Properties

Label 126.2.f.d.43.2
Level $126$
Weight $2$
Character 126.43
Analytic conductor $1.006$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Defining polynomial: \(x^{4} - x^{3} - 2 x^{2} - 3 x + 9\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 43.2
Root \(-1.18614 + 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 126.43
Dual form 126.2.f.d.85.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(1.18614 - 1.26217i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.686141 + 1.18843i) q^{5} +(-0.500000 - 1.65831i) q^{6} +(-0.500000 + 0.866025i) q^{7} -1.00000 q^{8} +(-0.186141 - 2.99422i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(1.18614 - 1.26217i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.686141 + 1.18843i) q^{5} +(-0.500000 - 1.65831i) q^{6} +(-0.500000 + 0.866025i) q^{7} -1.00000 q^{8} +(-0.186141 - 2.99422i) q^{9} +1.37228 q^{10} +(-2.18614 + 3.78651i) q^{11} +(-1.68614 - 0.396143i) q^{12} +(-1.00000 - 1.73205i) q^{13} +(0.500000 + 0.866025i) q^{14} +(2.31386 + 0.543620i) q^{15} +(-0.500000 + 0.866025i) q^{16} -4.37228 q^{17} +(-2.68614 - 1.33591i) q^{18} +5.00000 q^{19} +(0.686141 - 1.18843i) q^{20} +(0.500000 + 1.65831i) q^{21} +(2.18614 + 3.78651i) q^{22} +(3.68614 + 6.38458i) q^{23} +(-1.18614 + 1.26217i) q^{24} +(1.55842 - 2.69927i) q^{25} -2.00000 q^{26} +(-4.00000 - 3.31662i) q^{27} +1.00000 q^{28} +(-1.37228 + 2.37686i) q^{29} +(1.62772 - 1.73205i) q^{30} +(-1.00000 - 1.73205i) q^{31} +(0.500000 + 0.866025i) q^{32} +(2.18614 + 7.25061i) q^{33} +(-2.18614 + 3.78651i) q^{34} -1.37228 q^{35} +(-2.50000 + 1.65831i) q^{36} +2.00000 q^{37} +(2.50000 - 4.33013i) q^{38} +(-3.37228 - 0.792287i) q^{39} +(-0.686141 - 1.18843i) q^{40} +(-5.18614 - 8.98266i) q^{41} +(1.68614 + 0.396143i) q^{42} +(-4.55842 + 7.89542i) q^{43} +4.37228 q^{44} +(3.43070 - 2.27567i) q^{45} +7.37228 q^{46} +(0.500000 + 1.65831i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(-1.55842 - 2.69927i) q^{50} +(-5.18614 + 5.51856i) q^{51} +(-1.00000 + 1.73205i) q^{52} +2.74456 q^{53} +(-4.87228 + 1.80579i) q^{54} -6.00000 q^{55} +(0.500000 - 0.866025i) q^{56} +(5.93070 - 6.31084i) q^{57} +(1.37228 + 2.37686i) q^{58} +(-3.55842 - 6.16337i) q^{59} +(-0.686141 - 2.27567i) q^{60} +(7.05842 - 12.2255i) q^{61} -2.00000 q^{62} +(2.68614 + 1.33591i) q^{63} +1.00000 q^{64} +(1.37228 - 2.37686i) q^{65} +(7.37228 + 1.73205i) q^{66} +(-7.55842 - 13.0916i) q^{67} +(2.18614 + 3.78651i) q^{68} +(12.4307 + 2.92048i) q^{69} +(-0.686141 + 1.18843i) q^{70} +10.1168 q^{71} +(0.186141 + 2.99422i) q^{72} -5.11684 q^{73} +(1.00000 - 1.73205i) q^{74} +(-1.55842 - 5.16870i) q^{75} +(-2.50000 - 4.33013i) q^{76} +(-2.18614 - 3.78651i) q^{77} +(-2.37228 + 2.52434i) q^{78} +(-6.05842 + 10.4935i) q^{79} -1.37228 q^{80} +(-8.93070 + 1.11469i) q^{81} -10.3723 q^{82} +(2.74456 - 4.75372i) q^{83} +(1.18614 - 1.26217i) q^{84} +(-3.00000 - 5.19615i) q^{85} +(4.55842 + 7.89542i) q^{86} +(1.37228 + 4.55134i) q^{87} +(2.18614 - 3.78651i) q^{88} +3.25544 q^{89} +(-0.255437 - 4.10891i) q^{90} +2.00000 q^{91} +(3.68614 - 6.38458i) q^{92} +(-3.37228 - 0.792287i) q^{93} +(3.43070 + 5.94215i) q^{95} +(1.68614 + 0.396143i) q^{96} +(-4.55842 + 7.89542i) q^{97} -1.00000 q^{98} +(11.7446 + 5.84096i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - q^{3} - 2 q^{4} - 3 q^{5} - 2 q^{6} - 2 q^{7} - 4 q^{8} + 5 q^{9} + O(q^{10}) \) \( 4 q + 2 q^{2} - q^{3} - 2 q^{4} - 3 q^{5} - 2 q^{6} - 2 q^{7} - 4 q^{8} + 5 q^{9} - 6 q^{10} - 3 q^{11} - q^{12} - 4 q^{13} + 2 q^{14} + 15 q^{15} - 2 q^{16} - 6 q^{17} - 5 q^{18} + 20 q^{19} - 3 q^{20} + 2 q^{21} + 3 q^{22} + 9 q^{23} + q^{24} - 11 q^{25} - 8 q^{26} - 16 q^{27} + 4 q^{28} + 6 q^{29} + 18 q^{30} - 4 q^{31} + 2 q^{32} + 3 q^{33} - 3 q^{34} + 6 q^{35} - 10 q^{36} + 8 q^{37} + 10 q^{38} - 2 q^{39} + 3 q^{40} - 15 q^{41} + q^{42} - q^{43} + 6 q^{44} - 15 q^{45} + 18 q^{46} + 2 q^{48} - 2 q^{49} + 11 q^{50} - 15 q^{51} - 4 q^{52} - 12 q^{53} - 8 q^{54} - 24 q^{55} + 2 q^{56} - 5 q^{57} - 6 q^{58} + 3 q^{59} + 3 q^{60} + 11 q^{61} - 8 q^{62} + 5 q^{63} + 4 q^{64} - 6 q^{65} + 18 q^{66} - 13 q^{67} + 3 q^{68} + 21 q^{69} + 3 q^{70} + 6 q^{71} - 5 q^{72} + 14 q^{73} + 4 q^{74} + 11 q^{75} - 10 q^{76} - 3 q^{77} + 2 q^{78} - 7 q^{79} + 6 q^{80} - 7 q^{81} - 30 q^{82} - 12 q^{83} - q^{84} - 12 q^{85} + q^{86} - 6 q^{87} + 3 q^{88} + 36 q^{89} - 24 q^{90} + 8 q^{91} + 9 q^{92} - 2 q^{93} - 15 q^{95} + q^{96} - q^{97} - 4 q^{98} + 24 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 1.18614 1.26217i 0.684819 0.728714i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.686141 + 1.18843i 0.306851 + 0.531482i 0.977672 0.210138i \(-0.0673912\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) −0.500000 1.65831i −0.204124 0.677003i
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i
\(8\) −1.00000 −0.353553
\(9\) −0.186141 2.99422i −0.0620469 0.998073i
\(10\) 1.37228 0.433953
\(11\) −2.18614 + 3.78651i −0.659146 + 1.14167i 0.321691 + 0.946845i \(0.395749\pi\)
−0.980837 + 0.194830i \(0.937584\pi\)
\(12\) −1.68614 0.396143i −0.486747 0.114357i
\(13\) −1.00000 1.73205i −0.277350 0.480384i 0.693375 0.720577i \(-0.256123\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) 0.500000 + 0.866025i 0.133631 + 0.231455i
\(15\) 2.31386 + 0.543620i 0.597436 + 0.140362i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −4.37228 −1.06043 −0.530217 0.847862i \(-0.677890\pi\)
−0.530217 + 0.847862i \(0.677890\pi\)
\(18\) −2.68614 1.33591i −0.633129 0.314876i
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) 0.686141 1.18843i 0.153426 0.265741i
\(21\) 0.500000 + 1.65831i 0.109109 + 0.361873i
\(22\) 2.18614 + 3.78651i 0.466087 + 0.807286i
\(23\) 3.68614 + 6.38458i 0.768613 + 1.33128i 0.938315 + 0.345782i \(0.112386\pi\)
−0.169701 + 0.985496i \(0.554280\pi\)
\(24\) −1.18614 + 1.26217i −0.242120 + 0.257639i
