Properties

Label 126.2.f.d.43.1
Level $126$
Weight $2$
Character 126.43
Analytic conductor $1.006$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Defining polynomial: \(x^{4} - x^{3} - 2 x^{2} - 3 x + 9\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 43.1
Root \(1.68614 - 0.396143i\) of defining polynomial
Character \(\chi\) \(=\) 126.43
Dual form 126.2.f.d.85.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-1.68614 + 0.396143i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-2.18614 - 3.78651i) q^{5} +(-0.500000 + 1.65831i) q^{6} +(-0.500000 + 0.866025i) q^{7} -1.00000 q^{8} +(2.68614 - 1.33591i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(-1.68614 + 0.396143i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-2.18614 - 3.78651i) q^{5} +(-0.500000 + 1.65831i) q^{6} +(-0.500000 + 0.866025i) q^{7} -1.00000 q^{8} +(2.68614 - 1.33591i) q^{9} -4.37228 q^{10} +(0.686141 - 1.18843i) q^{11} +(1.18614 + 1.26217i) q^{12} +(-1.00000 - 1.73205i) q^{13} +(0.500000 + 0.866025i) q^{14} +(5.18614 + 5.51856i) q^{15} +(-0.500000 + 0.866025i) q^{16} +1.37228 q^{17} +(0.186141 - 2.99422i) q^{18} +5.00000 q^{19} +(-2.18614 + 3.78651i) q^{20} +(0.500000 - 1.65831i) q^{21} +(-0.686141 - 1.18843i) q^{22} +(0.813859 + 1.40965i) q^{23} +(1.68614 - 0.396143i) q^{24} +(-7.05842 + 12.2255i) q^{25} -2.00000 q^{26} +(-4.00000 + 3.31662i) q^{27} +1.00000 q^{28} +(4.37228 - 7.57301i) q^{29} +(7.37228 - 1.73205i) q^{30} +(-1.00000 - 1.73205i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-0.686141 + 2.27567i) q^{33} +(0.686141 - 1.18843i) q^{34} +4.37228 q^{35} +(-2.50000 - 1.65831i) q^{36} +2.00000 q^{37} +(2.50000 - 4.33013i) q^{38} +(2.37228 + 2.52434i) q^{39} +(2.18614 + 3.78651i) q^{40} +(-2.31386 - 4.00772i) q^{41} +(-1.18614 - 1.26217i) q^{42} +(4.05842 - 7.02939i) q^{43} -1.37228 q^{44} +(-10.9307 - 7.25061i) q^{45} +1.62772 q^{46} +(0.500000 - 1.65831i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(7.05842 + 12.2255i) q^{50} +(-2.31386 + 0.543620i) q^{51} +(-1.00000 + 1.73205i) q^{52} -8.74456 q^{53} +(0.872281 + 5.12241i) q^{54} -6.00000 q^{55} +(0.500000 - 0.866025i) q^{56} +(-8.43070 + 1.98072i) q^{57} +(-4.37228 - 7.57301i) q^{58} +(5.05842 + 8.76144i) q^{59} +(2.18614 - 7.25061i) q^{60} +(-1.55842 + 2.69927i) q^{61} -2.00000 q^{62} +(-0.186141 + 2.99422i) q^{63} +1.00000 q^{64} +(-4.37228 + 7.57301i) q^{65} +(1.62772 + 1.73205i) q^{66} +(1.05842 + 1.83324i) q^{67} +(-0.686141 - 1.18843i) q^{68} +(-1.93070 - 2.05446i) q^{69} +(2.18614 - 3.78651i) q^{70} -7.11684 q^{71} +(-2.68614 + 1.33591i) q^{72} +12.1168 q^{73} +(1.00000 - 1.73205i) q^{74} +(7.05842 - 23.4101i) q^{75} +(-2.50000 - 4.33013i) q^{76} +(0.686141 + 1.18843i) q^{77} +(3.37228 - 0.792287i) q^{78} +(2.55842 - 4.43132i) q^{79} +4.37228 q^{80} +(5.43070 - 7.17687i) q^{81} -4.62772 q^{82} +(-8.74456 + 15.1460i) q^{83} +(-1.68614 + 0.396143i) q^{84} +(-3.00000 - 5.19615i) q^{85} +(-4.05842 - 7.02939i) q^{86} +(-4.37228 + 14.5012i) q^{87} +(-0.686141 + 1.18843i) q^{88} +14.7446 q^{89} +(-11.7446 + 5.84096i) q^{90} +2.00000 q^{91} +(0.813859 - 1.40965i) q^{92} +(2.37228 + 2.52434i) q^{93} +(-10.9307 - 18.9325i) q^{95} +(-1.18614 - 1.26217i) q^{96} +(4.05842 - 7.02939i) q^{97} -1.00000 q^{98} +(0.255437 - 4.10891i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - q^{3} - 2 q^{4} - 3 q^{5} - 2 q^{6} - 2 q^{7} - 4 q^{8} + 5 q^{9} + O(q^{10}) \) \( 4 q + 2 q^{2} - q^{3} - 2 q^{4} - 3 q^{5} - 2 q^{6} - 2 q^{7} - 4 q^{8} + 5 q^{9} - 6 q^{10} - 3 q^{11} - q^{12} - 4 q^{13} + 2 q^{14} + 15 q^{15} - 2 q^{16} - 6 q^{17} - 5 q^{18} + 20 q^{19} - 3 q^{20} + 2 q^{21} + 3 q^{22} + 9 q^{23} + q^{24} - 11 q^{25} - 8 q^{26} - 16 q^{27} + 4 q^{28} + 6 q^{29} + 18 q^{30} - 4 q^{31} + 2 q^{32} + 3 q^{33} - 3 q^{34} + 6 q^{35} - 10 q^{36} + 8 q^{37} + 10 q^{38} - 2 q^{39} + 3 q^{40} - 15 q^{41} + q^{42} - q^{43} + 6 q^{44} - 15 q^{45} + 18 q^{46} + 2 q^{48} - 2 q^{49} + 11 q^{50} - 15 q^{51} - 4 q^{52} - 12 q^{53} - 8 q^{54} - 24 q^{55} + 2 q^{56} - 5 q^{57} - 6 q^{58} + 3 q^{59} + 3 q^{60} + 11 q^{61} - 8 q^{62} + 5 q^{63} + 4 q^{64} - 6 q^{65} + 18 q^{66} - 13 q^{67} + 3 q^{68} + 21 q^{69} + 3 q^{70} + 6 q^{71} - 5 q^{72} + 14 q^{73} + 4 q^{74} + 11 q^{75} - 10 q^{76} - 3 q^{77} + 2 q^{78} - 7 q^{79} + 6 q^{80} - 7 q^{81} - 30 q^{82} - 12 q^{83} - q^{84} - 12 q^{85} + q^{86} - 6 q^{87} + 3 q^{88} + 36 q^{89} - 24 q^{90} + 8 q^{91} + 9 q^{92} - 2 q^{93} - 15 q^{95} + q^{96} - q^{97} - 4 q^{98} + 24 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −1.68614 + 0.396143i −0.973494 + 0.228714i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −2.18614 3.78651i −0.977672 1.69338i −0.670820 0.741620i \(-0.734058\pi\)
−0.306851 0.951757i \(-0.599275\pi\)
\(6\) −0.500000 + 1.65831i −0.204124 + 0.677003i
\(7\) −0.500000 + 0.866025i −0.188982 + 0.327327i
\(8\) −1.00000 −0.353553
\(9\) 2.68614 1.33591i 0.895380 0.445302i
\(10\) −4.37228 −1.38264
\(11\) 0.686141 1.18843i 0.206879 0.358325i −0.743851 0.668346i \(-0.767003\pi\)
0.950730 + 0.310021i \(0.100336\pi\)
