.4340i −0.653403 + 1.13173i
\(86\) −8.66019 −0.933852
\(87\) 2.50520 0.398611i 0.268586 0.0427356i
\(88\) 6.12476 0.652902
\(89\) 1.30150 + 2.25427i 0.137959 + 0.238952i 0.926724 0.375743i \(-0.122612\pi\)
−0.788765 + 0.614695i \(0.789279\pi\)
\(90\) 5.02175 1.63957i 0.529339 0.172825i
\(91\) 1.94966 0.501371i 0.204380 0.0525580i
\(92\) 0.210533 + 0.364654i 0.0219496 + 0.0380178i
\(93\) −13.1774 + 2.09671i −1.36644 + 0.217418i
\(94\) −0.830095 1.43777i −0.0856178 0.148294i
\(95\) 1.71053 + 2.96273i 0.175497 + 0.303970i
\(96\) −1.71053 + 0.272169i −0.174581 + 0.0277781i
\(97\) −1.81806 3.14897i −0.184596 0.319729i 0.758845 0.651272i \(-0.225764\pi\)
−0.943440 + 0.331543i \(0.892431\pi\)
\(98\) −5.99028 3.62167i −0.605110 0.365844i
\(99\) −13.6722 12.2754i −1.37411 1.23372i
\(100\) 0.949657 + 1.64485i 0.0949657 + 0.164485i
\(101\) −8.01040 −0.797065 −0.398532 0.917154i \(-0.630480\pi\)
−0.398532 + 0.917154i \(0.630480\pi\)
\(102\) −11.7037 + 1.86221i −1.15884 + 0.184387i
\(103\) −6.82846 −0.672828 −0.336414 0.941714i \(-0.609214\pi\)
−0.336414 + 0.941714i \(0.609214\pi\)
\(104\) −0.380438 + 0.658939i −0.0373051 + 0.0646142i
\(105\) −7.40219 + 3.21278i −0.722380 + 0.313536i
\(106\) −0.112725 0.195246i −0.0109488 0.0189639i
\(107\) 1.77292 + 3.07078i 0.171394 + 0.296863i 0.938908 0.344170i \(-0.111840\pi\)
−0.767513 + 0.641033i \(0.778506\pi\)
\(108\) 4.36389 + 2.82073i 0.419915 + 0.271424i
\(109\) 0.351848 0.609419i 0.0337010 0.0583718i −0.848683 0.528902i \(-0.822604\pi\)
0.882384 + 0.470530i \(0.155937\pi\)
\(110\) −5.39248 + 9.34004i −0.514152 + 0.890538i
\(111\) 4.93598 0.785381i 0.468503 0.0745451i
\(112\) 2.56238 0.658939i 0.242122 0.0622638i
\(113\) 4.25116 7.36323i 0.399916 0.692674i −0.593799 0.804613i \(-0.702373\pi\)
0.993715 + 0.111939i \(0.0357061\pi\)
\(114\) −1.20370 + 3.14241i −0.112737 + 0.294314i
\(115\) −0.741446 −0.0691402
\(116\) 0.732287 1.26836i 0.0679911 0.117764i
\(117\) 2.16991 0.708458i 0.200608 0.0654970i
\(118\) 1.98633 0.182856
\(119\) 17.5322 4.50855i 1.60717 0.413298i
\(120\) 1.09097 2.84813i 0.0995916 0.259997i
\(121\) 26.5127 2.41025
\(122\) 5.17511 + 8.96355i 0.468532 + 0.811521i
\(123\) 7.57442 + 9.34004i 0.682962 + 0.842163i
\(124\) −3.85185 + 6.67160i −0.345906 + 0.599127i
\(125\) −12.1488 −1.08663
\(126\) −7.04063 3.66464i −0.627229 0.326472i
\(127\) −18.9532 −1.68183 −0.840913 0.541170i \(-0.817982\pi\)
−0.840913 + 0.541170i \(0.817982\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 14.8135 2.35703i 1.30426 0.207525i
\(130\) −0.669905 1.16031i −0.0587546 0.101766i
\(131\) −7.29303 −0.637195 −0.318598 0.947890i \(-0.603212\pi\)
−0.318598 + 0.947890i \(0.603212\pi\)
\(132\) −10.4766 + 1.66697i −0.911872 + 0.145091i
\(133\) 1.38044 4.95139i 0.119699 0.429340i
\(134\) 6.78495 0.586131
\(135\) −8.14364 + 4.17129i −0.700893 + 0.359008i
\(136\) −3.42107 + 5.92546i −0.293354 + 0.508104i
\(137\) −8.18194 −0.699031 −0.349515 0.936931i \(-0.613654\pi\)
−0.349515 + 0.936931i \(0.613654\pi\)
\(138\) −0.459372 0.566453i −0.0391043 0.0482197i
\(139\) −6.23229 + 10.7946i −0.528616 + 0.915589i 0.470828 + 0.882225i \(0.343955\pi\)
−0.999443 + 0.0333640i \(0.989378\pi\)
\(140\) −1.25116 + 4.48769i −0.105742 + 0.379279i
\(141\) 1.81122 + 2.23342i 0.152532 + 0.188088i
\(142\) −5.39248 + 9.34004i −0.452527 + 0.783799i
\(143\) −2.33009 + 4.03584i −0.194852 + 0.337494i
\(144\) 2.85185 0.931107i 0.237654 0.0775923i
\(145\) 1.28947 + 2.23342i 0.107084 + 0.185476i
\(146\) 0.153353 + 0.265616i 0.0126916 + 0.0219825i
\(147\) 11.2323 + 4.56462i 0.926423 + 0.376483i
\(148\) 1.44282 2.49904i 0.118599 0.205420i
\(149\) 8.82846 0.723256 0.361628 0.932323i \(-0.382221\pi\)
0.361628 + 0.932323i \(0.382221\pi\)
\(150\) −2.07210 2.55511i −0.169186 0.208624i
\(151\) −14.9863 −1.21957 −0.609785 0.792567i \(-0.708744\pi\)
−0.609785 + 0.792567i \(0.708744\pi\)
\(152\) 0.971410 + 1.68253i 0.0787918 + 0.136471i
\(153\) 19.5127 6.37076i 1.57751 0.515045i
\(154\) 15.6940 4.03584i 1.26466 0.325217i
\(155\) −6.78263 11.7479i −0.544794 0.943611i
\(156\) 0.471410 1.23068i 0.0377430 0.0985332i
\(157\) −9.49028 16.4377i −0.757407 1.31187i −0.944169 0.329462i \(-0.893132\pi\)
0.186761 0.982405i \(-0.440201\pi\)
\(158\) 6.72257 + 11.6438i 0.534819 + 0.926334i
\(159\) 0.245960 + 0.303294i 0.0195059 + 0.0240528i
\(160\) −0.880438 1.52496i −0.0696048 0.120559i
\(161\) 0.779752 + 0.795655i 0.0614530 + 0.0627064i
\(162\) −8.23229 3.63723i −0.646790 0.285768i
\(163\) −7.51887 13.0231i −0.588924 1.02005i −0.994374 0.105929i \(-0.966219\pi\)
0.405450 0.914117i \(-0.367115\pi\)
\(164\) 6.94282 0.542143
\(165\) 6.68194 17.4441i 0.520189 1.35802i
\(166\) 3.12476 0.242529
\(167\) 0.572097 0.990901i 0.0442702 0.0766782i −0.843041 0.537849i \(-0.819237\pi\)
0.887311 + 0.461171i \(0.152570\pi\)