\(25\) 1.55842 2.69927i 0.311684 0.539853i
\(26\) −2.00000 −0.392232
\(27\) −4.00000 3.31662i −0.769800 0.638285i
\(28\) 1.00000 0.188982
\(29\) −1.37228 + 2.37686i −0.254826 + 0.441372i −0.964848 0.262807i \(-0.915352\pi\)
0.710022 + 0.704179i \(0.248685\pi\)
\(30\) 1.62772 1.73205i 0.297179 0.316228i
\(31\) −1.00000 1.73205i −0.179605 0.311086i 0.762140 0.647412i \(-0.224149\pi\)
−0.941745 + 0.336327i \(0.890815\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 2.18614 + 7.25061i 0.380558 + 1.26217i
\(34\) −2.18614 + 3.78651i −0.374920 + 0.649381i
\(35\) −1.37228 −0.231958
\(36\) −2.50000 + 1.65831i −0.416667 + 0.276385i
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 2.50000 4.33013i 0.405554 0.702439i
\(39\) −3.37228 0.792287i −0.539997 0.126867i
\(40\) −0.686141 1.18843i −0.108488 0.187907i
\(41\) −5.18614 8.98266i −0.809939 1.40286i −0.912906 0.408171i \(-0.866167\pi\)
0.102966 0.994685i \(-0.467167\pi\)
\(42\) 1.68614 + 0.396143i 0.260177 + 0.0611263i
\(43\) −4.55842 + 7.89542i −0.695153 + 1.20404i 0.274976 + 0.961451i \(0.411330\pi\)
−0.970129 + 0.242589i \(0.922003\pi\)
\(44\) 4.37228 0.659146
\(45\) 3.43070 2.27567i 0.511419 0.339237i
\(46\) 7.37228 1.08698
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0.500000 + 1.65831i 0.0721688 + 0.239357i
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) −1.55842 2.69927i −0.220394 0.381734i
\(51\) −5.18614 + 5.51856i −0.726205 + 0.772753i
\(52\) −1.00000 + 1.73205i −0.138675 + 0.240192i
\(53\) 2.74456 0.376995 0.188497 0.982074i \(-0.439638\pi\)
0.188497 + 0.982074i \(0.439638\pi\)
\(54\) −4.87228 + 1.80579i −0.663034 + 0.245737i
\(55\) −6.00000 −0.809040
\(56\) 0.500000 0.866025i 0.0668153 0.115728i
\(57\) 5.93070 6.31084i 0.785541 0.835892i
\(58\) 1.37228 + 2.37686i 0.180189 + 0.312097i
\(59\) −3.55842 6.16337i −0.463267 0.802402i 0.535854 0.844310i \(-0.319990\pi\)
−0.999121 + 0.0419083i \(0.986656\pi\)
\(60\) −0.686141 2.27567i −0.0885804 0.293788i
\(61\) 7.05842 12.2255i 0.903738 1.56532i 0.0811364 0.996703i \(-0.474145\pi\)
0.822602 0.568618i \(-0.192522\pi\)
\(62\) −2.00000 −0.254000
\(63\) 2.68614 + 1.33591i 0.338422 + 0.168309i
\(64\) 1.00000 0.125000
\(65\) 1.37228 2.37686i 0.170211 0.294813i
\(66\) 7.37228 + 1.73205i 0.907465 + 0.213201i
\(67\) −7.55842 13.0916i −0.923408 1.59939i −0.794101 0.607785i \(-0.792058\pi\)
−0.129307 0.991605i \(-0.541275\pi\)
\(68\) 2.18614 + 3.78651i 0.265108 + 0.459181i
\(69\) 12.4307 + 2.92048i 1.49648 + 0.351585i
\(70\) −0.686141 + 1.18843i −0.0820095 + 0.142045i
\(71\) 10.1168 1.20065 0.600324 0.799757i \(-0.295038\pi\)
0.600324 + 0.799757i \(0.295038\pi\)
\(72\) 0.186141 + 2.99422i 0.0219369 + 0.352872i
\(73\) −5.11684 −0.598881 −0.299441 0.954115i \(-0.596800\pi\)
−0.299441 + 0.954115i \(0.596800\pi\)
\(74\) 1.00000 1.73205i 0.116248 0.201347i
\(75\) −1.55842 5.16870i −0.179951 0.596830i
\(76\) −2.50000 4.33013i −0.286770 0.496700i
\(77\) −2.18614 3.78651i −0.249134 0.431512i
\(78\) −2.37228 + 2.52434i −0.268608 + 0.285825i
\(79\) −6.05842 + 10.4935i −0.681626 + 1.18061i 0.292859 + 0.956156i \(0.405393\pi\)
−0.974485 + 0.224455i \(0.927940\pi\)
\(80\) −1.37228 −0.153426
\(81\) −8.93070 + 1.11469i −0.992300 + 0.123855i
\(82\) −10.3723 −1.14543
\(83\) 2.74456 4.75372i 0.301255 0.521789i −0.675166 0.737666i \(-0.735928\pi\)
0.976420 + 0.215877i \(0.0692612\pi\)
\(84\) 1.18614 1.26217i 0.129419 0.137714i
\(85\) −3.00000 5.19615i −0.325396 0.563602i
\(86\) 4.55842 + 7.89542i 0.491547 + 0.851385i
\(87\) 1.37228 + 4.55134i 0.147124 + 0.487955i
\(88\) 2.18614 3.78651i 0.233043 0.403643i
\(89\) 3.25544 0.345076 0.172538 0.985003i \(-0.444803\pi\)
0.172538 + 0.985003i \(0.444803\pi\)
\(90\) −0.255437 4.10891i −0.0269255 0.433117i
\(91\) 2.00000 0.209657
\(92\) 3.68614 6.38458i 0.384307 0.665639i
\(93\) −3.37228 0.792287i −0.349689 0.0821563i
\(94\) 0 0
\(95\) 3.43070 + 5.94215i 0.351983 + 0.609652i
\(96\) 1.68614 + 0.396143i 0.172091 + 0.0404312i
\(97\) −4.55842 + 7.89542i −0.462838 + 0.801658i −0.999101 0.0423924i \(-0.986502\pi\)
0.536263 + 0.844051i \(0.319835\pi\)
\(98\) −1.00000 −0.101015
\(99\) 11.7446 + 5.84096i 1.18037 + 0.587039i
\(100\) −3.11684 −0.311684
\(101\) −3.68614 + 6.38458i −0.366785 + 0.635290i −0.989061 0.147508i \(-0.952875\pi\)
0.622276 + 0.782798i \(0.286208\pi\)
\(102\) 2.18614 + 7.25061i 0.216460 + 0.717917i
\(103\) 5.00000 + 8.66025i 0.492665 + 0.853320i 0.999964 0.00844953i \(-0.00268960\pi\)
−0.507300 + 0.861770i \(0.669356\pi\)
\(104\) 1.00000 + 1.73205i 0.0980581 + 0.169842i
\(105\) −1.62772 + 1.73205i −0.158849 + 0.169031i
\(106\) 1.37228 2.37686i 0.133288 0.230861i
\(107\) −1.62772 −0.157358 −0.0786788 0.996900i \(-0.525070\pi\)
−0.0786788 + 0.996900i \(0.525070\pi\)
\(108\) −0.872281 + 5.12241i −0.0839353 + 0.492905i
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) −3.00000 + 5.19615i −0.286039 + 0.495434i
\(111\) 2.37228 2.52434i 0.225167 0.239600i
\(112\) −0.500000 0.866025i −0.0472456 0.0818317i
\(113\) −0.686141 1.18843i −0.0645467 0.111798i 0.831946 0.554856i \(-0.187227\pi\)
−0.896493 + 0.443058i \(0.853893\pi\)
\(114\) −2.50000 8.29156i −0.234146 0.776576i
\(115\) −5.05842 + 8.76144i −0.471700 + 0.817009i
\(116\) 2.74456 0.254826
\(117\) −5.00000 + 3.31662i −0.462250 + 0.306622i
\(118\) −7.11684 −0.655159
\(119\) 2.18614 3.78651i 0.200403 0.347108i
\(120\) −2.31386 0.543620i −0.211225 0.0496255i
\(121\) −4.05842 7.02939i −0.368947 0.639036i
\(122\) −7.05842 12.2255i −0.639040 1.10685i
\(123\) −17.4891 4.10891i −1.57694 0.370488i
\(124\) −1.00000 + 1.73205i −0.0898027 + 0.155543i
\(125\) 11.1386 0.996266
\(126\) 2.50000 1.65831i 0.222718 0.147734i
\(127\) −14.1168 −1.25267 −0.626334 0.779555i \(-0.715445\pi\)
−0.626334 + 0.779555i \(0.715445\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 4.55842 + 15.1186i 0.401347 + 1.33112i