\(12\) 1.18614 + 1.26217i 0.342409 + 0.364357i
\(13\) −1.00000 1.73205i −0.277350 0.480384i 0.693375 0.720577i \(-0.256123\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) 0.500000 + 0.866025i 0.133631 + 0.231455i
\(15\) 5.18614 + 5.51856i 1.33906 + 1.42489i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.37228 0.332827 0.166414 0.986056i \(-0.446781\pi\)
0.166414 + 0.986056i \(0.446781\pi\)
\(18\) 0.186141 2.99422i 0.0438738 0.705744i
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) −2.18614 + 3.78651i −0.488836 + 0.846689i
\(21\) 0.500000 1.65831i 0.109109 0.361873i
\(22\) −0.686141 1.18843i −0.146286 0.253374i
\(23\) 0.813859 + 1.40965i 0.169701 + 0.293931i 0.938315 0.345782i \(-0.112386\pi\)
−0.768613 + 0.639713i \(0.779053\pi\)
\(24\) 1.68614 0.396143i 0.344182 0.0808625i
\(25\) −7.05842 + 12.2255i −1.41168 + 2.44511i
\(26\) −2.00000 −0.392232
\(27\) −4.00000 + 3.31662i −0.769800 + 0.638285i
\(28\) 1.00000 0.188982
\(29\) 4.37228 7.57301i 0.811912 1.40627i −0.0996117 0.995026i \(-0.531760\pi\)
0.911524 0.411247i \(-0.134907\pi\)
\(30\) 7.37228 1.73205i 1.34599 0.316228i
\(31\) −1.00000 1.73205i −0.179605 0.311086i 0.762140 0.647412i \(-0.224149\pi\)
−0.941745 + 0.336327i \(0.890815\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −0.686141 + 2.27567i −0.119442 + 0.396143i
\(34\) 0.686141 1.18843i 0.117672 0.203814i
\(35\) 4.37228 0.739050
\(36\) −2.50000 1.65831i −0.416667 0.276385i
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 2.50000 4.33013i 0.405554 0.702439i
\(39\) 2.37228 + 2.52434i 0.379869 + 0.404218i
\(40\) 2.18614 + 3.78651i 0.345659 + 0.598699i
\(41\) −2.31386 4.00772i −0.361364 0.625901i 0.626821 0.779163i \(-0.284356\pi\)
−0.988186 + 0.153262i \(0.951022\pi\)
\(42\) −1.18614 1.26217i −0.183025 0.194757i
\(43\) 4.05842 7.02939i 0.618904 1.07197i −0.370783 0.928720i \(-0.620910\pi\)
0.989686 0.143253i \(-0.0457562\pi\)
\(44\) −1.37228 −0.206879
\(45\) −10.9307 7.25061i −1.62945 1.08086i
\(46\) 1.62772 0.239994
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0.500000 1.65831i 0.0721688 0.239357i
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 7.05842 + 12.2255i 0.998212 + 1.72895i
\(51\) −2.31386 + 0.543620i −0.324005 + 0.0761221i
\(52\) −1.00000 + 1.73205i −0.138675 + 0.240192i
\(53\) −8.74456 −1.20116 −0.600579 0.799565i \(-0.705063\pi\)
−0.600579 + 0.799565i \(0.705063\pi\)
\(54\) 0.872281 + 5.12241i 0.118702 + 0.697072i
\(55\) −6.00000 −0.809040
\(56\) 0.500000 0.866025i 0.0668153 0.115728i
\(57\) −8.43070 + 1.98072i −1.11667 + 0.262352i
\(58\) −4.37228 7.57301i −0.574109 0.994385i
\(59\) 5.05842 + 8.76144i 0.658550 + 1.14064i 0.980991 + 0.194053i \(0.0621634\pi\)
−0.322441 + 0.946590i \(0.604503\pi\)
\(60\) 2.18614 7.25061i 0.282230 0.936050i
\(61\) −1.55842 + 2.69927i −0.199535 + 0.345606i −0.948378 0.317142i \(-0.897277\pi\)
0.748842 + 0.662748i \(0.230610\pi\)
\(62\) −2.00000 −0.254000
\(63\) −0.186141 + 2.99422i −0.0234515 + 0.377236i
\(64\) 1.00000 0.125000
\(65\) −4.37228 + 7.57301i −0.542315 + 0.939317i
\(66\) 1.62772 + 1.73205i 0.200358 + 0.213201i
\(67\) 1.05842 + 1.83324i 0.129307 + 0.223966i 0.923408 0.383819i \(-0.125391\pi\)
−0.794101 + 0.607785i \(0.792058\pi\)
\(68\) −0.686141 1.18843i −0.0832068 0.144118i
\(69\) −1.93070 2.05446i −0.232429 0.247327i
\(70\) 2.18614 3.78651i 0.261294 0.452574i
\(71\) −7.11684 −0.844614 −0.422307 0.906453i \(-0.638780\pi\)
−0.422307 + 0.906453i \(0.638780\pi\)
\(72\) −2.68614 + 1.33591i −0.316565 + 0.157438i
\(73\) 12.1168 1.41817 0.709085 0.705123i \(-0.249108\pi\)
0.709085 + 0.705123i \(0.249108\pi\)
\(74\) 1.00000 1.73205i 0.116248 0.201347i
\(75\) 7.05842 23.4101i 0.815036 2.70317i
\(76\) −2.50000 4.33013i −0.286770 0.496700i
\(77\) 0.686141 + 1.18843i 0.0781930 + 0.135434i
\(78\) 3.37228 0.792287i 0.381836 0.0897088i
\(79\) 2.55842 4.43132i 0.287845 0.498562i −0.685450 0.728120i \(-0.740395\pi\)
0.973295 + 0.229557i \(0.0737279\pi\)
\(80\) 4.37228 0.488836
\(81\) 5.43070 7.17687i 0.603411 0.797430i
\(82\) −4.62772 −0.511046
\(83\) −8.74456 + 15.1460i −0.959840 + 1.66249i −0.236960 + 0.971519i \(0.576151\pi\)
−0.722881 + 0.690973i \(0.757182\pi\)
\(84\) −1.68614 + 0.396143i −0.183973 + 0.0432228i
\(85\) −3.00000 5.19615i −0.325396 0.563602i
\(86\) −4.05842 7.02939i −0.437631 0.757999i
\(87\) −4.37228 + 14.5012i −0.468758 + 1.55469i
\(88\) −0.686141 + 1.18843i −0.0731428 + 0.126687i
\(89\) 14.7446 1.56292 0.781460 0.623955i \(-0.214475\pi\)
0.781460 + 0.623955i \(0.214475\pi\)
\(90\) −11.7446 + 5.84096i −1.23799 + 0.615692i
\(91\) 2.00000 0.209657
\(92\) 0.813859 1.40965i 0.0848507 0.146966i
\(93\) 2.37228 + 2.52434i 0.245994 + 0.261762i
\(94\) 0 0
\(95\) −10.9307 18.9325i −1.12147 1.94244i
\(96\) −1.18614 1.26217i −0.121060 0.128820i
\(97\) 4.05842 7.02939i 0.412070 0.713727i −0.583046 0.812439i \(-0.698139\pi\)
0.995116 + 0.0987127i \(0.0314725\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0.255437 4.10891i 0.0256724 0.412961i
\(100\) 14.1168 1.41168