\(168\) −4.20370 + 1.82454i −0.324322 + 0.140766i
\(169\) 6.21053 + 10.7570i 0.477733 + 0.827458i
\(170\) −6.02408 10.4340i −0.462026 0.800252i
\(171\) 1.20370 5.70281i 0.0920490 0.436105i
\(172\) 4.33009 7.49994i 0.330167 0.571865i
\(173\) −0.248838 + 0.431001i −0.0189188 + 0.0327684i −0.875330 0.483526i \(-0.839356\pi\)
0.856411 + 0.516295i \(0.172689\pi\)
\(174\) −0.907394 + 2.36887i −0.0687893 + 0.179584i
\(175\) 3.51724 + 3.58898i 0.265878 + 0.271301i
\(176\) −3.06238 + 5.30420i −0.230836 + 0.399819i
\(177\) −3.39768 + 0.540616i −0.255385 + 0.0406352i
\(178\) −2.60301 −0.195104
\(179\) 4.41423 7.64567i 0.329935 0.571464i −0.652564 0.757734i \(-0.726306\pi\)
0.982499 + 0.186270i \(0.0596398\pi\)
\(180\) −1.09097 + 5.16875i −0.0813162 + 0.385256i
\(181\) 1.32941 0.0988140 0.0494070 0.998779i \(-0.484267\pi\)
0.0494070 + 0.998779i \(0.484267\pi\)
\(182\) −0.540628 + 1.93914i −0.0400740 + 0.143738i
\(183\) −11.2918 13.9239i −0.834713 1.02929i
\(184\) −0.421067 −0.0310414
\(185\) 2.54063 + 4.40050i 0.186791 + 0.323531i
\(186\) 4.77292 12.4603i 0.349967 0.913637i
\(187\) −20.9532 + 36.2920i −1.53225 + 2.65394i
\(188\) 1.66019 0.121082
\(189\) 13.0406 + 4.35224i 0.948566 + 0.316579i
\(190\) −3.42107 −0.248190
\(191\) 8.08414 14.0021i 0.584947 1.01316i −0.409934 0.912115i \(-0.634448\pi\)
0.994882 0.101044i \(-0.0322182\pi\)
\(192\) 0.619562 1.61745i 0.0447130 0.116729i
\(193\) 7.08414 + 12.2701i 0.509927 + 0.883220i 0.999934 + 0.0115011i \(0.00366101\pi\)
−0.490007 + 0.871719i \(0.663006\pi\)
\(194\) 3.63611 0.261058
\(195\) 1.46169 + 1.80242i 0.104674 + 0.129074i
\(196\) 6.13160 3.37690i 0.437971 0.241207i
\(197\) 15.8421 1.12871 0.564353 0.825534i \(-0.309126\pi\)
0.564353 + 0.825534i \(0.309126\pi\)
\(198\) 17.4669 5.70281i 1.24132 0.405281i
\(199\) −4.47141 + 7.74471i −0.316970 + 0.549008i −0.979854 0.199714i \(-0.935999\pi\)
0.662884 + 0.748722i \(0.269332\pi\)
\(200\) −1.89931 −0.134302
\(201\) −11.6059 + 1.84665i −0.818616 + 0.130253i
\(202\) 4.00520 6.93721i 0.281805 0.488101i
\(203\) 1.04063 3.73255i 0.0730378 0.261974i
\(204\) 4.23912 11.0668i 0.296798 0.774831i
\(205\) −6.11273 + 10.5876i −0.426931 + 0.739467i
\(206\) 3.41423 5.91362i 0.237881 0.412021i
\(207\) 0.939941 + 0.843910i 0.0653304 + 0.0586558i
\(208\) −0.380438 0.658939i −0.0263787 0.0456892i
\(209\) 5.94966 + 10.3051i 0.411546 + 0.712819i
\(210\) 0.918743 8.01688i 0.0633993 0.553217i
\(211\) 11.3856 19.7205i 0.783820 1.35762i −0.145882 0.989302i \(-0.546602\pi\)
0.929702 0.368314i \(-0.120065\pi\)
\(212\) 0.225450 0.0154840
\(213\) 6.68194 17.4441i 0.457839 1.19525i
\(214\) −3.54583 −0.242388
\(215\) 7.62476 + 13.2065i 0.520005 + 0.900674i
\(216\) −4.62476 + 2.36887i −0.314675 + 0.161181i
\(217\) −5.47373 + 19.6333i −0.371581 + 1.33280i
\(218\) 0.351848 + 0.609419i 0.0238302 + 0.0412751i
\(219\) −0.334608 0.412607i −0.0226107 0.0278814i
\(220\) −5.39248 9.34004i −0.363561 0.629706i
\(221\) −2.60301 4.50855i −0.175097 0.303278i
\(222\) −1.78783 + 4.66738i −0.119991 + 0.313254i
\(223\) −6.44282 11.1593i −0.431443 0.747281i 0.565555 0.824711i \(-0.308662\pi\)
−0.996998 + 0.0774293i \(0.975329\pi\)
\(224\) −0.710533 + 2.54856i −0.0474745 + 0.170283i
\(225\) 4.23981 + 3.80664i 0.282654 + 0.253776i
\(226\) 4.25116 + 7.36323i 0.282783 + 0.489795i
\(227\) 21.9967 1.45997 0.729987 0.683461i \(-0.239526\pi\)
0.729987 + 0.683461i \(0.239526\pi\)
\(228\) −2.11956 2.61364i −0.140371 0.173092i
\(229\) −3.79863 −0.251020 −0.125510 0.992092i \(-0.540057\pi\)
−0.125510 + 0.992092i \(0.540057\pi\)
\(230\) 0.370723 0.642111i 0.0244448 0.0423396i
\(231\) −25.7466 + 11.1749i −1.69401 + 0.735251i
\(232\) 0.732287 + 1.26836i 0.0480770 + 0.0832718i
\(233\) −3.33530 5.77690i −0.218503 0.378458i 0.735848 0.677147i \(-0.236784\pi\)
−0.954350 + 0.298689i \(0.903451\pi\)
\(234\) −0.471410 + 2.23342i −0.0308170 + 0.146003i
\(235\) −1.46169 + 2.53173i −0.0953505 + 0.165152i
\(236\) −0.993163 + 1.72021i −0.0646494 + 0.111976i
\(237\) −14.6683 18.0875i −0.952807 1.17491i
\(238\) −4.86156 + 17.4376i −0.315128 + 1.13031i
\(239\) −7.82038 + 13.5453i −0.505858 + 0.876172i 0.494119 + 0.869394i \(0.335491\pi\)
−0.999977 + 0.00677786i \(0.997843\pi\)
\(240\) 1.92107 + 2.36887i 0.124004 + 0.152910i
\(241\) 21.4120 1.37927 0.689635 0.724157i \(-0.257771\pi\)
0.689635 + 0.724157i \(0.257771\pi\)
\(242\) −13.2564 + 22.9607i −0.852151 + 1.47597i
\(243\) 15.0715 + 3.98104i 0.966840 + 0.255384i
\(244\) −10.3502 −0.662605
\(245\) −0.248838 + 12.3236i −0.0158977 + 0.787328i
\(246\) −11.8759 + 1.88962i −0.757181 + 0.120478i
\(247\) −1.47825 −0.0940586
\(248\) −3.85185 6.67160i −0.244593 0.423647i
\(249\) −5.34501 + 0.850463i −0.338726 + 0.0538959i
\(250\) 6.07442 10.5212i 0.384180 0.665419i
\(251\) −23.6030 −1.48981 −0.744904 0.667171i \(-0.767505\pi\)
