Properties

Label 126.2.h
Level $126$
Weight $2$
Character orbit 126.h
Rep. character $\chi_{126}(67,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $16$
Newform subspaces $4$
Sturm bound $48$
Trace bound $2$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.h (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 4 \)
Sturm bound: \(48\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(126, [\chi])\).

Total New Old
Modular forms 56 16 40
Cusp forms 40 16 24
Eisenstein series 16 0 16

Trace form

\( 16q - 8q^{4} + 8q^{5} - 4q^{6} - 2q^{7} - 2q^{9} + O(q^{10}) \) \( 16q - 8q^{4} + 8q^{5} - 4q^{6} - 2q^{7} - 2q^{9} - 8q^{11} + 2q^{13} + 2q^{14} + 10q^{15} - 8q^{16} - 14q^{17} + 12q^{18} - 4q^{19} - 4q^{20} - 14q^{21} + 4q^{23} + 2q^{24} + 16q^{25} - 16q^{26} - 2q^{28} - 10q^{29} + 10q^{30} + 2q^{31} + 2q^{33} - 14q^{35} - 8q^{36} + 2q^{37} + 24q^{38} - 2q^{39} - 6q^{41} - 6q^{42} + 2q^{43} + 4q^{44} - 28q^{45} - 6q^{46} - 6q^{47} - 14q^{49} - 4q^{50} + 8q^{51} - 4q^{52} + 24q^{53} + 2q^{54} - 12q^{55} - 4q^{56} + 18q^{57} - 12q^{58} - 22q^{59} + 10q^{60} + 8q^{61} + 44q^{62} + 42q^{63} + 16q^{64} - 6q^{65} + 8q^{66} + 14q^{67} + 28q^{68} + 38q^{69} + 52q^{71} - 28q^{73} + 12q^{74} - 74q^{75} - 4q^{76} - 34q^{77} + 32q^{78} + 20q^{79} - 4q^{80} - 26q^{81} + 16q^{83} + 22q^{84} + 12q^{85} - 24q^{86} - 56q^{87} - 36q^{89} + 2q^{90} - 16q^{91} - 2q^{92} + 46q^{93} + 12q^{94} + 34q^{95} + 2q^{96} + 2q^{97} - 24q^{98} - 62q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(126, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
126.2.h.a \(2\) \(1.006\) \(\Q(\sqrt{-3}) \) None \(-1\) \(-3\) \(-6\) \(-1\) \(q-\zeta_{6}q^{2}+(-1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
126.2.h.b \(2\) \(1.006\) \(\Q(\sqrt{-3}) \) None \(1\) \(-3\) \(6\) \(5\) \(q+\zeta_{6}q^{2}+(-1-\zeta_{6})q^{3}+(-1+\zeta_{6})q^{4}+\cdots\)
126.2.h.c \(6\) \(1.006\) 6.0.309123.1 None \(-3\) \(4\) \(10\) \(-2\) \(q+\beta _{4}q^{2}+(1-\beta _{5})q^{3}+(-1-\beta _{4})q^{4}+\cdots\)
126.2.h.d \(6\) \(1.006\) 6.0.309123.1 None \(3\) \(2\) \(-2\) \(-4\) \(q-\beta _{4}q^{2}+(\beta _{1}+\beta _{2}-\beta _{5})q^{3}+(-1+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(126, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(126, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)