\(101\) −0.813859 + 1.40965i −0.0809820 + 0.140265i −0.903672 0.428225i \(-0.859139\pi\)
0.822690 + 0.568490i \(0.192472\pi\)
\(102\) −0.686141 + 2.27567i −0.0679380 + 0.225325i
\(103\) 5.00000 + 8.66025i 0.492665 + 0.853320i 0.999964 0.00844953i \(-0.00268960\pi\)
−0.507300 + 0.861770i \(0.669356\pi\)
\(104\) 1.00000 + 1.73205i 0.0980581 + 0.169842i
\(105\) −7.37228 + 1.73205i −0.719461 + 0.169031i
\(106\) −4.37228 + 7.57301i −0.424674 + 0.735556i
\(107\) −7.37228 −0.712705 −0.356353 0.934352i \(-0.615980\pi\)
−0.356353 + 0.934352i \(0.615980\pi\)
\(108\) 4.87228 + 1.80579i 0.468835 + 0.173762i
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) −3.00000 + 5.19615i −0.286039 + 0.495434i
\(111\) −3.37228 + 0.792287i −0.320083 + 0.0752006i
\(112\) −0.500000 0.866025i −0.0472456 0.0818317i
\(113\) 2.18614 + 3.78651i 0.205655 + 0.356205i 0.950341 0.311210i \(-0.100734\pi\)
−0.744686 + 0.667415i \(0.767401\pi\)
\(114\) −2.50000 + 8.29156i −0.234146 + 0.776576i
\(115\) 3.55842 6.16337i 0.331825 0.574737i
\(116\) −8.74456 −0.811912
\(117\) −5.00000 3.31662i −0.462250 0.306622i
\(118\) 10.1168 0.931331
\(119\) −0.686141 + 1.18843i −0.0628984 + 0.108943i
\(120\) −5.18614 5.51856i −0.473428 0.503773i
\(121\) 4.55842 + 7.89542i 0.414402 + 0.717765i
\(122\) 1.55842 + 2.69927i 0.141093 + 0.244380i
\(123\) 5.48913 + 5.84096i 0.494938 + 0.526662i
\(124\) −1.00000 + 1.73205i −0.0898027 + 0.155543i
\(125\) 39.8614 3.56531
\(126\) 2.50000 + 1.65831i 0.222718 + 0.147734i
\(127\) 3.11684 0.276575 0.138288 0.990392i \(-0.455840\pi\)
0.138288 + 0.990392i \(0.455840\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −4.05842 + 13.4603i −0.357324 + 1.18511i
\(130\) 4.37228 + 7.57301i 0.383474 + 0.664197i
\(131\) 0.813859 + 1.40965i 0.0711072 + 0.123161i 0.899387 0.437154i \(-0.144013\pi\)
−0.828280 + 0.560315i \(0.810680\pi\)
\(132\) 2.31386 0.543620i 0.201396 0.0473161i
\(133\) −2.50000 + 4.33013i −0.216777 + 0.375470i
\(134\) 2.11684 0.182867
\(135\) 21.3030 + 7.89542i 1.83347 + 0.679529i
\(136\) −1.37228 −0.117672
\(137\) −5.31386 + 9.20387i −0.453994 + 0.786340i −0.998630 0.0523324i \(-0.983334\pi\)
0.544636 + 0.838672i \(0.316668\pi\)
\(138\) −2.74456 + 0.644810i −0.233633 + 0.0548899i
\(139\) −6.61684 11.4607i −0.561233 0.972085i −0.997389 0.0722136i \(-0.976994\pi\)
0.436156 0.899871i \(-0.356340\pi\)
\(140\) −2.18614 3.78651i −0.184763 0.320018i
\(141\) 0 0
\(142\) −3.55842 + 6.16337i −0.298616 + 0.517218i
\(143\) −2.74456 −0.229512
\(144\) −0.186141 + 2.99422i −0.0155117 + 0.249518i
\(145\) −38.2337 −3.17513
\(146\) 6.05842 10.4935i 0.501399 0.868448i
\(147\) 1.18614 + 1.26217i 0.0978312 + 0.104102i
\(148\) −1.00000 1.73205i −0.0821995 0.142374i
\(149\) −1.62772 2.81929i −0.133348 0.230965i 0.791617 0.611017i \(-0.209239\pi\)
−0.924965 + 0.380052i \(0.875906\pi\)
\(150\) −16.7446 17.8178i −1.36719 1.45482i
\(151\) −4.55842 + 7.89542i −0.370959 + 0.642520i −0.989713 0.143065i \(-0.954304\pi\)
0.618754 + 0.785585i \(0.287638\pi\)
\(152\) −5.00000 −0.405554
\(153\) 3.68614 1.83324i 0.298007 0.148209i
\(154\) 1.37228 0.110582
\(155\) −4.37228 + 7.57301i −0.351190 + 0.608279i
\(156\) 1.00000 3.31662i 0.0800641 0.265543i
\(157\) −4.55842 7.89542i −0.363802 0.630123i 0.624781 0.780800i \(-0.285188\pi\)
−0.988583 + 0.150677i \(0.951855\pi\)
\(158\) −2.55842 4.43132i −0.203537 0.352537i
\(159\) 14.7446 3.46410i 1.16932 0.274721i
\(160\) 2.18614 3.78651i 0.172830 0.299350i
\(161\) −1.62772 −0.128282
\(162\) −3.50000 8.29156i −0.274986 0.651447i
\(163\) −18.2337 −1.42817 −0.714086 0.700058i \(-0.753158\pi\)
−0.714086 + 0.700058i \(0.753158\pi\)
\(164\) −2.31386 + 4.00772i −0.180682 + 0.312951i
\(165\) 10.1168 2.37686i 0.787595 0.185038i
\(166\) 8.74456 + 15.1460i 0.678710 + 1.17556i
\(167\) 2.74456 + 4.75372i 0.212381 + 0.367854i 0.952459 0.304666i \(-0.0985450\pi\)
−0.740078 + 0.672521i \(0.765212\pi\)
\(168\) −0.500000 + 1.65831i −0.0385758 + 0.127942i
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) −6.00000 −0.460179
\(171\) 13.4307 6.67954i 1.02707 0.510797i
\(172\) −8.11684 −0.618904
\(173\) 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i \(-0.760087\pi\)
0.957241 + 0.289292i \(0.0934200\pi\)
\(174\) 10.3723 + 11.0371i 0.786321 + 0.836722i
\(175\) −7.05842 12.2255i −0.533567 0.924164i
\(176\) 0.686141 + 1.18843i 0.0517198 + 0.0895813i
\(177\) −12.0000 12.7692i −0.901975 0.959789i
\(178\) 7.37228 12.7692i 0.552576 0.957089i
\(179\) 3.25544 0.243323 0.121661 0.992572i \(-0.461178\pi\)
0.121661 + 0.992572i \(0.461178\pi\)
\(180\) −0.813859 + 13.0916i −0.0606615 + 0.975788i
\(181\) 0.883156 0.0656445 0.0328222 0.999461i \(-0.489550\pi\)
0.0328222 + 0.999461i \(0.489550\pi\)
\(182\) 1.00000 1.73205i 0.0741249 0.128388i
\(183\) 1.55842 5.16870i 0.115202 0.382081i
\(184\) −0.813859 1.40965i −0.0599985 0.103920i
\(185\) −4.37228 7.57301i −0.321457 0.556779i
\(186\) 3.37228 0.792287i 0.247268 0.0580933i
\(187\) 0.941578 1.63086i 0.0688550 0.119260i
\(188\) 0 0
\(189\) −0.872281 5.12241i −0.0634491 0.372601i
\(190\) −21.8614 −1.58599