−0.744904 + 0.667171i \(0.767505\pi\)
\(252\) 6.69398 4.26505i 0.421681 0.268673i
\(253\) −2.57893 −0.162136
\(254\) 9.47661 16.4140i 0.594616 1.02990i
\(255\) 13.1442 + 16.2082i 0.823121 + 1.01499i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 20.2599 1.26378 0.631890 0.775058i \(-0.282279\pi\)
0.631890 + 0.775058i \(0.282279\pi\)
\(258\) −5.36552 + 14.0074i −0.334043 + 0.872064i
\(259\) 2.05034 7.35422i 0.127402 0.456969i
\(260\) 1.33981 0.0830915
\(261\) 0.907394 4.29900i 0.0561663 0.266102i
\(262\) 3.64652 6.31595i 0.225283 0.390201i
\(263\) −22.4887 −1.38671 −0.693355 0.720596i \(-0.743868\pi\)
−0.693355 + 0.720596i \(0.743868\pi\)
\(264\) 3.79467 9.90650i 0.233546 0.609703i
\(265\) −0.198495 + 0.343803i −0.0121935 + 0.0211197i
\(266\) 3.59781 + 3.67119i 0.220596 + 0.225095i
\(267\) 4.45254 0.708458i 0.272491 0.0433569i
\(268\) −3.39248 + 5.87594i −0.207228 + 0.358930i
\(269\) −12.6706 + 21.9461i −0.772540 + 1.33808i 0.163627 + 0.986522i \(0.447681\pi\)
−0.936167 + 0.351556i \(0.885653\pi\)
\(270\) 0.459372 9.13825i 0.0279565 0.556136i
\(271\) −6.87880 11.9144i −0.417858 0.723751i 0.577866 0.816132i \(-0.303886\pi\)
−0.995724 + 0.0923810i \(0.970552\pi\)
\(272\) −3.42107 5.92546i −0.207433 0.359284i
\(273\) 0.396990 3.46410i 0.0240269 0.209657i
\(274\) 4.09097 7.08577i 0.247145 0.428067i
\(275\) −11.6328 −0.701487
\(276\) 0.720248 0.114601i 0.0433539 0.00689818i
\(277\) −3.28263 −0.197234 −0.0986171 0.995125i \(-0.531442\pi\)
−0.0986171 + 0.995125i \(0.531442\pi\)
\(278\) −6.23229 10.7946i −0.373788 0.647419i
\(279\) −4.77292 + 22.6129i −0.285747 + 1.35380i
\(280\) −3.26088 3.32738i −0.194875 0.198849i
\(281\) 0.634479 + 1.09895i 0.0378498 + 0.0655578i 0.884330 0.466863i \(-0.154616\pi\)
−0.846480 + 0.532421i \(0.821282\pi\)
\(282\) −2.83981 + 0.451852i −0.169108 + 0.0269074i
\(283\) 4.09617 + 7.09478i 0.243492 + 0.421741i 0.961707 0.274081i \(-0.0883736\pi\)
−0.718214 + 0.695822i \(0.755040\pi\)
\(284\) −5.39248 9.34004i −0.319985 0.554230i
\(285\) 5.85185 0.931107i 0.346634 0.0551540i
\(286\) −2.33009 4.03584i −0.137781 0.238644i
\(287\) 17.7902 4.57489i 1.05012 0.270047i
\(288\) −0.619562 + 2.93533i −0.0365080 + 0.172966i
\(289\) −14.9074 25.8204i −0.876906 1.51884i
\(290\) −2.57893 −0.151440
\(291\) −6.21969 + 0.989636i −0.364605 + 0.0580135i
\(292\) −0.306707 −0.0179487
\(293\) 7.72545 13.3809i 0.451326 0.781719i −0.547143 0.837039i \(-0.684285\pi\)
0.998469 + 0.0553202i \(0.0176180\pi\)
\(294\) −9.56922 + 7.44514i −0.558088 + 0.434209i
\(295\) −1.74884 3.02908i −0.101821 0.176360i
\(296\) 1.44282 + 2.49904i 0.0838622 + 0.145254i
\(297\) −28.3256 + 14.5088i −1.64362 + 0.841886i
\(298\) −4.41423 + 7.64567i −0.255709 + 0.442902i
\(299\) 0.160190 0.277457i 0.00926402 0.0160458i
\(300\) 3.24884 0.516934i 0.187572 0.0298452i
\(301\) 6.15335 22.0710i 0.354673 1.27215i
\(302\) 7.49316 12.9785i 0.431183 0.746831i
\(303\) −4.96294 + 12.9564i −0.285113 + 0.744327i
\(304\) −1.94282 −0.111428
\(305\) 9.11273 15.7837i 0.521793 0.903772i
\(306\) −4.23912 + 20.0839i −0.242335 + 1.14812i
\(307\) 4.89931 0.279619 0.139809 0.990178i \(-0.455351\pi\)
0.139809 + 0.990178i \(0.455351\pi\)
\(308\) −4.35185 + 15.6093i −0.247970 + 0.889423i
\(309\) −4.23065 + 11.0447i −0.240673 + 0.628310i
\(310\) 13.5653 0.770455
\(311\) 3.84501 + 6.65976i 0.218031 + 0.377640i 0.954206 0.299151i \(-0.0967034\pi\)
−0.736175 + 0.676791i \(0.763370\pi\)
\(312\) 0.830095 + 1.02359i 0.0469949 + 0.0579495i
\(313\) 0.861564 1.49227i 0.0486985 0.0843482i −0.840649 0.541581i \(-0.817826\pi\)
0.889347 + 0.457233i \(0.151159\pi\)
\(314\) 18.9806 1.07114
\(315\) 0.610402 + 13.9632i 0.0343923 + 0.786737i
\(316\) −13.4451 −0.756348
\(317\) −16.6014 + 28.7544i −0.932426 + 1.61501i −0.153266 + 0.988185i \(0.548979\pi\)
−0.779161 + 0.626824i \(0.784354\pi\)
\(318\) −0.385640 + 0.0613605i −0.0216256 + 0.00344093i
\(319\) 4.48508 + 7.76839i 0.251116 + 0.434946i
\(320\) 1.76088 0.0984360
\(321\) 6.06526 0.965064i 0.338530 0.0538646i
\(322\) −1.07893 + 0.277457i −0.0601266 + 0.0154621i
\(323\) −13.2930 −0.739644
\(324\) 7.26608 5.31075i 0.403671 0.295042i
\(325\) 0.722572 1.25153i 0.0400811 0.0694224i
\(326\) 15.0377 0.832864
\(327\) −0.767713 0.946670i −0.0424546 0.0523510i
\(328\) −3.47141 + 6.01266i −0.191677 + 0.331994i
\(329\) 4.25404 1.09396i 0.234533 0.0603121i
\(330\) 11.7661 + 14.5088i 0.647701 + 0.798683i
\(331\) −1.44445 + 2.50187i −0.0793944 + 0.137515i −0.902989 0.429664i \(-0.858632\pi\)
0.823594 + 0.567179i \(0.191965\pi\)
\(332\) −1.56238 + 2.70612i −0.0857468 + 0.148518i
\(333\) 1.78783 8.47030i 0.0979726 0.464169i
\(334\) 0.572097 + 0.990901i 0.0313037 + 0.0542197i
\(335\) −5.97373 10.3468i −0.326380 0.565307i
\(336\) 0.521753 4.55278i 0.0284640 0.248374i