\(130\) −1.37228 2.37686i −0.120357 0.208464i
\(131\) 3.68614 + 6.38458i 0.322060 + 0.557824i 0.980913 0.194448i \(-0.0622915\pi\)
−0.658853 + 0.752271i \(0.728958\pi\)
\(132\) 5.18614 5.51856i 0.451396 0.480329i
\(133\) −2.50000 + 4.33013i −0.216777 + 0.375470i
\(134\) −15.1168 −1.30590
\(135\) 1.19702 7.02939i 0.103023 0.604994i
\(136\) 4.37228 0.374920
\(137\) −8.18614 + 14.1788i −0.699389 + 1.21138i 0.269289 + 0.963059i \(0.413211\pi\)
−0.968678 + 0.248318i \(0.920122\pi\)
\(138\) 8.74456 9.30506i 0.744387 0.792100i
\(139\) 10.6168 + 18.3889i 0.900509 + 1.55973i 0.826835 + 0.562445i \(0.190139\pi\)
0.0736742 + 0.997282i \(0.476528\pi\)
\(140\) 0.686141 + 1.18843i 0.0579895 + 0.100441i
\(141\) 0 0
\(142\) 5.05842 8.76144i 0.424493 0.735244i
\(143\) 8.74456 0.731257
\(144\) 2.68614 + 1.33591i 0.223845 + 0.111326i
\(145\) −3.76631 −0.312775
\(146\) −2.55842 + 4.43132i −0.211737 + 0.366738i
\(147\) −1.68614 0.396143i −0.139071 0.0326734i
\(148\) −1.00000 1.73205i −0.0821995 0.142374i
\(149\) −7.37228 12.7692i −0.603961 1.04609i −0.992215 0.124538i \(-0.960255\pi\)
0.388254 0.921552i \(-0.373078\pi\)
\(150\) −5.25544 1.23472i −0.429105 0.100814i
\(151\) 4.05842 7.02939i 0.330270 0.572044i −0.652295 0.757965i \(-0.726194\pi\)
0.982565 + 0.185921i \(0.0595270\pi\)
\(152\) −5.00000 −0.405554
\(153\) 0.813859 + 13.0916i 0.0657966 + 1.05839i
\(154\) −4.37228 −0.352328
\(155\) 1.37228 2.37686i 0.110224 0.190914i
\(156\) 1.00000 + 3.31662i 0.0800641 + 0.265543i
\(157\) 4.05842 + 7.02939i 0.323897 + 0.561007i 0.981289 0.192543i \(-0.0616734\pi\)
−0.657391 + 0.753549i \(0.728340\pi\)
\(158\) 6.05842 + 10.4935i 0.481982 + 0.834818i
\(159\) 3.25544 3.46410i 0.258173 0.274721i
\(160\) −0.686141 + 1.18843i −0.0542442 + 0.0939537i
\(161\) −7.37228 −0.581017
\(162\) −3.50000 + 8.29156i −0.274986 + 0.651447i
\(163\) 16.2337 1.27152 0.635760 0.771887i \(-0.280687\pi\)
0.635760 + 0.771887i \(0.280687\pi\)
\(164\) −5.18614 + 8.98266i −0.404970 + 0.701428i
\(165\) −7.11684 + 7.57301i −0.554046 + 0.589558i
\(166\) −2.74456 4.75372i −0.213019 0.368960i
\(167\) −8.74456 15.1460i −0.676675 1.17203i −0.975976 0.217876i \(-0.930087\pi\)
0.299302 0.954158i \(-0.403246\pi\)
\(168\) −0.500000 1.65831i −0.0385758 0.127942i
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) −6.00000 −0.460179
\(171\) −0.930703 14.9711i −0.0711727 1.14487i
\(172\) 9.11684 0.695153
\(173\) 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i \(-0.760087\pi\)
0.957241 + 0.289292i \(0.0934200\pi\)
\(174\) 4.62772 + 1.08724i 0.350826 + 0.0824235i
\(175\) 1.55842 + 2.69927i 0.117806 + 0.204045i
\(176\) −2.18614 3.78651i −0.164787 0.285419i
\(177\) −12.0000 2.81929i −0.901975 0.211911i
\(178\) 1.62772 2.81929i 0.122003 0.211315i
\(179\) 14.7446 1.10206 0.551030 0.834485i \(-0.314235\pi\)
0.551030 + 0.834485i \(0.314235\pi\)
\(180\) −3.68614 1.83324i −0.274749 0.136642i
\(181\) 18.1168 1.34661 0.673307 0.739363i \(-0.264873\pi\)
0.673307 + 0.739363i \(0.264873\pi\)
\(182\) 1.00000 1.73205i 0.0741249 0.128388i
\(183\) −7.05842 23.4101i −0.521774 1.73053i
\(184\) −3.68614 6.38458i −0.271746 0.470678i
\(185\) 1.37228 + 2.37686i 0.100892 + 0.174750i
\(186\) −2.37228 + 2.52434i −0.173944 + 0.185093i
\(187\) 9.55842 16.5557i 0.698981 1.21067i
\(188\) 0 0
\(189\) 4.87228 1.80579i 0.354406 0.131352i
\(190\) 6.86141 0.497779
\(191\) 0.941578 1.63086i 0.0681302 0.118005i −0.829948 0.557841i \(-0.811630\pi\)
0.898078 + 0.439836i \(0.144963\pi\)
\(192\) 1.18614 1.26217i 0.0856023 0.0910892i
\(193\) 3.50000 + 6.06218i 0.251936 + 0.436365i 0.964059 0.265689i \(-0.0855996\pi\)
−0.712123 + 0.702055i \(0.752266\pi\)
\(194\) 4.55842 + 7.89542i 0.327276 + 0.566858i
\(195\) −1.37228 4.55134i −0.0982711 0.325928i
\(196\) −0.500000 + 0.866025i −0.0357143 + 0.0618590i
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 10.9307 7.25061i 0.776811 0.515278i
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) −1.55842 + 2.69927i −0.110197 + 0.190867i
\(201\) −25.4891 5.98844i −1.79786 0.422392i
\(202\) 3.68614 + 6.38458i 0.259356 + 0.449218i
\(203\) −1.37228 2.37686i −0.0963153 0.166823i
\(204\) 7.37228 + 1.73205i 0.516163 + 0.121268i
\(205\) 7.11684 12.3267i 0.497062 0.860937i
\(206\) 10.0000 0.696733
\(207\) 18.4307 12.2255i 1.28102 0.849734i
\(208\) 2.00000 0.138675
\(209\) −10.9307 + 18.9325i −0.756093 + 1.30959i
\(210\) 0.686141 + 2.27567i 0.0473482 + 0.157036i
\(211\) 8.00000 + 13.8564i 0.550743 + 0.953914i 0.998221 + 0.0596196i \(0.0189888\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) −1.37228 2.37686i −0.0942487 0.163243i
\(213\) 12.0000 12.7692i 0.822226 0.874929i
\(214\) −0.813859 + 1.40965i −0.0556343 + 0.0963614i
\(215\) −12.5109 −0.853235
\(216\) 4.00000 + 3.31662i 0.272166 + 0.225668i
\(217\) 2.00000 0.135769
\(218\) 7.00000 12.1244i 0.474100 0.821165i
\(219\) −6.06930 + 6.45832i −0.410125 + 0.436413i
\(220\) 3.00000 + 5.19615i 0.202260 + 0.350325i
\(221\) 4.37228 + 7.57301i 0.294111 + 0.509416i
\(222\) −1.00000 3.31662i −0.0671156 0.222597i
\(223\) 2.00000 3.46410i 0.133930 0.231973i −0.791258 0.611482i \(-0.790574\pi\)
0.925188 + 0.379509i \(0.123907\pi\)
\(224\) −1.00000 −0.0668153
\(225\) −8.37228 4.16381i −0.558152 0.277588i
\(226\) −1.37228 −0.0912828
\(227\) 11.8723 20.5634i 0.787991 1.36484i −0.139205 0.990264i \(-0.544455\pi\)
0.927196 0.374577i \(-0.122212\pi\)
\(228\) −8.43070 1.98072i −0.558337 0.131176i
\(229\) 10.0584 + 17.4217i 0.664679 + 1.15126i 0.979372 + 0.202065i \(0.0647651\pi\)
−0.314693 + 0.949194i \(0.601902\pi\)
\(230\) 5.05842 + 8.76144i 0.333542 + 0.577713i
\(231\) −7.37228 1.73205i −0.485060 0.113961i
\(232\) 1.37228 2.37686i 0.0900947 0.156049i
\(233\) −11.7446 −0.769412 −0.384706 0.923039i \(-0.625697\pi\)
−0.384706 + 0.923039i \(0.625697\pi\)
\(234\) 0.372281 + 5.98844i 0.0243368 + 0.391477i
\(235\) 0 0