\(191\) 9.55842 16.5557i 0.691623 1.19793i −0.279683 0.960092i \(-0.590229\pi\)
0.971306 0.237834i \(-0.0764374\pi\)
\(192\) −1.68614 + 0.396143i −0.121687 + 0.0285892i
\(193\) 3.50000 + 6.06218i 0.251936 + 0.436365i 0.964059 0.265689i \(-0.0855996\pi\)
−0.712123 + 0.702055i \(0.752266\pi\)
\(194\) −4.05842 7.02939i −0.291378 0.504681i
\(195\) 4.37228 14.5012i 0.313106 1.03845i
\(196\) −0.500000 + 0.866025i −0.0357143 + 0.0618590i
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) −3.43070 2.27567i −0.243809 0.161725i
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 7.05842 12.2255i 0.499106 0.864477i
\(201\) −2.51087 2.67181i −0.177103 0.188455i
\(202\) 0.813859 + 1.40965i 0.0572629 + 0.0991823i
\(203\) 4.37228 + 7.57301i 0.306874 + 0.531521i
\(204\) 1.62772 + 1.73205i 0.113963 + 0.121268i
\(205\) −10.1168 + 17.5229i −0.706591 + 1.22385i
\(206\) 10.0000 0.696733
\(207\) 4.06930 + 2.69927i 0.282836 + 0.187612i
\(208\) 2.00000 0.138675
\(209\) 3.43070 5.94215i 0.237307 0.411027i
\(210\) −2.18614 + 7.25061i −0.150858 + 0.500340i
\(211\) 8.00000 + 13.8564i 0.550743 + 0.953914i 0.998221 + 0.0596196i \(0.0189888\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) 4.37228 + 7.57301i 0.300290 + 0.520117i
\(213\) 12.0000 2.81929i 0.822226 0.193175i
\(214\) −3.68614 + 6.38458i −0.251979 + 0.436441i
\(215\) −35.4891 −2.42034
\(216\) 4.00000 3.31662i 0.272166 0.225668i
\(217\) 2.00000 0.135769
\(218\) 7.00000 12.1244i 0.474100 0.821165i
\(219\) −20.4307 + 4.80001i −1.38058 + 0.324355i
\(220\) 3.00000 + 5.19615i 0.202260 + 0.350325i
\(221\) −1.37228 2.37686i −0.0923096 0.159885i
\(222\) −1.00000 + 3.31662i −0.0671156 + 0.222597i
\(223\) 2.00000 3.46410i 0.133930 0.231973i −0.791258 0.611482i \(-0.790574\pi\)
0.925188 + 0.379509i \(0.123907\pi\)
\(224\) −1.00000 −0.0668153
\(225\) −2.62772 + 42.2689i −0.175181 + 2.81793i
\(226\) 4.37228 0.290840
\(227\) 6.12772 10.6135i 0.406711 0.704444i −0.587808 0.809000i \(-0.700009\pi\)
0.994519 + 0.104556i \(0.0333423\pi\)
\(228\) 5.93070 + 6.31084i 0.392770 + 0.417946i
\(229\) 1.44158 + 2.49689i 0.0952622 + 0.164999i 0.909718 0.415227i \(-0.136298\pi\)
−0.814456 + 0.580226i \(0.802964\pi\)
\(230\) −3.55842 6.16337i −0.234635 0.406400i
\(231\) −1.62772 1.73205i −0.107096 0.113961i
\(232\) −4.37228 + 7.57301i −0.287054 + 0.497193i
\(233\) −0.255437 −0.0167343 −0.00836713 0.999965i \(-0.502663\pi\)
−0.00836713 + 0.999965i \(0.502663\pi\)
\(234\) −5.37228 + 2.67181i −0.351197 + 0.174662i
\(235\) 0 0
\(236\) 5.05842 8.76144i 0.329275 0.570321i
\(237\) −2.55842 + 8.48533i −0.166187 + 0.551181i
\(238\) 0.686141 + 1.18843i 0.0444759 + 0.0770345i
\(239\) −4.93070 8.54023i −0.318941 0.552421i 0.661327 0.750098i \(-0.269994\pi\)
−0.980267 + 0.197677i \(0.936660\pi\)
\(240\) −7.37228 + 1.73205i −0.475879 + 0.111803i
\(241\) −9.05842 + 15.6896i −0.583504 + 1.01066i 0.411556 + 0.911385i \(0.364986\pi\)
−0.995060 + 0.0992745i \(0.968348\pi\)
\(242\) 9.11684 0.586053
\(243\) −6.31386 + 14.2525i −0.405034 + 0.914302i
\(244\) 3.11684 0.199535
\(245\) −2.18614 + 3.78651i −0.139667 + 0.241911i
\(246\) 7.80298 1.83324i 0.497500 0.116883i
\(247\) −5.00000 8.66025i −0.318142 0.551039i
\(248\) 1.00000 + 1.73205i 0.0635001 + 0.109985i
\(249\) 8.74456 29.0024i 0.554164 1.83795i
\(250\) 19.9307 34.5210i 1.26053 2.18330i
\(251\) −9.00000 −0.568075 −0.284037 0.958813i \(-0.591674\pi\)
−0.284037 + 0.958813i \(0.591674\pi\)
\(252\) 2.68614 1.33591i 0.169211 0.0841543i
\(253\) 2.23369 0.140431
\(254\) 1.55842 2.69927i 0.0977841 0.169367i
\(255\) 7.11684 + 7.57301i 0.445674 + 0.474240i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 3.43070 + 5.94215i 0.214001 + 0.370661i 0.952963 0.303086i \(-0.0980170\pi\)
−0.738962 + 0.673747i \(0.764684\pi\)
\(258\) 9.62772 + 10.2448i 0.599396 + 0.637815i
\(259\) −1.00000 + 1.73205i −0.0621370 + 0.107624i
\(260\) 8.74456 0.542315
\(261\) 1.62772 26.1831i 0.100753 1.62070i
\(262\) 1.62772 0.100561
\(263\) −3.81386 + 6.60580i −0.235173 + 0.407331i −0.959323 0.282311i \(-0.908899\pi\)
0.724150 + 0.689642i \(0.242232\pi\)
\(264\) 0.686141 2.27567i 0.0422290 0.140058i
\(265\) 19.1168 + 33.1113i 1.17434 + 2.03401i
\(266\) 2.50000 + 4.33013i 0.153285 + 0.265497i
\(267\) −24.8614 + 5.84096i −1.52149 + 0.357461i
\(268\) 1.05842 1.83324i 0.0646534 0.111983i
\(269\) −1.62772 −0.0992438 −0.0496219 0.998768i \(-0.515802\pi\)
−0.0496219 + 0.998768i \(0.515802\pi\)
\(270\) 17.4891 14.5012i 1.06435 0.882516i
\(271\) 16.2337 0.986126 0.493063 0.869994i \(-0.335877\pi\)
0.493063 + 0.869994i \(0.335877\pi\)
\(272\) −0.686141 + 1.18843i −0.0416034 + 0.0720592i
\(273\) −3.37228 + 0.792287i −0.204100 + 0.0479514i
\(274\) 5.31386 + 9.20387i 0.321022 + 0.556026i
\(275\) 9.68614 + 16.7769i 0.584096 + 1.01168i
\(276\) −0.813859 + 2.69927i −0.0489886 + 0.162477i
\(277\) 6.11684 10.5947i 0.367526 0.636573i −0.621652 0.783293i \(-0.713538\pi\)
0.989178 + 0.146720i \(0.0468717\pi\)
\(278\) −13.2337 −0.793704
\(279\) −5.00000 3.31662i −0.299342 0.198561i
\(280\) −4.37228 −0.261294