\(337\) −4.36156 + 7.55445i −0.237590 + 0.411517i −0.960022 0.279924i \(-0.909691\pi\)
0.722433 + 0.691441i \(0.243024\pi\)
\(338\) −12.4211 −0.675617
\(339\) −9.27579 11.4380i −0.503792 0.621228i
\(340\) 12.0482 0.653403
\(341\) −23.5917 40.8620i −1.27756 2.21280i
\(342\) 4.33693 + 3.89384i 0.234514 + 0.210555i
\(343\) 13.4863 12.6933i 0.728193 0.685372i
\(344\) 4.33009 + 7.49994i 0.233463 + 0.404370i
\(345\) −0.459372 + 1.19925i −0.0247317 + 0.0645656i
\(346\) −0.248838 0.431001i −0.0133776 0.0231707i
\(347\) −4.84733 8.39583i −0.260219 0.450712i 0.706081 0.708131i \(-0.250461\pi\)
−0.966300 + 0.257419i \(0.917128\pi\)
\(348\) −1.59781 1.97026i −0.0856515 0.105617i
\(349\) 14.1992 + 24.5937i 0.760065 + 1.31647i 0.942817 + 0.333312i \(0.108166\pi\)
−0.182752 + 0.983159i \(0.558500\pi\)
\(350\) −4.86677 + 1.25153i −0.260140 + 0.0668971i
\(351\) 0.198495 3.94865i 0.0105949 0.210763i
\(352\) −3.06238 5.30420i −0.163225 0.282715i
\(353\) −4.39372 −0.233854 −0.116927 0.993141i \(-0.537304\pi\)
−0.116927 + 0.993141i \(0.537304\pi\)
\(354\) 1.23065 3.21278i 0.0654084 0.170758i
\(355\) 18.9910 1.00794
\(356\) 1.30150 2.25427i 0.0689796 0.119476i
\(357\) 3.56991 31.1507i 0.188939 1.64867i
\(358\) 4.41423 + 7.64567i 0.233299 + 0.404086i
\(359\) 16.0796 + 27.8507i 0.848650 + 1.46990i 0.882413 + 0.470475i \(0.155917\pi\)
−0.0337633 + 0.999430i \(0.510749\pi\)
\(360\) −3.93078 3.52918i −0.207170 0.186004i
\(361\) 7.61273 13.1856i 0.400670 0.693980i
\(362\) −0.664703 + 1.15130i −0.0349360 + 0.0605110i
\(363\) 16.4263 42.8830i 0.862155 2.25077i
\(364\) −1.40903 1.43777i −0.0738532 0.0753594i
\(365\) 0.270036 0.467717i 0.0141343 0.0244814i
\(366\) 17.7044 2.81700i 0.925423 0.147247i
\(367\) 34.6030 1.80626 0.903131 0.429365i \(-0.141262\pi\)
0.903131 + 0.429365i \(0.141262\pi\)
\(368\) 0.210533 0.364654i 0.0109748 0.0190089i
\(369\) 19.7999 6.46451i 1.03074 0.336529i
\(370\) −5.08126 −0.264162
\(371\) 0.577690 0.148558i 0.0299921 0.00771274i
\(372\) 8.40451 + 10.3636i 0.435754 + 0.537330i
\(373\) 10.9759 0.568312 0.284156 0.958778i \(-0.408287\pi\)
0.284156 + 0.958778i \(0.408287\pi\)
\(374\) −20.9532 36.2920i −1.08347 1.87662i
\(375\) −7.52696 + 19.6501i −0.388690 + 1.01473i
\(376\) −0.830095 + 1.43777i −0.0428089 + 0.0741472i
\(377\) −1.11436 −0.0573925
\(378\) −10.2895 + 9.11739i −0.529233 + 0.468948i
\(379\) 33.9877 1.74583 0.872916 0.487871i \(-0.162226\pi\)
0.872916 + 0.487871i \(0.162226\pi\)
\(380\) 1.71053 2.96273i 0.0877485 0.151985i
\(381\) −11.7427 + 30.6559i −0.601596 + 1.57055i
\(382\) 8.08414 + 14.0021i 0.413620 + 0.716411i
\(383\) −21.0241 −1.07428 −0.537140 0.843493i \(-0.680495\pi\)
−0.537140 + 0.843493i \(0.680495\pi\)
\(384\) 1.09097 + 1.34528i 0.0556734 + 0.0686511i
\(385\) −19.9721 20.3794i −1.01787 1.03863i
\(386\) −14.1683 −0.721146
\(387\) 5.36552 25.4205i 0.272745 1.29220i
\(388\) −1.81806 + 3.14897i −0.0922978 + 0.159865i
\(389\) 13.7382 0.696553 0.348277 0.937392i \(-0.386767\pi\)
0.348277 + 0.937392i \(0.386767\pi\)
\(390\) −2.29179 + 0.364654i −0.116049 + 0.0184650i
\(391\) 1.44050 2.49501i 0.0728491 0.126178i
\(392\) −0.141315 + 6.99857i −0.00713749 + 0.353481i
\(393\) −4.51848 + 11.7961i −0.227927 + 0.595035i
\(394\) −7.92107 + 13.7197i −0.399058 + 0.691188i
\(395\) 11.8376 20.5034i 0.595615 1.03164i
\(396\) −3.79467 + 17.9782i −0.190689 + 0.903438i
\(397\) −3.57893 6.19889i −0.179622 0.311114i 0.762129 0.647425i \(-0.224154\pi\)
−0.941751 + 0.336311i \(0.890821\pi\)
\(398\) −4.47141 7.74471i −0.224132 0.388207i
\(399\) −7.15335 5.30048i −0.358116 0.265356i
\(400\) 0.949657 1.64485i 0.0474828 0.0822427i
\(401\) −9.27936 −0.463389 −0.231695 0.972789i \(-0.574427\pi\)
−0.231695 + 0.972789i \(0.574427\pi\)
\(402\) 4.20370 10.9743i 0.209661 0.547349i
\(403\) 5.86156 0.291985
\(404\) 4.00520 + 6.93721i 0.199266 + 0.345139i
\(405\) 1.70137 + 15.7563i 0.0845419 + 0.782937i
\(406\) 2.71217 + 2.76748i 0.134603 + 0.137348i
\(407\) 8.83693 + 15.3060i 0.438030 + 0.758691i
\(408\) 7.46457 + 9.20459i 0.369551 + 0.455695i
\(409\) −7.58414 13.1361i −0.375011 0.649539i 0.615317 0.788279i \(-0.289028\pi\)
−0.990329 + 0.138741i \(0.955695\pi\)
\(410\) −6.11273 10.5876i −0.301886 0.522882i
\(411\) −5.06922 + 13.2339i −0.250046 + 0.652779i
\(412\) 3.41423 + 5.91362i 0.168207 + 0.291343i
\(413\) −1.41135 + 5.06227i −0.0694481 + 0.249098i
\(414\) −1.20082 + 0.392058i −0.0590170 + 0.0192686i
\(415\) −2.75116 4.76515i −0.135049 0.233912i
\(416\) 0.760877 0.0373051
\(417\) 13.5985 + 16.7684i 0.665921 + 0.821150i
\(418\) −11.8993 −0.582014
\(419\) −4.16827 + 7.21966i −0.203633 + 0.352703i −0.949696 0.313172i \(-0.898608\pi\)
0.746063 + 0.665875i \(0.231942\pi\)
\(420\) 6.48345 + 4.80409i 0.316360 + 0.234416i
\(421\) −3.50232 6.06620i −0.170693 0.295649i 0.767969 0.640486i \(-0.221267\pi\)