\(236\) −3.55842 + 6.16337i −0.231634 + 0.401201i
\(237\) 6.05842 + 20.0935i 0.393537 + 1.30521i
\(238\) −2.18614 3.78651i −0.141706 0.245443i
\(239\) 9.43070 + 16.3345i 0.610021 + 1.05659i 0.991236 + 0.132102i \(0.0421725\pi\)
−0.381215 + 0.924487i \(0.624494\pi\)
\(240\) −1.62772 + 1.73205i −0.105069 + 0.111803i
\(241\) −0.441578 + 0.764836i −0.0284445 + 0.0492674i −0.879897 0.475164i \(-0.842389\pi\)
0.851453 + 0.524431i \(0.175722\pi\)
\(242\) −8.11684 −0.521770
\(243\) −9.18614 + 12.5942i −0.589291 + 0.807921i
\(244\) −14.1168 −0.903738
\(245\) 0.686141 1.18843i 0.0438359 0.0759260i
\(246\) −12.3030 + 13.0916i −0.784410 + 0.834688i
\(247\) −5.00000 8.66025i −0.318142 0.551039i
\(248\) 1.00000 + 1.73205i 0.0635001 + 0.109985i
\(249\) −2.74456 9.10268i −0.173930 0.576859i
\(250\) 5.56930 9.64630i 0.352233 0.610086i
\(251\) −9.00000 −0.568075 −0.284037 0.958813i \(-0.591674\pi\)
−0.284037 + 0.958813i \(0.591674\pi\)
\(252\) −0.186141 2.99422i −0.0117258 0.188618i
\(253\) −32.2337 −2.02651
\(254\) −7.05842 + 12.2255i −0.442885 + 0.767099i
\(255\) −10.1168 2.37686i −0.633541 0.148845i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −10.9307 18.9325i −0.681839 1.18098i −0.974419 0.224738i \(-0.927847\pi\)
0.292581 0.956241i \(-0.405486\pi\)
\(258\) 15.3723 + 3.61158i 0.957036 + 0.224847i
\(259\) −1.00000 + 1.73205i −0.0621370 + 0.107624i
\(260\) −2.74456 −0.170211
\(261\) 7.37228 + 3.66648i 0.456333 + 0.226949i
\(262\) 7.37228 0.455461
\(263\) −6.68614 + 11.5807i −0.412285 + 0.714099i −0.995139 0.0984781i \(-0.968603\pi\)
0.582854 + 0.812577i \(0.301936\pi\)
\(264\) −2.18614 7.25061i −0.134548 0.446244i
\(265\) 1.88316 + 3.26172i 0.115681 + 0.200366i
\(266\) 2.50000 + 4.33013i 0.153285 + 0.265497i
\(267\) 3.86141 4.10891i 0.236314 0.251461i
\(268\) −7.55842 + 13.0916i −0.461704 + 0.799695i
\(269\) −7.37228 −0.449496 −0.224748 0.974417i \(-0.572156\pi\)
−0.224748 + 0.974417i \(0.572156\pi\)
\(270\) −5.48913 4.55134i −0.334058 0.276986i
\(271\) −18.2337 −1.10762 −0.553809 0.832644i \(-0.686826\pi\)
−0.553809 + 0.832644i \(0.686826\pi\)
\(272\) 2.18614 3.78651i 0.132554 0.229591i
\(273\) 2.37228 2.52434i 0.143577 0.152780i
\(274\) 8.18614 + 14.1788i 0.494543 + 0.856573i
\(275\) 6.81386 + 11.8020i 0.410891 + 0.711684i
\(276\) −3.68614 12.2255i −0.221880 0.735891i
\(277\) −11.1168 + 19.2549i −0.667946 + 1.15692i 0.310531 + 0.950563i \(0.399493\pi\)
−0.978477 + 0.206354i \(0.933840\pi\)
\(278\) 21.2337 1.27351
\(279\) −5.00000 + 3.31662i −0.299342 + 0.198561i
\(280\) 1.37228 0.0820095
\(281\) −5.31386 + 9.20387i −0.316998 + 0.549057i −0.979860 0.199685i \(-0.936008\pi\)
0.662862 + 0.748742i \(0.269342\pi\)
\(282\) 0 0
\(283\) −4.94158 8.55906i −0.293746 0.508784i 0.680946 0.732333i \(-0.261569\pi\)
−0.974692 + 0.223550i \(0.928235\pi\)
\(284\) −5.05842 8.76144i −0.300162 0.519896i
\(285\) 11.5693 + 2.71810i 0.685306 + 0.161006i
\(286\) 4.37228 7.57301i 0.258538 0.447802i
\(287\) 10.3723 0.612256
\(288\) 2.50000 1.65831i 0.147314 0.0977170i
\(289\) 2.11684 0.124520
\(290\) −1.88316 + 3.26172i −0.110583 + 0.191535i
\(291\) 4.55842 + 15.1186i 0.267219 + 0.886267i
\(292\) 2.55842 + 4.43132i 0.149720 + 0.259323i
\(293\) 2.31386 + 4.00772i 0.135177 + 0.234134i 0.925665 0.378344i \(-0.123506\pi\)
−0.790488 + 0.612478i \(0.790173\pi\)
\(294\) −1.18614 + 1.26217i −0.0691771 + 0.0736112i
\(295\) 4.88316 8.45787i 0.284308 0.492436i
\(296\) −2.00000 −0.116248
\(297\) 21.3030 7.89542i 1.23612 0.458139i
\(298\) −14.7446 −0.854130
\(299\) 7.37228 12.7692i 0.426350 0.738460i
\(300\) −3.69702 + 3.93398i −0.213447 + 0.227129i
\(301\) −4.55842 7.89542i −0.262743 0.455084i
\(302\) −4.05842 7.02939i −0.233536 0.404496i
\(303\) 3.68614 + 12.2255i 0.211763 + 0.702339i
\(304\) −2.50000 + 4.33013i −0.143385 + 0.248350i
\(305\) 19.3723 1.10925
\(306\) 11.7446 + 5.84096i 0.671392 + 0.333906i
\(307\) −13.0000 −0.741949 −0.370975 0.928643i \(-0.620976\pi\)
−0.370975 + 0.928643i \(0.620976\pi\)
\(308\) −2.18614 + 3.78651i −0.124567 + 0.215756i
\(309\) 16.8614 + 3.96143i 0.959212 + 0.225358i
\(310\) −1.37228 2.37686i −0.0779403 0.134997i
\(311\) 13.1168 + 22.7190i 0.743788 + 1.28828i 0.950759 + 0.309931i \(0.100306\pi\)
−0.206971 + 0.978347i \(0.566361\pi\)
\(312\) 3.37228 + 0.792287i 0.190918 + 0.0448544i
\(313\) 1.44158 2.49689i 0.0814828 0.141132i −0.822404 0.568904i \(-0.807368\pi\)
0.903887 + 0.427771i \(0.140701\pi\)
\(314\) 8.11684 0.458060
\(315\) 0.255437 + 4.10891i 0.0143923 + 0.231511i
\(316\) 12.1168 0.681626
\(317\) 3.00000 5.19615i 0.168497 0.291845i −0.769395 0.638774i \(-0.779442\pi\)
0.937892 + 0.346929i \(0.112775\pi\)
\(318\) −1.37228 4.55134i −0.0769537 0.255227i
\(319\) −6.00000 10.3923i −0.335936 0.581857i
\(320\) 0.686141 + 1.18843i 0.0383564 + 0.0664353i
\(321\) −1.93070 + 2.05446i −0.107761 + 0.114669i
\(322\) −3.68614 + 6.38458i −0.205421 + 0.355799i
\(323\) −21.8614 −1.21640
\(324\) 5.43070 + 7.17687i 0.301706 + 0.398715i
\(325\) −6.23369 −0.345783
\(326\) 8.11684 14.0588i 0.449550 0.778644i
\(327\) 16.6060 17.6704i 0.918312 0.977173i
\(328\) 5.18614 + 8.98266i 0.286357 + 0.495984i
\(329\) 0 0
\(330\) 3.00000 + 9.94987i 0.165145 + 0.547723i
\(331\) 6.11684 10.5947i 0.336212 0.582337i −0.647505 0.762061i \(-0.724187\pi\)
0.983717 + 0.179725i \(0.0575207\pi\)
\(332\) −5.48913 −0.301255
\(333\) −0.372281 5.98844i −0.0204009 0.328164i
\(334\) −17.4891 −0.956962
\(335\) 10.3723 17.9653i 0.566698 0.981550i
\(336\) −1.68614 0.396143i −0.0919865 0.0216114i
\(337\) −4.55842 7.89542i −0.248313 0.430091i 0.714745 0.699385i \(-0.246543\pi\)
−0.963058 + 0.269294i \(0.913210\pi\)
\(338\) −4.50000 7.79423i −0.244768 0.423950i
\(339\) −2.31386 0.543620i −0.125672 0.0295254i
\(340\) −3.00000 + 5.19615i −0.162698 + 0.281801i
\(341\) 8.74456 0.473545
\(342\) −13.4307 6.67954i −0.726249 0.361188i
\(343\) 1.00000 0.0539949