\(281\) −8.18614 + 14.1788i −0.488344 + 0.845837i −0.999910 0.0134071i \(-0.995732\pi\)
0.511566 + 0.859244i \(0.329066\pi\)
\(282\) 0 0
\(283\) −13.5584 23.4839i −0.805965 1.39597i −0.915638 0.402004i \(-0.868314\pi\)
0.109673 0.993968i \(-0.465019\pi\)
\(284\) 3.55842 + 6.16337i 0.211153 + 0.365729i
\(285\) 25.9307 + 27.5928i 1.53600 + 1.63446i
\(286\) −1.37228 + 2.37686i −0.0811447 + 0.140547i
\(287\) 4.62772 0.273166
\(288\) 2.50000 + 1.65831i 0.147314 + 0.0977170i
\(289\) −15.1168 −0.889226
\(290\) −19.1168 + 33.1113i −1.12258 + 1.94437i
\(291\) −4.05842 + 13.4603i −0.237909 + 0.789055i
\(292\) −6.05842 10.4935i −0.354542 0.614085i
\(293\) 5.18614 + 8.98266i 0.302978 + 0.524773i 0.976809 0.214113i \(-0.0686859\pi\)
−0.673831 + 0.738885i \(0.735353\pi\)
\(294\) 1.68614 0.396143i 0.0983377 0.0231036i
\(295\) 22.1168 38.3075i 1.28769 2.23035i
\(296\) −2.00000 −0.116248
\(297\) 1.19702 + 7.02939i 0.0694579 + 0.407887i
\(298\) −3.25544 −0.188582
\(299\) 1.62772 2.81929i 0.0941334 0.163044i
\(300\) −23.8030 + 5.59230i −1.37427 + 0.322871i
\(301\) 4.05842 + 7.02939i 0.233924 + 0.405167i
\(302\) 4.55842 + 7.89542i 0.262308 + 0.454330i
\(303\) 0.813859 2.69927i 0.0467550 0.155069i
\(304\) −2.50000 + 4.33013i −0.143385 + 0.248350i
\(305\) 13.6277 0.780321
\(306\) 0.255437 4.10891i 0.0146024 0.234891i
\(307\) −13.0000 −0.741949 −0.370975 0.928643i \(-0.620976\pi\)
−0.370975 + 0.928643i \(0.620976\pi\)
\(308\) 0.686141 1.18843i 0.0390965 0.0677171i
\(309\) −11.8614 12.6217i −0.674772 0.718023i
\(310\) 4.37228 + 7.57301i 0.248329 + 0.430118i
\(311\) −4.11684 7.13058i −0.233445 0.404338i 0.725375 0.688354i \(-0.241666\pi\)
−0.958820 + 0.284016i \(0.908333\pi\)
\(312\) −2.37228 2.52434i −0.134304 0.142912i
\(313\) 10.0584 17.4217i 0.568536 0.984733i −0.428175 0.903696i \(-0.640843\pi\)
0.996711 0.0810370i \(-0.0258232\pi\)
\(314\) −9.11684 −0.514493
\(315\) 11.7446 5.84096i 0.661731 0.329101i
\(316\) −5.11684 −0.287845
\(317\) 3.00000 5.19615i 0.168497 0.291845i −0.769395 0.638774i \(-0.779442\pi\)
0.937892 + 0.346929i \(0.112775\pi\)
\(318\) 4.37228 14.5012i 0.245185 0.813188i
\(319\) −6.00000 10.3923i −0.335936 0.581857i
\(320\) −2.18614 3.78651i −0.122209 0.211672i
\(321\) 12.4307 2.92048i 0.693814 0.163005i
\(322\) −0.813859 + 1.40965i −0.0453546 + 0.0785565i
\(323\) 6.86141 0.381779
\(324\) −8.93070 1.11469i −0.496150 0.0619273i
\(325\) 28.2337 1.56612
\(326\) −9.11684 + 15.7908i −0.504935 + 0.874574i
\(327\) −23.6060 + 5.54601i −1.30541 + 0.306695i
\(328\) 2.31386 + 4.00772i 0.127762 + 0.221289i
\(329\) 0 0
\(330\) 3.00000 9.94987i 0.165145 0.547723i
\(331\) −11.1168 + 19.2549i −0.611037 + 1.05835i 0.380029 + 0.924975i \(0.375914\pi\)
−0.991066 + 0.133373i \(0.957419\pi\)
\(332\) 17.4891 0.959840
\(333\) 5.37228 2.67181i 0.294399 0.146415i
\(334\) 5.48913 0.300352
\(335\) 4.62772 8.01544i 0.252839 0.437930i
\(336\) 1.18614 + 1.26217i 0.0647093 + 0.0688570i
\(337\) 4.05842 + 7.02939i 0.221076 + 0.382915i 0.955135 0.296171i \(-0.0957097\pi\)
−0.734059 + 0.679086i \(0.762376\pi\)
\(338\) −4.50000 7.79423i −0.244768 0.423950i
\(339\) −5.18614 5.51856i −0.281672 0.299727i
\(340\) −3.00000 + 5.19615i −0.162698 + 0.281801i
\(341\) −2.74456 −0.148626
\(342\) 0.930703 14.9711i 0.0503267 0.809544i
\(343\) 1.00000 0.0539949
\(344\) −4.05842 + 7.02939i −0.218815 + 0.378999i
\(345\) −3.55842 + 11.8020i −0.191579 + 0.635396i
\(346\) −3.00000 5.19615i −0.161281 0.279347i
\(347\) 5.05842 + 8.76144i 0.271550 + 0.470339i 0.969259 0.246043i \(-0.0791303\pi\)
−0.697709 + 0.716382i \(0.745797\pi\)
\(348\) 14.7446 3.46410i 0.790392 0.185695i
\(349\) 11.0000 19.0526i 0.588817 1.01986i −0.405571 0.914063i \(-0.632927\pi\)
0.994388 0.105797i \(-0.0337393\pi\)
\(350\) −14.1168 −0.754577
\(351\) 9.74456 + 3.61158i 0.520126 + 0.192772i
\(352\) 1.37228 0.0731428
\(353\) 6.68614 11.5807i 0.355867 0.616380i −0.631399 0.775458i \(-0.717519\pi\)
0.987266 + 0.159078i \(0.0508522\pi\)
\(354\) −17.0584 + 4.00772i −0.906645 + 0.213008i
\(355\) 15.5584 + 26.9480i 0.825755 + 1.43025i
\(356\) −7.37228 12.7692i −0.390730 0.676764i
\(357\) 0.686141 2.27567i 0.0363144 0.120441i
\(358\) 1.62772 2.81929i 0.0860276 0.149004i
\(359\) 21.8614 1.15380 0.576900 0.816814i \(-0.304262\pi\)
0.576900 + 0.816814i \(0.304262\pi\)
\(360\) 10.9307 + 7.25061i 0.576099 + 0.382141i
\(361\) 6.00000 0.315789
\(362\) 0.441578 0.764836i 0.0232088 0.0401989i
\(363\) −10.8139 11.5070i −0.567580 0.603961i
\(364\) −1.00000 1.73205i −0.0524142 0.0907841i
\(365\) −26.4891 45.8805i −1.38650 2.40150i
\(366\) −3.69702 3.93398i −0.193246 0.205633i
\(367\) 6.11684 10.5947i 0.319297 0.553038i −0.661045 0.750346i \(-0.729887\pi\)
0.980341 + 0.197308i \(0.0632200\pi\)
\(368\) −1.62772 −0.0848507
\(369\) −11.5693 7.67420i −0.602274 0.399503i
\(370\) −8.74456 −0.454608
\(371\) 4.37228 7.57301i 0.226998 0.393171i
\(372\) 1.00000 3.31662i 0.0518476 0.171959i
\(373\) 5.00000 + 8.66025i 0.258890 + 0.448411i 0.965945 0.258748i \(-0.0833099\pi\)
−0.707055 + 0.707159i \(0.749977\pi\)
\(374\) −0.941578 1.63086i −0.0486878 0.0843298i