−0.938662 + 0.344838i \(0.887934\pi\)
\(422\) 11.3856 + 19.7205i 0.554244 + 0.959979i
\(423\) 4.73461 1.54581i 0.230205 0.0751601i
\(424\) −0.112725 + 0.195246i −0.00547442 + 0.00948197i
\(425\) 6.49768 11.2543i 0.315184 0.545914i
\(426\) 11.7661 + 14.5088i 0.570068 + 0.702953i
\(427\) −26.5212 + 6.82015i −1.28345 + 0.330050i
\(428\) 1.77292 3.07078i 0.0856971 0.148432i
\(429\) 5.08414 + 6.26926i 0.245464 + 0.302683i
\(430\) −15.2495 −0.735397
\(431\) −1.72545 + 2.98857i −0.0831120 + 0.143954i −0.904585 0.426293i \(-0.859819\pi\)
0.821473 + 0.570247i \(0.193153\pi\)
\(432\) 0.260877 5.18960i 0.0125514 0.249685i
\(433\) 28.2599 1.35809 0.679043 0.734099i \(-0.262395\pi\)
0.679043 + 0.734099i \(0.262395\pi\)
\(434\) −14.2661 14.5570i −0.684794 0.698761i
\(435\) 4.41135 0.701905i 0.211508 0.0336538i
\(436\) −0.703697 −0.0337010
\(437\) −0.409028 0.708458i −0.0195665 0.0338901i
\(438\) 0.524632 0.0834760i 0.0250679 0.00398864i
\(439\) 14.4480 25.0247i 0.689566 1.19436i −0.282412 0.959293i \(-0.591134\pi\)
0.971978 0.235071i \(-0.0755322\pi\)
\(440\) 10.7850 0.514152
\(441\) 14.3421 15.3396i 0.682959 0.730457i
\(442\) 5.20602 0.247625
\(443\) 6.88044 11.9173i 0.326899 0.566207i −0.654995 0.755633i \(-0.727329\pi\)
0.981895 + 0.189426i \(0.0606628\pi\)
\(444\) −3.14815 3.88200i −0.149405 0.184231i
\(445\) 2.29179 + 3.96950i 0.108641 + 0.188172i
\(446\) 12.8856 0.610153
\(447\) 5.46978 14.2796i 0.258711 0.675401i
\(448\) −1.85185 1.88962i −0.0874916 0.0892761i
\(449\) −20.2003 −0.953309 −0.476655 0.879091i \(-0.658151\pi\)
−0.476655 + 0.879091i \(0.658151\pi\)
\(450\) −5.41655 + 1.76846i −0.255339 + 0.0833662i
\(451\) −21.2616 + 36.8261i −1.00117 + 1.73407i
\(452\) −8.50232 −0.399916
\(453\) −9.28495 + 24.2396i −0.436245 + 1.13888i
\(454\) −10.9984 + 19.0497i −0.516179 + 0.894048i
\(455\) 3.43310 0.882853i 0.160946 0.0413888i
\(456\) 3.32326 0.528775i 0.155626 0.0247621i
\(457\) −10.0149 + 17.3463i −0.468478 + 0.811428i −0.999351 0.0360237i \(-0.988531\pi\)
0.530873 + 0.847451i \(0.321864\pi\)
\(458\) 1.89931 3.28971i 0.0887491 0.153718i
\(459\) 1.78495 35.5079i 0.0833145 1.65737i
\(460\) 0.370723 + 0.642111i 0.0172851 + 0.0299386i
\(461\) 5.97661 + 10.3518i 0.278359 + 0.482131i 0.970977 0.239173i \(-0.0768763\pi\)
−0.692618 + 0.721304i \(0.743543\pi\)
\(462\) 3.19562 27.8847i 0.148674 1.29731i
\(463\) 6.64527 11.5100i 0.308832 0.534913i −0.669275 0.743015i \(-0.733395\pi\)
0.978107 + 0.208102i \(0.0667286\pi\)
\(464\) −1.46457 −0.0679911
\(465\) −23.2038 + 3.69204i −1.07605 + 0.171214i
\(466\) 6.67059 0.309009
\(467\) −5.61505 9.72555i −0.259833 0.450045i 0.706364 0.707849i \(-0.250334\pi\)
−0.966197 + 0.257804i \(0.917001\pi\)
\(468\) −1.69850 1.52496i −0.0785130 0.0704915i
\(469\) −4.82094 + 17.2918i −0.222610 + 0.798463i
\(470\) −1.46169 2.53173i −0.0674230 0.116780i
\(471\) −32.4669 + 5.16592i −1.49600 + 0.238033i
\(472\) −0.993163 1.72021i −0.0457141 0.0791791i
\(473\) 26.5208 + 45.9354i 1.21943 + 2.11211i
\(474\) 22.9984 3.65935i 1.05635 0.168079i
\(475\) −1.84501 3.19565i −0.0846550 0.146627i
\(476\) −12.6706 12.9290i −0.580756 0.592601i
\(477\) 0.642950 0.209918i 0.0294387 0.00961150i
\(478\) −7.82038 13.5453i −0.357696 0.619547i
\(479\) −32.6271 −1.49077 −0.745385 0.666634i \(-0.767734\pi\)
−0.745385 + 0.666634i \(0.767734\pi\)
\(480\) −3.01204 + 0.479256i −0.137480 + 0.0218749i
\(481\) −2.19562 −0.100111
\(482\) −10.7060 + 18.5434i −0.487646 + 0.844627i
\(483\) 1.77004 0.768251i 0.0805394 0.0349566i
\(484\) −13.2564 22.9607i −0.602562 1.04367i
\(485\) −3.20137 5.54494i −0.145367 0.251783i
\(486\) −10.9834 + 11.0618i −0.498219 + 0.501774i
\(487\) 1.84897 3.20251i 0.0837848 0.145120i −0.821088 0.570802i \(-0.806632\pi\)
0.904873 + 0.425682i \(0.139966\pi\)
\(488\) 5.17511 8.96355i 0.234266 0.405761i
\(489\) −25.7226 + 4.09280i −1.16321 + 0.185083i
\(490\) −10.5482 6.37731i −0.476517 0.288098i
\(491\) −18.7804 + 32.5287i −0.847549 + 1.46800i 0.0358393 + 0.999358i \(0.488590\pi\)
−0.883389 + 0.468641i \(0.844744\pi\)
\(492\) 4.30150 11.2297i 0.193927 0.506272i
\(493\) −10.0208 −0.451314
\(494\) 0.739123 1.28020i 0.0332547 0.0575989i
\(495\) −24.0751 21.6154i −1.08210 0.971541i
\(496\) 7.70370 0.345906
\(497\) −19.9721 20.3794i −0.895871 0.914143i
\(498\) 1.93598 5.05415i 0.0867535 0.226482i
\(499\) −31.7954 −1.42336 −0.711678 0.702506i \(-0.752064\pi\)
−0.711678 + 0.702506i \(0.752064\pi\)
\(500\) 6.07442 + 10.5212i 0.271656 + 0.470523i
\(501\) −1.24828 1.53926i −0.0557692 0.0687692i
\(502\) 11.8015 20.4408i 0.526727 0.912318i
\(503\) 30.8252 1.37443 0.687214 0.726455i \(-0.258834\pi\)
0.687214 + 0.726455i \(0.258834\pi\)
\(504\) 0.346647 + 7.92968i 0.0154409 + 0.353216i
\(505\) −14.1053 −0.627679
\(506\) 1.28947 2.23342i 0.0573238 0.0992877i
\(507\) 21.2466 3.38063i 0.943597 0.150139i