\(344\) 4.55842 7.89542i 0.245774 0.425692i
\(345\) 5.05842 + 16.7769i 0.272336 + 0.903237i
\(346\) −3.00000 5.19615i −0.161281 0.279347i
\(347\) −3.55842 6.16337i −0.191026 0.330867i 0.754564 0.656226i \(-0.227848\pi\)
−0.945591 + 0.325359i \(0.894515\pi\)
\(348\) 3.25544 3.46410i 0.174510 0.185695i
\(349\) 11.0000 19.0526i 0.588817 1.01986i −0.405571 0.914063i \(-0.632927\pi\)
0.994388 0.105797i \(-0.0337393\pi\)
\(350\) 3.11684 0.166602
\(351\) −1.74456 + 10.2448i −0.0931179 + 0.546828i
\(352\) −4.37228 −0.233043
\(353\) 3.81386 6.60580i 0.202991 0.351591i −0.746500 0.665386i \(-0.768267\pi\)
0.949491 + 0.313795i \(0.101600\pi\)
\(354\) −8.44158 + 8.98266i −0.448665 + 0.477423i
\(355\) 6.94158 + 12.0232i 0.368421 + 0.638123i
\(356\) −1.62772 2.81929i −0.0862689 0.149422i
\(357\) −2.18614 7.25061i −0.115703 0.383743i
\(358\) 7.37228 12.7692i 0.389637 0.674871i
\(359\) −6.86141 −0.362131 −0.181066 0.983471i \(-0.557955\pi\)
−0.181066 + 0.983471i \(0.557955\pi\)
\(360\) −3.43070 + 2.27567i −0.180814 + 0.119938i
\(361\) 6.00000 0.315789
\(362\) 9.05842 15.6896i 0.476100 0.824630i
\(363\) −13.6861 3.21543i −0.718336 0.168767i
\(364\) −1.00000 1.73205i −0.0524142 0.0907841i
\(365\) −3.51087 6.08101i −0.183768 0.318295i
\(366\) −23.8030 5.59230i −1.24420 0.292314i
\(367\) −11.1168 + 19.2549i −0.580295 + 1.00510i 0.415150 + 0.909753i \(0.363729\pi\)
−0.995444 + 0.0953465i \(0.969604\pi\)
\(368\) −7.37228 −0.384307
\(369\) −25.9307 + 17.2005i −1.34990 + 0.895421i
\(370\) 2.74456 0.142683
\(371\) −1.37228 + 2.37686i −0.0712453 + 0.123400i
\(372\) 1.00000 + 3.31662i 0.0518476 + 0.171959i
\(373\) 5.00000 + 8.66025i 0.258890 + 0.448411i 0.965945 0.258748i \(-0.0833099\pi\)
−0.707055 + 0.707159i \(0.749977\pi\)
\(374\) −9.55842 16.5557i −0.494254 0.856073i
\(375\) 13.2119 14.0588i 0.682262 0.725993i
\(376\) 0 0
\(377\) 5.48913 0.282704
\(378\) 0.872281 5.12241i 0.0448653 0.263469i
\(379\) 9.11684 0.468301 0.234150 0.972200i \(-0.424769\pi\)
0.234150 + 0.972200i \(0.424769\pi\)
\(380\) 3.43070 5.94215i 0.175991 0.304826i
\(381\) −16.7446 + 17.8178i −0.857850 + 0.912836i
\(382\) −0.941578 1.63086i −0.0481753 0.0834421i
\(383\) 10.6277 + 18.4077i 0.543051 + 0.940592i 0.998727 + 0.0504462i \(0.0160643\pi\)
−0.455676 + 0.890146i \(0.650602\pi\)
\(384\) −0.500000 1.65831i −0.0255155 0.0846254i
\(385\) 3.00000 5.19615i 0.152894 0.264820i
\(386\) 7.00000 0.356291
\(387\) 24.4891 + 12.1793i 1.24485 + 0.619107i
\(388\) 9.11684 0.462838
\(389\) 17.4891 30.2921i 0.886734 1.53587i 0.0430204 0.999074i \(-0.486302\pi\)
0.843713 0.536794i \(-0.180365\pi\)
\(390\) −4.62772 1.08724i −0.234334 0.0550546i
\(391\) −16.1168 27.9152i −0.815064 1.41173i
\(392\) 0.500000 + 0.866025i 0.0252538 + 0.0437409i
\(393\) 12.4307 + 2.92048i 0.627046 + 0.147319i
\(394\) −3.00000 + 5.19615i −0.151138 + 0.261778i
\(395\) −16.6277 −0.836631
\(396\) −0.813859 13.0916i −0.0408980 0.657876i
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) −5.00000 + 8.66025i −0.250627 + 0.434099i
\(399\) 2.50000 + 8.29156i 0.125157 + 0.415097i
\(400\) 1.55842 + 2.69927i 0.0779211 + 0.134963i
\(401\) 0.127719 + 0.221215i 0.00637797 + 0.0110470i 0.869197 0.494466i \(-0.164636\pi\)
−0.862819 + 0.505513i \(0.831303\pi\)
\(402\) −17.9307 + 19.0800i −0.894302 + 0.951624i
\(403\) −2.00000 + 3.46410i −0.0996271 + 0.172559i
\(404\) 7.37228 0.366785
\(405\) −7.45245 9.84868i −0.370315 0.489385i
\(406\) −2.74456 −0.136210
\(407\) −4.37228 + 7.57301i −0.216726 + 0.375380i
\(408\) 5.18614 5.51856i 0.256752 0.273209i
\(409\) −14.6753 25.4183i −0.725645 1.25685i −0.958708 0.284393i \(-0.908208\pi\)
0.233063 0.972462i \(-0.425125\pi\)
\(410\) −7.11684 12.3267i −0.351476 0.608774i
\(411\) 8.18614 + 27.1504i 0.403793 + 1.33923i
\(412\) 5.00000 8.66025i 0.246332 0.426660i
\(413\) 7.11684 0.350197
\(414\) −1.37228 22.0742i −0.0674439 1.08489i
\(415\) 7.53262 0.369762
\(416\) 1.00000 1.73205i 0.0490290 0.0849208i
\(417\) 35.8030 + 8.41159i 1.75328 + 0.411917i
\(418\) 10.9307 + 18.9325i 0.534638 + 0.926020i
\(419\) −13.8030 23.9075i −0.674320 1.16796i −0.976667 0.214759i \(-0.931104\pi\)
0.302347 0.953198i \(-0.402230\pi\)
\(420\) 2.31386 + 0.543620i 0.112905 + 0.0265260i
\(421\) 0.116844 0.202380i 0.00569463 0.00986338i −0.863164 0.504924i \(-0.831521\pi\)
0.868859 + 0.495060i \(0.164854\pi\)
\(422\) 16.0000 0.778868
\(423\) 0 0
\(424\) −2.74456 −0.133288
\(425\) −6.81386 + 11.8020i −0.330521 + 0.572479i
\(426\) −5.05842 16.7769i −0.245081 0.812843i
\(427\) 7.05842 + 12.2255i 0.341581 + 0.591636i
\(428\) 0.813859 + 1.40965i 0.0393394 + 0.0681378i
\(429\) 10.3723 11.0371i 0.500778 0.532877i
\(430\) −6.25544 + 10.8347i −0.301664 + 0.522497i
\(431\) −29.4891 −1.42044 −0.710221 0.703979i \(-0.751405\pi\)
−0.710221 + 0.703979i \(0.751405\pi\)
\(432\) 4.87228 1.80579i 0.234418 0.0868811i
\(433\) −2.88316 −0.138556 −0.0692778 0.997597i \(-0.522069\pi\)
−0.0692778 + 0.997597i \(0.522069\pi\)
\(434\) 1.00000 1.73205i 0.0480015 0.0831411i
\(435\) −4.46738 + 4.75372i −0.214194 + 0.227924i
\(436\) −7.00000 12.1244i −0.335239 0.580651i
\(437\) 18.4307 + 31.9229i 0.881660 + 1.52708i
\(438\) 2.55842 + 8.48533i 0.122246 + 0.405445i
\(439\) −4.00000 + 6.92820i −0.190910 + 0.330665i −0.945552 0.325471i \(-0.894477\pi\)
0.754642 + 0.656136i \(0.227810\pi\)
\(440\) 6.00000 0.286039
\(441\) −2.50000 + 1.65831i −0.119048 + 0.0789673i
\(442\) 8.74456 0.415936
\(443\) 11.4416 19.8174i 0.543606 0.941553i −0.455087 0.890447i \(-0.650392\pi\)
0.998693 0.0511061i \(-0.0162747\pi\)
\(444\) −3.37228 0.792287i −0.160041 0.0376003i
\(445\) 2.23369 + 3.86886i 0.105887 + 0.183402i
\(446\) −2.00000 3.46410i −0.0947027 0.164030i
\(447\) −24.8614 5.84096i −1.17590 0.276268i
\(448\) −0.500000 + 0.866025i −0.0236228 + 0.0409159i
\(449\) 33.0000 1.55737 0.778683 0.627417i \(-0.215888\pi\)
0.778683 + 0.627417i \(0.215888\pi\)