\(375\) −67.2119 + 15.7908i −3.47081 + 0.815435i
\(376\) 0 0
\(377\) −17.4891 −0.900736
\(378\) −4.87228 1.80579i −0.250603 0.0928798i
\(379\) −8.11684 −0.416934 −0.208467 0.978029i \(-0.566847\pi\)
−0.208467 + 0.978029i \(0.566847\pi\)
\(380\) −10.9307 + 18.9325i −0.560733 + 0.971218i
\(381\) −5.25544 + 1.23472i −0.269244 + 0.0632565i
\(382\) −9.55842 16.5557i −0.489051 0.847062i
\(383\) 16.3723 + 28.3576i 0.836584 + 1.44901i 0.892734 + 0.450584i \(0.148784\pi\)
−0.0561493 + 0.998422i \(0.517882\pi\)
\(384\) −0.500000 + 1.65831i −0.0255155 + 0.0846254i
\(385\) 3.00000 5.19615i 0.152894 0.264820i
\(386\) 7.00000 0.356291
\(387\) 1.51087 24.3036i 0.0768021 1.23542i
\(388\) −8.11684 −0.412070
\(389\) −5.48913 + 9.50744i −0.278310 + 0.482047i −0.970965 0.239222i \(-0.923107\pi\)
0.692655 + 0.721269i \(0.256441\pi\)
\(390\) −10.3723 11.0371i −0.525221 0.558886i
\(391\) 1.11684 + 1.93443i 0.0564812 + 0.0978284i
\(392\) 0.500000 + 0.866025i 0.0252538 + 0.0437409i
\(393\) −1.93070 2.05446i −0.0973911 0.103634i
\(394\) −3.00000 + 5.19615i −0.151138 + 0.261778i
\(395\) −22.3723 −1.12567
\(396\) −3.68614 + 1.83324i −0.185236 + 0.0921238i
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) −5.00000 + 8.66025i −0.250627 + 0.434099i
\(399\) 2.50000 8.29156i 0.125157 0.415097i
\(400\) −7.05842 12.2255i −0.352921 0.611277i
\(401\) 5.87228 + 10.1711i 0.293248 + 0.507920i 0.974576 0.224058i \(-0.0719306\pi\)
−0.681328 + 0.731978i \(0.738597\pi\)
\(402\) −3.56930 + 0.838574i −0.178020 + 0.0418243i
\(403\) −2.00000 + 3.46410i −0.0996271 + 0.172559i
\(404\) 1.62772 0.0809820
\(405\) −39.0475 4.87375i −1.94029 0.242178i
\(406\) 8.74456 0.433985
\(407\) 1.37228 2.37686i 0.0680215 0.117817i
\(408\) 2.31386 0.543620i 0.114553 0.0269132i
\(409\) 11.1753 + 19.3561i 0.552581 + 0.957099i 0.998087 + 0.0618200i \(0.0196905\pi\)
−0.445506 + 0.895279i \(0.646976\pi\)
\(410\) 10.1168 + 17.5229i 0.499635 + 0.865394i
\(411\) 5.31386 17.6241i 0.262113 0.869332i
\(412\) 5.00000 8.66025i 0.246332 0.426660i
\(413\) −10.1168 −0.497817
\(414\) 4.37228 2.17448i 0.214886 0.106870i
\(415\) 76.4674 3.75364
\(416\) 1.00000 1.73205i 0.0490290 0.0849208i
\(417\) 15.6970 + 16.7031i 0.768686 + 0.817957i
\(418\) −3.43070 5.94215i −0.167801 0.290640i
\(419\) 6.30298 + 10.9171i 0.307921 + 0.533335i 0.977907 0.209039i \(-0.0670334\pi\)
−0.669986 + 0.742373i \(0.733700\pi\)
\(420\) 5.18614 + 5.51856i 0.253058 + 0.269278i
\(421\) −17.1168 + 29.6472i −0.834224 + 1.44492i 0.0604368 + 0.998172i \(0.480751\pi\)
−0.894661 + 0.446746i \(0.852583\pi\)
\(422\) 16.0000 0.778868
\(423\) 0 0
\(424\) 8.74456 0.424674
\(425\) −9.68614 + 16.7769i −0.469847 + 0.813799i
\(426\) 3.55842 11.8020i 0.172406 0.571806i
\(427\) −1.55842 2.69927i −0.0754173 0.130627i
\(428\) 3.68614 + 6.38458i 0.178176 + 0.308610i
\(429\) 4.62772 1.08724i 0.223428 0.0524925i
\(430\) −17.7446 + 30.7345i −0.855719 + 1.48215i
\(431\) −6.51087 −0.313618 −0.156809 0.987629i \(-0.550121\pi\)
−0.156809 + 0.987629i \(0.550121\pi\)
\(432\) −0.872281 5.12241i −0.0419677 0.246452i
\(433\) −20.1168 −0.966754 −0.483377 0.875412i \(-0.660590\pi\)
−0.483377 + 0.875412i \(0.660590\pi\)
\(434\) 1.00000 1.73205i 0.0480015 0.0831411i
\(435\) 64.4674 15.1460i 3.09097 0.726196i
\(436\) −7.00000 12.1244i −0.335239 0.580651i
\(437\) 4.06930 + 7.04823i 0.194661 + 0.337162i
\(438\) −6.05842 + 20.0935i −0.289483 + 0.960105i
\(439\) −4.00000 + 6.92820i −0.190910 + 0.330665i −0.945552 0.325471i \(-0.894477\pi\)
0.754642 + 0.656136i \(0.227810\pi\)
\(440\) 6.00000 0.286039
\(441\) −2.50000 1.65831i −0.119048 0.0789673i
\(442\) −2.74456 −0.130546
\(443\) 20.0584 34.7422i 0.953004 1.65065i 0.214134 0.976804i \(-0.431307\pi\)
0.738870 0.673848i \(-0.235360\pi\)
\(444\) 2.37228 + 2.52434i 0.112583 + 0.119800i
\(445\) −32.2337 55.8304i −1.52802 2.64661i
\(446\) −2.00000 3.46410i −0.0947027 0.164030i
\(447\) 3.86141 + 4.10891i 0.182638 + 0.194345i
\(448\) −0.500000 + 0.866025i −0.0236228 + 0.0409159i
\(449\) 33.0000 1.55737 0.778683 0.627417i \(-0.215888\pi\)
0.778683 + 0.627417i \(0.215888\pi\)
\(450\) 35.2921 + 23.4101i 1.66369 + 1.10356i
\(451\) −6.35053 −0.299035
\(452\) 2.18614 3.78651i 0.102827 0.178102i
\(453\) 4.55842 15.1186i 0.214173 0.710333i
\(454\) −6.12772 10.6135i −0.287588 0.498117i
\(455\) −4.37228 7.57301i −0.204976 0.355028i
\(456\) 8.43070 1.98072i 0.394804 0.0927556i
\(457\) 17.7337 30.7156i 0.829547 1.43682i −0.0688472 0.997627i \(-0.521932\pi\)
0.898394 0.439190i \(-0.144735\pi\)
\(458\) 2.88316 0.134721
\(459\) −5.48913 + 4.55134i −0.256210 + 0.212438i
\(460\) −7.11684 −0.331825
\(461\) −1.06930 + 1.85208i −0.0498021 + 0.0862598i −0.889852 0.456250i \(-0.849192\pi\)
0.840050 + 0.542509i \(0.182526\pi\)
\(462\) −2.31386 + 0.543620i −0.107650 + 0.0252915i
\(463\) 11.5584 + 20.0198i 0.537165 + 0.930398i 0.999055 + 0.0434604i \(0.0138382\pi\)
−0.461890 + 0.886937i \(0.652828\pi\)
\(464\) 4.37228 + 7.57301i 0.202978 + 0.351568i
\(465\) 4.37228 14.5012i 0.202760 0.672478i
\(466\) −0.127719 + 0.221215i −0.00591645 + 0.0102476i