\(508\) 9.47661 + 16.4140i 0.420457 + 0.728252i
\(509\) 8.01616 0.355310 0.177655 0.984093i \(-0.443149\pi\)
0.177655 + 0.984093i \(0.443149\pi\)
\(510\) −20.6088 + 3.27913i −0.912572 + 0.145202i
\(511\) −0.785900 + 0.202101i −0.0347662 + 0.00894042i
\(512\) 1.00000 0.0441942
\(513\) −8.47825 5.48016i −0.374324 0.241955i
\(514\) −10.1300 + 17.5456i −0.446814 + 0.773904i
\(515\) −12.0241 −0.529844
\(516\) −9.44802 11.6504i −0.415926 0.512880i
\(517\) −5.08414 + 8.80598i −0.223600 + 0.387287i
\(518\) 5.34377 + 5.45276i 0.234792 + 0.239580i
\(519\) 0.542951 + 0.669515i 0.0238329 + 0.0293885i
\(520\) −0.669905 + 1.16031i −0.0293773 + 0.0508829i
\(521\) 14.8646 25.7462i 0.651229 1.12796i −0.331596 0.943421i \(-0.607587\pi\)
0.982825 0.184540i \(-0.0590795\pi\)
\(522\) 3.26935 + 2.93533i 0.143095 + 0.128476i
\(523\) 13.4698 + 23.3303i 0.588992 + 1.02016i 0.994365 + 0.106013i \(0.0338084\pi\)
−0.405373 + 0.914152i \(0.632858\pi\)
\(524\) 3.64652 + 6.31595i 0.159299 + 0.275914i
\(525\) 7.98414 3.46537i 0.348456 0.151241i
\(526\) 11.2443 19.4757i 0.490276 0.849183i
\(527\) 52.7097 2.29607
\(528\) 6.68194 + 8.23953i 0.290794 + 0.358579i
\(529\) −22.8227 −0.992291
\(530\) −0.198495 0.343803i −0.00862207 0.0149339i
\(531\) −1.23065 + 5.83052i −0.0534057 + 0.253023i
\(532\) −4.97825 + 1.28020i −0.215834 + 0.0555037i
\(533\) −2.64132 4.57489i −0.114408 0.198161i
\(534\) −1.61273 + 4.21024i −0.0697894 + 0.182195i
\(535\) 3.12188 + 5.40726i 0.134971 + 0.233776i
\(536\) −3.39248 5.87594i −0.146533 0.253802i
\(537\) −9.63160 11.8768i −0.415634 0.512520i
\(538\) −12.6706 21.9461i −0.546268 0.946164i
\(539\) −0.865521 + 42.8646i −0.0372806 + 1.84631i
\(540\) 7.68427 + 4.96695i 0.330678 + 0.213744i
\(541\) 7.15568 + 12.3940i 0.307647 + 0.532859i 0.977847 0.209321i \(-0.0671252\pi\)
−0.670201 + 0.742180i \(0.733792\pi\)
\(542\) 13.7576 0.590940
\(543\) 0.823649 2.15025i 0.0353462 0.0922760i
\(544\) 6.84213 0.293354
\(545\) 0.619562 1.07311i 0.0265391 0.0459671i
\(546\) 2.80150 + 2.07585i 0.119893 + 0.0888384i
\(547\) 1.02463 + 1.77471i 0.0438101 + 0.0758813i 0.887099 0.461579i \(-0.152717\pi\)
−0.843289 + 0.537461i \(0.819384\pi\)
\(548\) 4.09097 + 7.08577i 0.174758 + 0.302689i
\(549\) −29.5172 + 9.63716i −1.25977 + 0.411304i
\(550\) 5.81642 10.0743i 0.248013 0.429571i
\(551\) −1.42270 + 2.46419i −0.0606091 + 0.104978i
\(552\) −0.260877 + 0.681054i −0.0111037 + 0.0289876i
\(553\) −34.4516 + 8.85952i −1.46503 + 0.376745i
\(554\) 1.64132 2.84284i 0.0697328 0.120781i
\(555\) 8.69166 1.38296i 0.368940 0.0587033i
\(556\) 12.4646 0.528616
\(557\) 8.84338 15.3172i 0.374706 0.649010i −0.615577 0.788077i \(-0.711077\pi\)
0.990283 + 0.139067i \(0.0444103\pi\)
\(558\) −17.1969 15.4399i −0.728001 0.653623i
\(559\) −6.58934 −0.278699
\(560\) 4.51204 1.16031i 0.190668 0.0490320i
\(561\) 45.7187 + 56.3759i 1.93025 + 2.38019i
\(562\) −1.26896 −0.0535277
\(563\) −0.468531 0.811520i −0.0197462 0.0342015i 0.855983 0.517003i \(-0.172952\pi\)
−0.875730 + 0.482802i \(0.839619\pi\)
\(564\) 1.02859 2.68527i 0.0433115 0.113070i
\(565\) 7.48577 12.9657i 0.314929 0.545473i
\(566\) −8.19235 −0.344350
\(567\) 15.1190 18.3961i 0.634939 0.772563i
\(568\) 10.7850 0.452527
\(569\) −11.7632 + 20.3745i −0.493139 + 0.854142i −0.999969 0.00790437i \(-0.997484\pi\)
0.506830 + 0.862046i \(0.330817\pi\)
\(570\) −2.11956 + 5.53340i −0.0887787 + 0.231769i
\(571\) 0.242002 + 0.419160i 0.0101275 + 0.0175413i 0.871045 0.491204i \(-0.163443\pi\)
−0.860917 + 0.508745i \(0.830110\pi\)
\(572\) 4.66019 0.194852
\(573\) −17.6391 21.7509i −0.736885 0.908655i
\(574\) −4.93310 + 17.6942i −0.205904 + 0.738540i
\(575\) 0.799737 0.0333514
\(576\) −2.23229 2.00422i −0.0930119 0.0835091i
\(577\) −2.23065 + 3.86360i −0.0928633 + 0.160844i −0.908715 0.417417i \(-0.862935\pi\)
0.815852 + 0.578261i \(0.196269\pi\)
\(578\) 29.8148 1.24013
\(579\) 24.2353 3.85616i 1.00718 0.160257i
\(580\) 1.28947 2.23342i 0.0535422 0.0927378i
\(581\) −2.22025 + 7.96364i −0.0921114 + 0.330387i
\(582\) 2.25280 5.88123i 0.0933814 0.243785i
\(583\) −0.690415 + 1.19583i −0.0285941 + 0.0495264i
\(584\) 0.153353 0.265616i 0.00634581 0.0109913i
\(585\) 3.82094 1.24751i 0.157976 0.0515781i
\(586\) 7.72545 + 13.3809i 0.319135 + 0.552759i
\(587\) 8.31518 + 14.4023i 0.343204 + 0.594447i 0.985026 0.172407i \(-0.0551544\pi\)
−0.641822 + 0.766854i \(0.721821\pi\)
\(588\) −1.66307 12.0098i −0.0685838 0.495274i
\(589\) 7.48345 12.9617i 0.308350 0.534078i
\(590\) 3.49768 0.143997
\(591\) 9.81518 25.6239i 0.403742 1.05402i
\(592\) −2.88564 −0.118599
\(593\) 20.7632 + 35.9629i 0.852642 + 1.47682i 0.878815 + 0.477163i \(0.158335\pi\)
−0.0261726 + 0.999657i \(0.508332\pi\)
\(594\) 1.59781 31.7851i 0.0655589 1.30416i
\(595\) 30.8720 7.93899i 1.26563 0.325467i