\(450\) −7.79211 + 5.16870i −0.367324 + 0.243655i
\(451\) 45.3505 2.13547
\(452\) −0.686141 + 1.18843i −0.0322733 + 0.0558991i
\(453\) −4.05842 13.4603i −0.190681 0.632418i
\(454\) −11.8723 20.5634i −0.557194 0.965088i
\(455\) 1.37228 + 2.37686i 0.0643335 + 0.111429i
\(456\) −5.93070 + 6.31084i −0.277731 + 0.295532i
\(457\) −16.7337 + 28.9836i −0.782769 + 1.35580i 0.147554 + 0.989054i \(0.452860\pi\)
−0.930323 + 0.366742i \(0.880473\pi\)
\(458\) 20.1168 0.939998
\(459\) 17.4891 + 14.5012i 0.816322 + 0.676859i
\(460\) 10.1168 0.471700
\(461\) −15.4307 + 26.7268i −0.718680 + 1.24479i 0.242844 + 0.970065i \(0.421920\pi\)
−0.961523 + 0.274724i \(0.911414\pi\)
\(462\) −5.18614 + 5.51856i −0.241281 + 0.256747i
\(463\) 2.94158 + 5.09496i 0.136707 + 0.236783i 0.926248 0.376914i \(-0.123015\pi\)
−0.789541 + 0.613697i \(0.789682\pi\)
\(464\) −1.37228 2.37686i −0.0637066 0.110343i
\(465\) −1.37228 4.55134i −0.0636380 0.211063i
\(466\) −5.87228 + 10.1711i −0.272028 + 0.471167i
\(467\) −30.0951 −1.39263 −0.696317 0.717734i \(-0.745179\pi\)
−0.696317 + 0.717734i \(0.745179\pi\)
\(468\) 5.37228 + 2.67181i 0.248334 + 0.123505i
\(469\) 15.1168 0.698031
\(470\) 0 0
\(471\) 13.6861 + 3.21543i 0.630624 + 0.148159i
\(472\) 3.55842 + 6.16337i 0.163790 + 0.283692i
\(473\) −19.9307 34.5210i −0.916415 1.58728i
\(474\) 20.4307 + 4.80001i 0.938413 + 0.220472i
\(475\) 7.79211 13.4963i 0.357527 0.619254i
\(476\) −4.37228 −0.200403
\(477\) −0.510875 8.21782i −0.0233913 0.376268i
\(478\) 18.8614 0.862701
\(479\) −10.6277 + 18.4077i −0.485593 + 0.841072i −0.999863 0.0165568i \(-0.994730\pi\)
0.514270 + 0.857628i \(0.328063\pi\)
\(480\) 0.686141 + 2.27567i 0.0313179 + 0.103870i
\(481\) −2.00000 3.46410i −0.0911922 0.157949i
\(482\) 0.441578 + 0.764836i 0.0201133 + 0.0348373i
\(483\) −8.74456 + 9.30506i −0.397891 + 0.423395i
\(484\) −4.05842 + 7.02939i −0.184474 + 0.319518i
\(485\) −12.5109 −0.568090
\(486\) 6.31386 + 14.2525i 0.286402 + 0.646509i
\(487\) −16.3505 −0.740913 −0.370457 0.928850i \(-0.620799\pi\)
−0.370457 + 0.928850i \(0.620799\pi\)
\(488\) −7.05842 + 12.2255i −0.319520 + 0.553424i
\(489\) 19.2554 20.4897i 0.870761 0.926574i
\(490\) −0.686141 1.18843i −0.0309967 0.0536878i
\(491\) 9.81386 + 16.9981i 0.442893 + 0.767114i 0.997903 0.0647303i \(-0.0206187\pi\)
−0.555010 + 0.831844i \(0.687285\pi\)
\(492\) 5.18614 + 17.2005i 0.233809 + 0.775458i
\(493\) 6.00000 10.3923i 0.270226 0.468046i
\(494\) −10.0000 −0.449921
\(495\) 1.11684 + 17.9653i 0.0501984 + 0.807481i
\(496\) 2.00000 0.0898027
\(497\) −5.05842 + 8.76144i −0.226901 + 0.393004i
\(498\) −9.25544 2.17448i −0.414746 0.0974408i
\(499\) −0.441578 0.764836i −0.0197677 0.0342387i 0.855972 0.517022i \(-0.172959\pi\)
−0.875740 + 0.482783i \(0.839626\pi\)
\(500\) −5.56930 9.64630i −0.249067 0.431396i
\(501\) −29.4891 6.92820i −1.31748 0.309529i
\(502\) −4.50000 + 7.79423i −0.200845 + 0.347873i
\(503\) 2.23369 0.0995952 0.0497976 0.998759i \(-0.484142\pi\)
0.0497976 + 0.998759i \(0.484142\pi\)
\(504\) −2.68614 1.33591i −0.119650 0.0595060i
\(505\) −10.1168 −0.450194
\(506\) −16.1168 + 27.9152i −0.716481 + 1.24098i
\(507\) −4.50000 14.9248i −0.199852 0.662834i
\(508\) 7.05842 + 12.2255i 0.313167 + 0.542421i
\(509\) −8.48913 14.7036i −0.376274 0.651725i 0.614243 0.789117i \(-0.289461\pi\)
−0.990517 + 0.137392i \(0.956128\pi\)
\(510\) −7.11684 + 7.57301i −0.315139 + 0.335339i
\(511\) 2.55842 4.43132i 0.113178 0.196030i
\(512\) −1.00000 −0.0441942
\(513\) −20.0000 16.5831i −0.883022 0.732163i
\(514\) −21.8614 −0.964265
\(515\) −6.86141 + 11.8843i −0.302350 + 0.523685i
\(516\) 10.8139 11.5070i 0.476054 0.506567i
\(517\) 0 0
\(518\) 1.00000 + 1.73205i 0.0439375 + 0.0761019i
\(519\) −3.00000 9.94987i −0.131685 0.436751i
\(520\) −1.37228 + 2.37686i −0.0601785 + 0.104232i
\(521\) 3.86141 0.169171 0.0845856 0.996416i \(-0.473043\pi\)
0.0845856 + 0.996416i \(0.473043\pi\)
\(522\) 6.86141 4.55134i 0.300316 0.199207i
\(523\) −17.8832 −0.781976 −0.390988 0.920396i \(-0.627867\pi\)
−0.390988 + 0.920396i \(0.627867\pi\)
\(524\) 3.68614 6.38458i 0.161030 0.278912i
\(525\) 5.25544 + 1.23472i 0.229366 + 0.0538875i
\(526\) 6.68614 + 11.5807i 0.291530 + 0.504944i
\(527\) 4.37228 + 7.57301i 0.190460 + 0.329886i
\(528\) −7.37228 1.73205i −0.320837 0.0753778i
\(529\) −15.6753 + 27.1504i −0.681533 + 1.18045i
\(530\) 3.76631 0.163598
\(531\) −17.7921 + 11.8020i −0.772112 + 0.512161i
\(532\) 5.00000 0.216777
\(533\) −10.3723 + 17.9653i −0.449273 + 0.778164i
\(534\) −1.62772 5.39853i −0.0704383 0.233617i
\(535\) −1.11684 1.93443i −0.0482854 0.0836327i
\(536\) 7.55842 + 13.0916i 0.326474 + 0.565470i
\(537\) 17.4891 18.6101i 0.754711 0.803086i
\(538\) −3.68614 + 6.38458i −0.158921 + 0.275259i
\(539\) 4.37228 0.188327
\(540\) −6.68614 + 2.47805i −0.287726 + 0.106638i
\(541\) 28.2337 1.21386 0.606931 0.794755i \(-0.292401\pi\)
0.606931 + 0.794755i \(0.292401\pi\)
\(542\) −9.11684 + 15.7908i −0.391602 + 0.678275i
\(543\) 21.4891 22.8665i 0.922187 0.981296i
\(544\) −2.18614 3.78651i −0.0937300 0.162345i
\(545\) 9.60597 + 16.6380i 0.411475 + 0.712695i
\(546\) −1.00000 3.31662i −0.0427960 0.141938i
\(547\) −0.441578 + 0.764836i −0.0188805 + 0.0327020i −0.875311 0.483560i \(-0.839344\pi\)
0.856431 + 0.516262i \(0.172677\pi\)
\(548\) 16.3723 0.699389
\(549\) −37.9198 18.8588i −1.61838 0.804874i
\(550\) 13.6277 0.581088
\(551\) −6.86141 + 11.8843i −0.292306 + 0.506288i
\(552\) −12.4307 2.92048i −0.529086 0.124304i
\(553\) −6.05842 10.4935i −0.257630 0.446229i
\(554\) 11.1168 + 19.2549i 0.472309 + 0.818064i
\(555\) 4.62772 + 1.08724i 0.196436 + 0.0461508i
\(556\) 10.6168 18.3889i 0.450254 0.779864i
\(557\) 6.51087 0.275875 0.137937 0.990441i \(-0.455953\pi\)
0.137937 + 0.990441i \(0.455953\pi\)
\(558\) 0.372281 + 5.98844i 0.0157599 + 0.253511i
\(559\) 18.2337 0.771203
\(560\) 0.686141 1.18843i 0.0289947 0.0502204i