\(467\) 33.0951 1.53146 0.765729 0.643163i \(-0.222378\pi\)
0.765729 + 0.643163i \(0.222378\pi\)
\(468\) −0.372281 + 5.98844i −0.0172087 + 0.276816i
\(469\) −2.11684 −0.0977468
\(470\) 0 0
\(471\) 10.8139 + 11.5070i 0.498276 + 0.530214i
\(472\) −5.05842 8.76144i −0.232833 0.403278i
\(473\) −5.56930 9.64630i −0.256077 0.443538i
\(474\) 6.06930 + 6.45832i 0.278772 + 0.296641i
\(475\) −35.2921 + 61.1277i −1.61931 + 2.80473i
\(476\) 1.37228 0.0628984
\(477\) −23.4891 + 11.6819i −1.07549 + 0.534879i
\(478\) −9.86141 −0.451050
\(479\) −16.3723 + 28.3576i −0.748069 + 1.29569i 0.200679 + 0.979657i \(0.435685\pi\)
−0.948747 + 0.316036i \(0.897648\pi\)
\(480\) −2.18614 + 7.25061i −0.0997832 + 0.330943i
\(481\) −2.00000 3.46410i −0.0911922 0.157949i
\(482\) 9.05842 + 15.6896i 0.412600 + 0.714644i
\(483\) 2.74456 0.644810i 0.124882 0.0293399i
\(484\) 4.55842 7.89542i 0.207201 0.358883i
\(485\) −35.4891 −1.61148
\(486\) 9.18614 + 12.5942i 0.416692 + 0.571286i
\(487\) 35.3505 1.60189 0.800943 0.598741i \(-0.204332\pi\)
0.800943 + 0.598741i \(0.204332\pi\)
\(488\) 1.55842 2.69927i 0.0705464 0.122190i
\(489\) 30.7446 7.22316i 1.39032 0.326642i
\(490\) 2.18614 + 3.78651i 0.0987598 + 0.171057i
\(491\) 12.6861 + 21.9730i 0.572518 + 0.991629i 0.996306 + 0.0858685i \(0.0273665\pi\)
−0.423789 + 0.905761i \(0.639300\pi\)
\(492\) 2.31386 7.67420i 0.104317 0.345980i
\(493\) 6.00000 10.3923i 0.270226 0.468046i
\(494\) −10.0000 −0.449921
\(495\) −16.1168 + 8.01544i −0.724398 + 0.360267i
\(496\) 2.00000 0.0898027
\(497\) 3.55842 6.16337i 0.159617 0.276465i
\(498\) −20.7446 22.0742i −0.929586 0.989170i
\(499\) −9.05842 15.6896i −0.405511 0.702365i 0.588870 0.808228i \(-0.299573\pi\)
−0.994381 + 0.105863i \(0.966240\pi\)
\(500\) −19.9307 34.5210i −0.891328 1.54383i
\(501\) −6.51087 6.92820i −0.290884 0.309529i
\(502\) −4.50000 + 7.79423i −0.200845 + 0.347873i
\(503\) −32.2337 −1.43723 −0.718615 0.695409i \(-0.755223\pi\)
−0.718615 + 0.695409i \(0.755223\pi\)
\(504\) 0.186141 2.99422i 0.00829136 0.133373i
\(505\) 7.11684 0.316695
\(506\) 1.11684 1.93443i 0.0496498 0.0859959i
\(507\) −4.50000 + 14.9248i −0.199852 + 0.662834i
\(508\) −1.55842 2.69927i −0.0691438 0.119761i
\(509\) 14.4891 + 25.0959i 0.642219 + 1.11236i 0.984936 + 0.172918i \(0.0553194\pi\)
−0.342717 + 0.939439i \(0.611347\pi\)
\(510\) 10.1168 2.37686i 0.447981 0.105249i
\(511\) −6.05842 + 10.4935i −0.268009 + 0.464205i
\(512\) −1.00000 −0.0441942
\(513\) −20.0000 + 16.5831i −0.883022 + 0.732163i
\(514\) 6.86141 0.302644
\(515\) 21.8614 37.8651i 0.963329 1.66853i
\(516\) 13.6861 3.21543i 0.602499 0.141552i
\(517\) 0 0
\(518\) 1.00000 + 1.73205i 0.0439375 + 0.0761019i
\(519\) −3.00000 + 9.94987i −0.131685 + 0.436751i
\(520\) 4.37228 7.57301i 0.191737 0.332099i
\(521\) −24.8614 −1.08920 −0.544599 0.838697i \(-0.683318\pi\)
−0.544599 + 0.838697i \(0.683318\pi\)
\(522\) −21.8614 14.5012i −0.956848 0.634701i
\(523\) −35.1168 −1.53555 −0.767776 0.640718i \(-0.778637\pi\)
−0.767776 + 0.640718i \(0.778637\pi\)
\(524\) 0.813859 1.40965i 0.0355536 0.0615807i
\(525\) 16.7446 + 17.8178i 0.730793 + 0.777634i
\(526\) 3.81386 + 6.60580i 0.166292 + 0.288026i
\(527\) −1.37228 2.37686i −0.0597775 0.103538i
\(528\) −1.62772 1.73205i −0.0708374 0.0753778i
\(529\) 10.1753 17.6241i 0.442403 0.766264i
\(530\) 38.2337 1.66077
\(531\) 25.2921 + 16.7769i 1.09758 + 0.728055i
\(532\) 5.00000 0.216777
\(533\) −4.62772 + 8.01544i −0.200449 + 0.347187i
\(534\) −7.37228 + 24.4511i −0.319030 + 1.05810i
\(535\) 16.1168 + 27.9152i 0.696792 + 1.20688i
\(536\) −1.05842 1.83324i −0.0457169 0.0791839i
\(537\) −5.48913 + 1.28962i −0.236873 + 0.0556512i
\(538\) −0.813859 + 1.40965i −0.0350880 + 0.0607741i
\(539\) −1.37228 −0.0591083
\(540\) −3.81386 22.3966i −0.164122 0.963798i
\(541\) −6.23369 −0.268007 −0.134004 0.990981i \(-0.542783\pi\)
−0.134004 + 0.990981i \(0.542783\pi\)
\(542\) 8.11684 14.0588i 0.348648 0.603877i
\(543\) −1.48913 + 0.349857i −0.0639045 + 0.0150138i
\(544\) 0.686141 + 1.18843i 0.0294180 + 0.0509535i
\(545\) −30.6060 53.0111i −1.31102 2.27075i
\(546\) −1.00000 + 3.31662i −0.0427960 + 0.141938i
\(547\) −9.05842 + 15.6896i −0.387310 + 0.670841i −0.992087 0.125554i \(-0.959929\pi\)
0.604777 + 0.796395i \(0.293262\pi\)
\(548\) 10.6277 0.453994
\(549\) −0.580171 + 9.33252i −0.0247611 + 0.398302i
\(550\) 19.3723 0.826037
\(551\) 21.8614 37.8651i 0.931327 1.61311i
\(552\) 1.93070 + 2.05446i 0.0821762 + 0.0874434i
\(553\) 2.55842 + 4.43132i 0.108795 + 0.188439i
\(554\) −6.11684 10.5947i −0.259880 0.450125i
\(555\) 10.3723 + 11.0371i 0.440279 + 0.468499i
\(556\) −6.61684 + 11.4607i −0.280617 + 0.486042i
\(557\) 29.4891 1.24949 0.624747 0.780827i \(-0.285202\pi\)
0.624747 + 0.780827i \(0.285202\pi\)
\(558\) −5.37228 + 2.67181i −0.227427 + 0.113107i
\(559\) −16.2337 −0.686612
\(560\) −2.18614 + 3.78651i −0.0923813 + 0.160009i
\(561\) −0.941578 + 3.12286i −0.0397535 + 0.131847i
\(562\) 8.18614 + 14.1788i 0.345312 + 0.598097i
\(563\) −1.50000 2.59808i −0.0632175 0.109496i 0.832684 0.553748i \(-0.186803\pi\)