\(596\) −4.41423 7.64567i −0.180814 0.313179i
\(597\) 9.75636 + 12.0306i 0.399301 + 0.492380i
\(598\) 0.160190 + 0.277457i 0.00655065 + 0.0113461i
\(599\) −7.53831 13.0567i −0.308007 0.533483i 0.669919 0.742434i \(-0.266329\pi\)
−0.977926 + 0.208950i \(0.932995\pi\)
\(600\) −1.17674 + 3.07204i −0.0480403 + 0.125416i
\(601\) −8.05555 13.9526i −0.328593 0.569139i 0.653640 0.756805i \(-0.273241\pi\)
−0.982233 + 0.187666i \(0.939908\pi\)
\(602\) 16.0374 + 16.3645i 0.653634 + 0.666965i
\(603\) −4.20370 + 19.9161i −0.171188 + 0.811044i
\(604\) 7.49316 + 12.9785i 0.304892 + 0.528089i
\(605\) 46.6856 1.89804
\(606\) −8.73912 10.7762i −0.355003 0.437755i
\(607\) 19.5732 0.794451 0.397225 0.917721i \(-0.369973\pi\)
0.397225 + 0.917721i \(0.369973\pi\)
\(608\) 0.971410 1.68253i 0.0393959 0.0682357i
\(609\) −5.39248 3.99571i −0.218514 0.161914i
\(610\) 9.11273 + 15.7837i 0.368963 + 0.639063i
\(611\) −0.631600 1.09396i −0.0255518 0.0442570i
\(612\) −15.2736 13.7131i −0.617399 0.554321i
\(613\) −2.77579 + 4.80782i −0.112113 + 0.194186i −0.916622 0.399755i \(-0.869095\pi\)
0.804509 + 0.593941i \(0.202429\pi\)
\(614\) −2.44966 + 4.24293i −0.0988601 + 0.171231i
\(615\) 13.3376 + 16.4467i 0.537825 + 0.663194i
\(616\) −11.3421 11.5735i −0.456988 0.466308i
\(617\) 0.634479 1.09895i 0.0255431 0.0442420i −0.852971 0.521958i \(-0.825202\pi\)
0.878514 + 0.477716i \(0.158535\pi\)
\(618\) −7.44966 9.18620i −0.299669 0.369523i
\(619\) 4.50232 0.180964 0.0904818 0.995898i \(-0.471159\pi\)
0.0904818 + 0.995898i \(0.471159\pi\)
\(620\) −6.78263 + 11.7479i −0.272397 + 0.471805i
\(621\) 1.94733 0.997454i 0.0781438 0.0400264i
\(622\) −7.69002 −0.308342
\(623\) 1.84953 6.63392i 0.0740997 0.265782i
\(624\) −1.30150 + 0.207087i −0.0521019 + 0.00829011i
\(625\) −11.8960 −0.475842
\(626\) 0.861564 + 1.49227i 0.0344350 + 0.0596432i
\(627\) 20.3542 3.23862i 0.812867 0.129338i
\(628\) −9.49028 + 16.4377i −0.378704 + 0.655934i
\(629\) −19.7439 −0.787242
\(630\) −12.3977 6.45297i −0.493935 0.257093i
\(631\) −1.69905 −0.0676381 −0.0338191 0.999428i \(-0.510767\pi\)
−0.0338191 + 0.999428i \(0.510767\pi\)
\(632\) 6.72257 11.6438i 0.267410 0.463167i
\(633\) −24.8428 30.6338i −0.987414 1.21758i
\(634\) −16.6014 28.7544i −0.659325 1.14198i
\(635\) −33.3743 −1.32442
\(636\) 0.139680 0.364654i 0.00553868 0.0144595i
\(637\) −4.55787 2.75564i −0.180589 0.109183i
\(638\) −8.97017 −0.355132
\(639\) −24.0751 21.6154i −0.952397 0.855093i
\(640\) −0.880438 + 1.52496i −0.0348024 + 0.0602795i
\(641\) −0.948577 −0.0374666 −0.0187333 0.999825i \(-0.505963\pi\)
−0.0187333 + 0.999825i \(0.505963\pi\)
\(642\) −2.19686 + 5.73520i −0.0867032 + 0.226350i
\(643\) −9.84897 + 17.0589i −0.388405 + 0.672738i −0.992235 0.124375i \(-0.960307\pi\)
0.603830 + 0.797113i \(0.293641\pi\)
\(644\) 0.299182 1.07311i 0.0117894 0.0422865i
\(645\) 26.0848 4.15044i 1.02709 0.163424i
\(646\) 6.64652 11.5121i 0.261504 0.452938i
\(647\) 11.7271 20.3119i 0.461039 0.798543i −0.537974 0.842962i \(-0.680810\pi\)
0.999013 + 0.0444181i \(0.0141434\pi\)
\(648\) 0.966208 + 8.94799i 0.0379562 + 0.351510i
\(649\) −6.08289 10.5359i −0.238774 0.413569i
\(650\) 0.722572 + 1.25153i 0.0283416 + 0.0490891i
\(651\) 28.3646 + 21.0175i 1.11170 + 0.823742i
\(652\) −7.51887 + 13.0231i −0.294462 + 0.510023i
\(653\) 22.7907 0.891869 0.445935 0.895065i \(-0.352871\pi\)
0.445935 + 0.895065i \(0.352871\pi\)
\(654\) 1.20370 0.191524i 0.0470683 0.00748919i
\(655\) −12.8421 −0.501784
\(656\) −3.47141 6.01266i −0.135536 0.234755i
\(657\) −0.874681 + 0.285577i −0.0341246 + 0.0111414i
\(658\) −1.17962 + 4.23109i −0.0459864 + 0.164945i
\(659\) −13.2398 22.9320i −0.515750 0.893305i −0.999833 0.0182828i \(-0.994180\pi\)
0.484083 0.875022i \(-0.339153\pi\)
\(660\) −18.4480 + 2.93533i −0.718088 + 0.114257i
\(661\) 13.3691 + 23.1559i 0.519997 + 0.900662i 0.999730 + 0.0232469i \(0.00740038\pi\)
−0.479732 + 0.877415i \(0.659266\pi\)
\(662\) −1.44445 2.50187i −0.0561403 0.0972379i
\(663\) −8.90507 + 1.41692i −0.345844 + 0.0550284i
\(664\) −1.56238 2.70612i −0.0606322 0.105018i
\(665\) 2.43078 8.71878i 0.0942617 0.338100i
\(666\) 6.44158 + 5.78346i 0.249606 + 0.224104i
\(667\) −0.308342 0.534063i −0.0119390 0.0206790i
\(668\) −1.14419 −0.0442702
\(669\) −22.0413 + 3.50707i −0.852167 + 0.135591i
\(670\) 11.9475 0.461571
\(671\) 31.6963 54.8996i 1.22362 2.11938i
\(672\) 3.68194 + 2.72824i 0.142034 + 0.105244i
\(673\) −10.3856 17.9885i −0.400337 0.693404i 0.593429 0.804886i \(-0.297774\pi\)
−0.993766 + 0.111482i \(0.964440\pi\)
\(674\) −4.36156 7.55445i −0.168001 0.290987i
\(675\) 8.78387 4.49923i 0.338091 0.173176i
\(676\) 6.21053 10.7570i 0.238867 0.413729i
\(677\) 10.3490 17.9249i 0.397743 0.688911i −0.595704 0.803204i \(-0.703127\pi\)
0.993447 + 0.114293i \(0.0364602\pi\)
\(678\) 14.5435 2.31407i 0.558540 0.0888712i