\(561\) −9.55842 31.7017i −0.403557 1.33845i
\(562\) 5.31386 + 9.20387i 0.224152 + 0.388242i
\(563\) −1.50000 2.59808i −0.0632175 0.109496i 0.832684 0.553748i \(-0.186803\pi\)
−0.895902 + 0.444252i \(0.853470\pi\)
\(564\) 0 0
\(565\) 0.941578 1.63086i 0.0396125 0.0686108i
\(566\) −9.88316 −0.415420
\(567\) 3.50000 8.29156i 0.146986 0.348213i
\(568\) −10.1168 −0.424493
\(569\) 0.558422 0.967215i 0.0234103 0.0405478i −0.854083 0.520137i \(-0.825881\pi\)
0.877493 + 0.479589i \(0.159214\pi\)
\(570\) 8.13859 8.66025i 0.340888 0.362738i
\(571\) −14.6753 25.4183i −0.614141 1.06372i −0.990535 0.137263i \(-0.956169\pi\)
0.376394 0.926460i \(-0.377164\pi\)
\(572\) −4.37228 7.57301i −0.182814 0.316644i
\(573\) −0.941578 3.12286i −0.0393350 0.130459i
\(574\) 5.18614 8.98266i 0.216465 0.374929i
\(575\) 22.9783 0.958259
\(576\) −0.186141 2.99422i −0.00775586 0.124759i
\(577\) 27.1168 1.12889 0.564444 0.825471i \(-0.309090\pi\)
0.564444 + 0.825471i \(0.309090\pi\)
\(578\) 1.05842 1.83324i 0.0440246 0.0762528i
\(579\) 11.8030 + 2.77300i 0.490515 + 0.115242i
\(580\) 1.88316 + 3.26172i 0.0781938 + 0.135436i
\(581\) 2.74456 + 4.75372i 0.113864 + 0.197218i
\(582\) 15.3723 + 3.61158i 0.637202 + 0.149705i
\(583\) −6.00000 + 10.3923i −0.248495 + 0.430405i
\(584\) 5.11684 0.211737
\(585\) −7.37228 3.66648i −0.304806 0.151590i
\(586\) 4.62772 0.191169
\(587\) 4.24456 7.35180i 0.175192 0.303441i −0.765036 0.643988i \(-0.777279\pi\)
0.940228 + 0.340547i \(0.110612\pi\)
\(588\) 0.500000 + 1.65831i 0.0206197 + 0.0683877i
\(589\) −5.00000 8.66025i −0.206021 0.356840i
\(590\) −4.88316 8.45787i −0.201036 0.348205i
\(591\) −7.11684 + 7.57301i −0.292748 + 0.311512i
\(592\) −1.00000 + 1.73205i −0.0410997 + 0.0711868i
\(593\) 3.25544 0.133685 0.0668424 0.997764i \(-0.478708\pi\)
0.0668424 + 0.997764i \(0.478708\pi\)
\(594\) 3.81386 22.3966i 0.156485 0.918945i
\(595\) 6.00000 0.245976
\(596\) −7.37228 + 12.7692i −0.301980 + 0.523045i
\(597\) −11.8614 + 12.6217i −0.485455 + 0.516571i
\(598\) −7.37228 12.7692i −0.301475 0.522170i
\(599\) −12.0000 20.7846i −0.490307 0.849236i 0.509631 0.860393i \(-0.329782\pi\)
−0.999938 + 0.0111569i \(0.996449\pi\)
\(600\) 1.55842 + 5.16870i 0.0636223 + 0.211011i
\(601\) −3.44158 + 5.96099i −0.140385 + 0.243154i −0.927642 0.373472i \(-0.878167\pi\)
0.787257 + 0.616625i \(0.211501\pi\)
\(602\) −9.11684 −0.371575
\(603\) −37.7921 + 25.0684i −1.53901 + 1.02087i
\(604\) −8.11684 −0.330270
\(605\) 5.56930 9.64630i 0.226424 0.392178i
\(606\) 12.4307 + 2.92048i 0.504963 + 0.118636i
\(607\) 6.11684 + 10.5947i 0.248275 + 0.430025i 0.963047 0.269332i \(-0.0868030\pi\)
−0.714772 + 0.699357i \(0.753470\pi\)
\(608\) 2.50000 + 4.33013i 0.101388 + 0.175610i
\(609\) −4.62772 1.08724i −0.187525 0.0440572i
\(610\) 9.68614 16.7769i 0.392180 0.679276i
\(611\) 0 0
\(612\) 10.9307 7.25061i 0.441847 0.293088i
\(613\) −1.76631 −0.0713407 −0.0356703 0.999364i \(-0.511357\pi\)
−0.0356703 + 0.999364i \(0.511357\pi\)
\(614\) −6.50000 + 11.2583i −0.262319 + 0.454349i
\(615\) −7.11684 23.6039i −0.286979 0.951801i
\(616\) 2.18614 + 3.78651i 0.0880821 + 0.152563i
\(617\) 4.93070 + 8.54023i 0.198503 + 0.343817i 0.948043 0.318142i \(-0.103059\pi\)
−0.749540 + 0.661959i \(0.769725\pi\)
\(618\) 11.8614 12.6217i 0.477136 0.507719i
\(619\) 11.7337 20.3233i 0.471617 0.816864i −0.527856 0.849334i \(-0.677004\pi\)
0.999473 + 0.0324697i \(0.0103373\pi\)
\(620\) −2.74456 −0.110224
\(621\) 6.43070 37.7639i 0.258055 1.51541i
\(622\) 26.2337 1.05188
\(623\) −1.62772 + 2.81929i −0.0652132 + 0.112953i
\(624\) 2.37228 2.52434i 0.0949673 0.101054i
\(625\) −0.149468 0.258886i −0.00597872 0.0103555i
\(626\) −1.44158 2.49689i −0.0576170 0.0997956i
\(627\) 10.9307 + 36.2530i 0.436530 + 1.44781i
\(628\) 4.05842 7.02939i 0.161949 0.280503i
\(629\) −8.74456 −0.348669
\(630\) 3.68614 + 1.83324i 0.146859 + 0.0730381i
\(631\) 14.3505 0.571286 0.285643 0.958336i \(-0.407793\pi\)
0.285643 + 0.958336i \(0.407793\pi\)
\(632\) 6.05842 10.4935i 0.240991 0.417409i
\(633\) 26.9783 + 6.33830i 1.07229 + 0.251925i
\(634\) −3.00000 5.19615i −0.119145 0.206366i
\(635\) −9.68614 16.7769i −0.384383 0.665770i
\(636\) −4.62772 1.08724i −0.183501 0.0431119i
\(637\) −1.00000 + 1.73205i −0.0396214 + 0.0686264i
\(638\) −12.0000 −0.475085
\(639\) −1.88316 30.2921i −0.0744965 1.19834i
\(640\) 1.37228 0.0542442
\(641\) 23.1060 40.0207i 0.912631 1.58072i 0.102298 0.994754i \(-0.467381\pi\)
0.810333 0.585969i \(-0.199286\pi\)
\(642\) 0.813859 + 2.69927i 0.0321205 + 0.106532i
\(643\) 12.6753 + 21.9542i 0.499864 + 0.865789i 1.00000 0.000157386i \(-5.00974e-5\pi\)
−0.500136 + 0.865947i \(0.666717\pi\)
\(644\) 3.68614 + 6.38458i 0.145254 + 0.251588i
\(645\) −14.8397 + 15.7908i −0.584311 + 0.621764i
\(646\) −10.9307 + 18.9325i −0.430063 + 0.744891i
\(647\) −17.4891 −0.687568 −0.343784 0.939049i \(-0.611709\pi\)
−0.343784 + 0.939049i \(0.611709\pi\)
\(648\) 8.93070 1.11469i 0.350831 0.0437892i
\(649\) 31.1168 1.22144
\(650\) −3.11684 + 5.39853i −0.122253 + 0.211748i
\(651\) 2.37228 2.52434i 0.0929770 0.0989366i
\(652\) −8.11684 14.0588i −0.317880 0.550585i
\(653\) 7.62772 + 13.2116i 0.298496 + 0.517010i 0.975792 0.218701i \(-0.0701818\pi\)
−0.677296 + 0.735710i \(0.736848\pi\)
\(654\) −7.00000 23.2164i −0.273722 0.907832i
\(655\) −5.05842 + 8.76144i −0.197649 + 0.342338i
\(656\) 10.3723 0.404970
\(657\) 0.952453 + 15.3210i 0.0371587 + 0.597727i
\(658\) 0 0
\(659\) 4.62772 8.01544i 0.180270 0.312237i −0.761702 0.647927i \(-0.775636\pi\)
0.941973 + 0.335690i \(0.108969\pi\)
\(660\) 10.1168 + 2.37686i 0.393798 + 0.0925192i
\(661\) −4.94158 8.55906i −0.192205 0.332909i 0.753776 0.657132i \(-0.228231\pi\)
−0.945981 + 0.324223i \(0.894897\pi\)
\(662\) −6.11684 10.5947i −0.237738 0.411774i
\(663\) 14.7446 + 3.46410i 0.572631 + 0.134535i
\(664\) −2.74456 + 4.75372i −0.106510 + 0.184480i
\(665\) −6.86141 −0.266074
\(666\) −5.37228 2.67181i −0.208172 0.103531i
\(667\) −20.2337 −0.783452
\(668\) −8.74456 + 15.1460i −0.338337 + 0.586017i
\(669\) −2.00000 6.63325i −0.0773245 0.256456i
\(670\) −10.3723 17.9653i −0.400716 0.694061i
\(671\) 30.8614 + 53.4535i 1.19139 + 2.06355i
\(672\) −1.18614 + 1.26217i −0.0457564 + 0.0486892i
\(673\) 10.0584 17.4217i 0.387724 0.671557i −0.604419 0.796666i \(-0.706595\pi\)
0.992143 + 0.125109i \(0.0399281\pi\)
\(674\) −9.11684 −0.351168
\(675\) −15.1861 + 5.62836i −0.584515 + 0.216636i
\(676\) −9.00000 −0.346154
\(677\) 17.2337 29.8496i 0.662344 1.14721i −0.317654 0.948207i \(-0.602895\pi\)
0.979998 0.199007i \(-0.0637718\pi\)
\(678\) −1.62772 + 1.73205i −0.0625122 + 0.0665190i
\(679\) −4.55842 7.89542i −0.174936 0.302998i
\(680\) 3.00000 + 5.19615i 0.115045 + 0.199263i
\(681\) −11.8723 39.3759i −0.454947 1.50889i
\(682\) 4.37228 7.57301i 0.167423 0.289986i
\(683\) −44.8397 −1.71574 −0.857871 0.513865i \(-0.828213\pi\)
−0.857871 + 0.513865i \(0.828213\pi\)
\(684\) −12.5000 + 8.29156i −0.477949 + 0.317036i
\(685\) −22.4674 −0.858434
\(686\) 0.500000 0.866025i 0.0190901 0.0330650i
\(687\) 33.9198 + 7.96916i 1.29412 + 0.304042i
\(688\) −4.55842 7.89542i −0.173788 0.301010i
\(689\) −2.74456 4.75372i −0.104560 0.181102i
\(690\) 17.0584 + 4.00772i 0.649403 + 0.152571i
\(691\) 2.94158 5.09496i 0.111903 0.193822i −0.804635 0.593770i \(-0.797639\pi\)
0.916537 + 0.399949i \(0.130972\pi\)
\(692\) −6.00000 −0.228086
\(693\) −10.9307 + 7.25061i −0.415223 + 0.275428i
\(694\) −7.11684 −0.270152
\(695\) −14.5693 + 25.2348i −0.552645 + 0.957209i
\(696\) −1.37228 4.55134i −0.0520162 0.172518i
\(697\) 22.6753 + 39.2747i 0.858887 + 1.48764i
\(698\) −11.0000 19.0526i −0.416356 0.721150i
\(699\) −13.9307 + 14.8236i −0.526908 + 0.560681i
\(700\) 1.55842 2.69927i 0.0589028 0.102023i
\(701\) −3.76631 −0.142252 −0.0711258 0.997467i \(-0.522659\pi\)
−0.0711258 + 0.997467i \(0.522659\pi\)
\(702\) 8.00000 + 6.63325i 0.301941 + 0.250356i
\(703\) 10.0000 0.377157
\(704\) −2.18614 + 3.78651i −0.0823933 + 0.142709i
\(705\) 0 0
\(706\) −3.81386 6.60580i −0.143536 0.248612i
\(707\) −3.68614 6.38458i −0.138632 0.240117i
\(708\) 3.55842 + 11.8020i 0.133734 + 0.443544i
\(709\) −22.0000 + 38.1051i −0.826227 + 1.43107i 0.0747503 + 0.997202i \(0.476184\pi\)
−0.900978 + 0.433865i \(0.857149\pi\)
\(710\) 13.8832 0.521026
\(711\) 32.5475 + 16.1870i 1.22063 + 0.607059i
\(712\) −3.25544 −0.122003
\(713\) 7.37228 12.7692i 0.276094 0.478209i
\(714\) −7.37228 1.73205i −0.275901 0.0648204i
\(715\) 6.00000 + 10.3923i 0.224387 + 0.388650i
\(716\) −7.37228 12.7692i −0.275515 0.477206i
\(717\) 31.8030 + 7.47182i 1.18770 + 0.279040i
\(718\) −3.43070 + 5.94215i −0.128033 + 0.221759i
\(719\) −8.74456 −0.326117 −0.163059 0.986616i \(-0.552136\pi\)
−0.163059 + 0.986616i \(0.552136\pi\)
\(720\) 0.255437 + 4.10891i 0.00951959 + 0.153130i
\(721\) −10.0000 −0.372419
\(722\) 3.00000 5.19615i 0.111648 0.193381i
\(723\) 0.441578 + 1.46455i 0.0164225 + 0.0544671i
\(724\) −9.05842 15.6896i −0.336654 0.583101i
\(725\) 4.27719 + 7.40830i 0.158851 + 0.275138i
\(726\) −9.62772 + 10.2448i −0.357318 + 0.380221i
\(727\) 0.883156 1.52967i 0.0327544 0.0567324i −0.849183 0.528098i \(-0.822905\pi\)
0.881938 + 0.471366i \(0.156239\pi\)
\(728\) −2.00000 −0.0741249
\(729\) 5.00000 + 26.5330i 0.185185 + 0.982704i
\(730\) −7.02175 −0.259887
\(731\) 19.9307 34.5210i 0.737164 1.27680i
\(732\) −16.7446 + 17.8178i −0.618897 + 0.658566i
\(733\) 11.9416 + 20.6834i 0.441072 + 0.763960i 0.997769 0.0667560i \(-0.0212649\pi\)
−0.556697 + 0.830716i \(0.687932\pi\)
\(734\) 11.1168 + 19.2549i 0.410330 + 0.710713i
\(735\) −0.686141 2.27567i −0.0253087 0.0839394i
\(736\) −3.68614 + 6.38458i −0.135873 + 0.235339i
\(737\) 66.0951 2.43464
\(738\) 1.93070 + 31.0569i 0.0710702 + 1.14322i
\(739\) 9.11684 0.335369 0.167684 0.985841i \(-0.446371\pi\)
0.167684 + 0.985841i \(0.446371\pi\)
\(740\) 1.37228 2.37686i 0.0504461 0.0873751i
\(741\) −16.8614 3.96143i −0.619419 0.145527i
\(742\) 1.37228 + 2.37686i 0.0503780 + 0.0872573i
\(743\) −21.8614 37.8651i −0.802017 1.38913i −0.918286 0.395917i \(-0.870427\pi\)
0.116269 0.993218i \(-0.462906\pi\)
\(744\) 3.37228 + 0.792287i 0.123634 + 0.0290467i
\(745\) 10.1168 17.5229i 0.370652 0.641989i
\(746\) 10.0000 0.366126
\(747\) −14.7446 7.33296i −0.539475 0.268299i
\(748\) −19.1168 −0.698981
\(749\) 0.813859 1.40965i 0.0297378 0.0515073i
\(750\) −5.56930 18.4713i −0.203362 0.674475i
\(751\) −0.0584220 0.101190i −0.00213185 0.00369247i 0.864958 0.501845i \(-0.167345\pi\)
−0.867089 + 0.498153i \(0.834012\pi\)
\(752\) 0 0
\(753\) −10.6753 + 11.3595i −0.389028 + 0.413964i
\(754\) 2.74456 4.75372i 0.0999511 0.173120i
\(755\) 11.1386 0.405375
\(756\) −4.00000 3.31662i −0.145479 0.120624i
\(757\) 11.7663 0.427654 0.213827 0.976872i \(-0.431407\pi\)
0.213827 + 0.976872i \(0.431407\pi\)
\(758\) 4.55842 7.89542i 0.165569 0.286775i
\(759\) −38.2337 + 40.6844i −1.38779 + 1.47675i
\(760\) −3.43070 5.94215i −0.124445 0.215545i
\(761\) −6.25544 10.8347i −0.226759 0.392759i 0.730086 0.683355i \(-0.239480\pi\)
−0.956846 + 0.290596i \(0.906146\pi\)
\(762\) 7.05842 + 23.4101i 0.255700 + 0.848060i
\(763\) −7.00000 + 12.1244i −0.253417 + 0.438931i
\(764\) −1.88316 −0.0681302
\(765\) −15.0000 + 9.94987i −0.542326 + 0.359738i
\(766\) 21.2554 0.767990
\(767\) −7.11684 + 12.3267i −0.256974 + 0.445093i
\(768\) −1.68614 0.396143i −0.0608434 0.0142946i
\(769\) 5.00000 + 8.66025i 0.180305 + 0.312297i 0.941984 0.335657i \(-0.108958\pi\)
−0.761680 + 0.647954i \(0.775625\pi\)
\(770\) −3.00000 5.19615i −0.108112 0.187256i
\(771\) −36.8614 8.66025i −1.32753 0.311891i
\(772\) 3.50000 6.06218i 0.125968 0.218183i
\(773\) −11.1386 −0.400627 −0.200314 0.979732i \(-0.564196\pi\)
−0.200314 + 0.979732i \(0.564196\pi\)
\(774\) 22.7921 15.1186i 0.819245 0.543426i