\(679\) −2.58358 + 9.26684i −0.0991487 + 0.355629i
\(680\) −6.02408 + 10.4340i −0.231013 + 0.400126i
\(681\) 13.6283 35.5786i 0.522239 1.36338i
\(682\) 47.1833 1.80674
\(683\) 14.2918 24.7541i 0.546860 0.947190i −0.451627 0.892207i \(-0.649156\pi\)
0.998487 0.0549828i \(-0.0175104\pi\)
\(684\) −5.54063 + 1.80897i −0.211851 + 0.0691678i
\(685\) −14.4074 −0.550478
\(686\) 4.24953 + 18.0261i 0.162248 + 0.688241i
\(687\) −2.35348 + 6.14409i −0.0897910 + 0.234412i
\(688\) −8.66019 −0.330167
\(689\) −0.0857699 0.148558i −0.00326757 0.00565960i
\(690\) −0.808897 0.997454i −0.0307942 0.0379724i
\(691\) 3.34897 5.80059i 0.127401 0.220665i −0.795268 0.606258i \(-0.792670\pi\)
0.922669 + 0.385593i \(0.126003\pi\)
\(692\) 0.497677 0.0189188
\(693\) 2.12313 + 48.5674i 0.0806510 + 1.84492i
\(694\) 9.69467 0.368005
\(695\) −10.9743 + 19.0080i −0.416278 + 0.721016i
\(696\) 2.50520 0.398611i 0.0949594 0.0151093i
\(697\) −23.7518 41.1394i −0.899665 1.55827i
\(698\) −28.3984 −1.07489
\(699\) −11.4103 + 1.81553i −0.431576 + 0.0686695i
\(700\) 1.34953 4.84051i 0.0510073 0.182954i
\(701\) −25.1442 −0.949683 −0.474842 0.880071i \(-0.657495\pi\)
−0.474842 + 0.880071i \(0.657495\pi\)
\(702\) 3.32038 + 2.14622i 0.125320 + 0.0810040i
\(703\) −2.80314 + 4.85518i −0.105722 + 0.183117i
\(704\) 6.12476 0.230836
\(705\) 3.18934 + 3.93278i 0.120117 + 0.148117i
\(706\) 2.19686 3.80507i 0.0826799 0.143206i
\(707\) 14.8341 + 15.1366i 0.557892 + 0.569271i
\(708\) 2.16703 + 2.67217i 0.0814418 + 0.100426i
\(709\) −4.43310 + 7.67836i −0.166489 + 0.288367i −0.937183 0.348838i \(-0.886576\pi\)
0.770694 + 0.637205i \(0.219910\pi\)
\(710\) −9.49549 + 16.4467i −0.356359 + 0.617232i
\(711\) −38.3435 + 12.5189i −1.43799 + 0.469494i
\(712\) 1.30150 + 2.25427i 0.0487760 + 0.0844824i
\(713\) 1.62188 + 2.80919i 0.0607401 + 0.105205i
\(714\) 25.1923 + 18.6670i 0.942800 + 0.698594i
\(715\) −4.10301 + 7.10662i −0.153444 + 0.265773i
\(716\) −8.82846 −0.329935
\(717\) 17.0636 + 21.0412i 0.637253 + 0.785799i
\(718\) −32.1592 −1.20017
\(719\) 11.8015 + 20.4408i 0.440122 + 0.762313i 0.997698 0.0678123i \(-0.0216019\pi\)
−0.557576 + 0.830126i \(0.688269\pi\)
\(720\) 5.02175 1.63957i 0.187150 0.0611030i
\(721\) 12.6453 + 12.9032i 0.470935 + 0.480540i
\(722\) 7.61273 + 13.1856i 0.283316 + 0.490718i
\(723\) 13.2661 34.6329i 0.493371 1.28801i
\(724\) −0.664703 1.15130i −0.0247035 0.0427877i
\(725\) −1.39084 2.40901i −0.0516546 0.0894683i
\(726\) 28.9246 + 35.6671i 1.07349 + 1.32373i
\(727\) 3.25692 + 5.64115i 0.120792 + 0.209219i 0.920080 0.391730i \(-0.128123\pi\)
−0.799288 + 0.600948i \(0.794790\pi\)
\(728\) 1.94966 0.501371i 0.0722591 0.0185820i
\(729\) 15.7769 21.9110i 0.584329 0.811517i
\(730\) 0.270036 + 0.467717i 0.00999449 + 0.0173110i
\(731\) −59.2542 −2.19159
\(732\) −6.41260 + 16.7409i −0.237016 + 0.618763i
\(733\) −23.1981 −0.856842 −0.428421 0.903579i \(-0.640930\pi\)
−0.428421 + 0.903579i \(0.640930\pi\)
\(734\) −17.3015 + 29.9671i −0.638610 + 1.10611i
\(735\) 19.7787 + 8.03773i 0.729547 + 0.296476i
\(736\) 0.210533 + 0.364654i 0.00776036 + 0.0134413i
\(737\) −20.7781 35.9888i −0.765372 1.32566i
\(738\) −4.30150 + 20.3794i −0.158341 + 0.750178i
\(739\) −7.57838 + 13.1261i −0.278775 + 0.482853i −0.971081 0.238752i \(-0.923262\pi\)
0.692305 + 0.721605i \(0.256595\pi\)
\(740\) 2.54063 4.40050i 0.0933954 0.161765i
\(741\) −0.915865 + 2.39099i −0.0336451 + 0.0878352i
\(742\) −0.160190 + 0.574573i −0.00588076 + 0.0210932i
\(743\) −5.21737 + 9.03675i −0.191407 + 0.331526i −0.945717 0.324992i \(-0.894638\pi\)
0.754310 + 0.656518i \(0.227972\pi\)
\(744\) −13.1774 + 2.09671i −0.483108 + 0.0768689i
\(745\) 15.5458 0.569555
\(746\) −5.48796 + 9.50543i −0.200929 + 0.348018i
\(747\) −1.93598 + 9.17220i −0.0708339 + 0.335593i
\(748\) 41.9064 1.53225
\(749\) 2.51943 9.03675i 0.0920580 0.330196i
\(750\) −13.2540 16.3436i −0.483969 0.596784i
\(751\) 40.2118 1.46735 0.733674 0.679501i \(-0.237804\pi\)
0.733674 + 0.679501i \(0.237804\pi\)
\(752\) −0.830095 1.43777i −0.0302704 0.0524300i
\(753\) −14.6235 + 38.1767i −0.532911 + 1.39124i
\(754\) 0.557180 0.965064i 0.0202913 0.0351456i
\(755\) −26.3891 −0.960397
\(756\) −2.75116 13.4696i −0.100059 0.489886i
\(757\) −21.5206 −0.782181 −0.391091 0.920352i \(-0.627902\pi\)
−0.391091 + 0.920352i \(0.627902\pi\)
\(758\) −16.9939 + 29.4342i −0.617244 + 1.06910i
\(759\) −1.59781 + 4.17129i −0.0579968 + 0.151408i
\(760\) 1.71053 + 2.96273i 0.0620476 + 0.107470i
\(761\) −23.6627 −0.857771 −0.428886 0.903359i \(-0.641094\pi\)
−0.428886 + 0.903359i \(0.641094\pi\)
\(762\) −20.6774 25.4974i −0.749064 0.923674i
\(763\) −1.80314 + 0.463693i −0.0652780 + 0.0167868i
\(764\) −16.1683 −0.584947
\(765\) 34.3595 11.2181i 1.24227 0.405592i
\(766\) 10.5120 18.2074i 0.379815 0.657860i
\(767\) 1.51135 0.0545717