−0.895902 + 0.444252i \(0.853470\pi\)
\(564\) 0 0
\(565\) 9.55842 16.5557i 0.402126 0.696502i
\(566\) −27.1168 −1.13981
\(567\) 3.50000 + 8.29156i 0.146986 + 0.348213i
\(568\) 7.11684 0.298616
\(569\) −8.05842 + 13.9576i −0.337827 + 0.585133i −0.984024 0.178038i \(-0.943025\pi\)
0.646197 + 0.763171i \(0.276358\pi\)
\(570\) 36.8614 8.66025i 1.54395 0.362738i
\(571\) 11.1753 + 19.3561i 0.467670 + 0.810029i 0.999318 0.0369371i \(-0.0117601\pi\)
−0.531647 + 0.846966i \(0.678427\pi\)
\(572\) 1.37228 + 2.37686i 0.0573780 + 0.0993815i
\(573\) −9.55842 + 31.7017i −0.399309 + 1.32436i
\(574\) 2.31386 4.00772i 0.0965786 0.167279i
\(575\) −22.9783 −0.958259
\(576\) 2.68614 1.33591i 0.111923 0.0556628i
\(577\) 9.88316 0.411441 0.205721 0.978611i \(-0.434046\pi\)
0.205721 + 0.978611i \(0.434046\pi\)
\(578\) −7.55842 + 13.0916i −0.314389 + 0.544538i
\(579\) −8.30298 8.83518i −0.345060 0.367178i
\(580\) 19.1168 + 33.1113i 0.793784 + 1.37487i
\(581\) −8.74456 15.1460i −0.362786 0.628363i
\(582\) 9.62772 + 10.2448i 0.399082 + 0.424662i
\(583\) −6.00000 + 10.3923i −0.248495 + 0.430405i
\(584\) −12.1168 −0.501399
\(585\) −1.62772 + 26.1831i −0.0672979 + 1.08254i
\(586\) 10.3723 0.428475
\(587\) −7.24456 + 12.5480i −0.299015 + 0.517909i −0.975911 0.218170i \(-0.929991\pi\)
0.676896 + 0.736079i \(0.263325\pi\)
\(588\) 0.500000 1.65831i 0.0206197 0.0683877i
\(589\) −5.00000 8.66025i −0.206021 0.356840i
\(590\) −22.1168 38.3075i −0.910536 1.57709i
\(591\) 10.1168 2.37686i 0.416151 0.0977710i
\(592\) −1.00000 + 1.73205i −0.0410997 + 0.0711868i
\(593\) 14.7446 0.605487 0.302743 0.953072i \(-0.402098\pi\)
0.302743 + 0.953072i \(0.402098\pi\)
\(594\) 6.68614 + 2.47805i 0.274336 + 0.101676i
\(595\) 6.00000 0.245976
\(596\) −1.62772 + 2.81929i −0.0666740 + 0.115483i
\(597\) 16.8614 3.96143i 0.690091 0.162131i
\(598\) −1.62772 2.81929i −0.0665624 0.115289i
\(599\) −12.0000 20.7846i −0.490307 0.849236i 0.509631 0.860393i \(-0.329782\pi\)
−0.999938 + 0.0111569i \(0.996449\pi\)
\(600\) −7.05842 + 23.4101i −0.288159 + 0.955715i
\(601\) −12.0584 + 20.8858i −0.491873 + 0.851950i −0.999956 0.00935863i \(-0.997021\pi\)
0.508083 + 0.861308i \(0.330354\pi\)
\(602\) 8.11684 0.330818
\(603\) 5.29211 + 3.51039i 0.215511 + 0.142954i
\(604\) 9.11684 0.370959
\(605\) 19.9307 34.5210i 0.810298 1.40348i
\(606\) −1.93070 2.05446i −0.0784295 0.0834566i
\(607\) −11.1168 19.2549i −0.451219 0.781534i 0.547243 0.836974i \(-0.315677\pi\)
−0.998462 + 0.0554398i \(0.982344\pi\)
\(608\) 2.50000 + 4.33013i 0.101388 + 0.175610i
\(609\) −10.3723 11.0371i −0.420306 0.447246i
\(610\) 6.81386 11.8020i 0.275885 0.477847i
\(611\) 0 0
\(612\) −3.43070 2.27567i −0.138678 0.0919886i
\(613\) −36.2337 −1.46346 −0.731732 0.681592i \(-0.761288\pi\)
−0.731732 + 0.681592i \(0.761288\pi\)
\(614\) −6.50000 + 11.2583i −0.262319 + 0.454349i
\(615\) 10.1168 33.5538i 0.407951 1.35302i
\(616\) −0.686141 1.18843i −0.0276454 0.0478832i
\(617\) −9.43070 16.3345i −0.379666 0.657600i 0.611348 0.791362i \(-0.290628\pi\)
−0.991014 + 0.133762i \(0.957294\pi\)
\(618\) −16.8614 + 3.96143i −0.678265 + 0.159352i
\(619\) −22.7337 + 39.3759i −0.913744 + 1.58265i −0.105014 + 0.994471i \(0.533489\pi\)
−0.808730 + 0.588180i \(0.799844\pi\)
\(620\) 8.74456 0.351190
\(621\) −7.93070 2.93932i −0.318248 0.117951i
\(622\) −8.23369 −0.330141
\(623\) −7.37228 + 12.7692i −0.295364 + 0.511586i
\(624\) −3.37228 + 0.792287i −0.134999 + 0.0317169i
\(625\) −51.8505 89.8078i −2.07402 3.59231i
\(626\) −10.0584 17.4217i −0.402015 0.696311i
\(627\) −3.43070 + 11.3784i −0.137009 + 0.454408i
\(628\) −4.55842 + 7.89542i −0.181901 + 0.315061i
\(629\) 2.74456 0.109433
\(630\) 0.813859 13.0916i 0.0324249 0.521581i
\(631\) −37.3505 −1.48690 −0.743451 0.668791i \(-0.766812\pi\)
−0.743451 + 0.668791i \(0.766812\pi\)
\(632\) −2.55842 + 4.43132i −0.101769 + 0.176268i
\(633\) −18.9783 20.1947i −0.754318 0.802667i
\(634\) −3.00000 5.19615i −0.119145 0.206366i
\(635\) −6.81386 11.8020i −0.270400 0.468346i
\(636\) −10.3723 11.0371i −0.411288 0.437650i
\(637\) −1.00000 + 1.73205i −0.0396214 + 0.0686264i
\(638\) −12.0000 −0.475085
\(639\) −19.1168 + 9.50744i −0.756251 + 0.376109i
\(640\) −4.37228 −0.172830
\(641\) −17.1060 + 29.6284i −0.675645 + 1.17025i 0.300635 + 0.953739i \(0.402802\pi\)
−0.976280 + 0.216512i \(0.930532\pi\)
\(642\) 3.68614 12.2255i 0.145480 0.482504i
\(643\) −13.1753 22.8202i −0.519582 0.899942i −0.999741 0.0227606i \(-0.992754\pi\)
0.480159 0.877181i \(-0.340579\pi\)
\(644\) 0.813859 + 1.40965i 0.0320706 + 0.0555478i
\(645\) 59.8397 14.0588i 2.35618 0.553564i
\(646\) 3.43070 5.94215i 0.134979 0.233791i
\(647\) 5.48913 0.215800 0.107900 0.994162i \(-0.465587\pi\)
0.107900 + 0.994162i \(0.465587\pi\)
\(648\) −5.43070 + 7.17687i −0.213338 + 0.281934i
\(649\) 13.8832 0.544962
\(650\) 14.1168 24.4511i 0.553708 0.959051i
\(651\) −3.37228 + 0.792287i −0.132170 + 0.0310522i
\(652\) 9.11684 + 15.7908i 0.357043 + 0.618417i
\(653\) 13.3723 + 23.1615i 0.523298 + 0.906378i 0.999632 + 0.0271143i \(0.00863179\pi\)
−0.476335 + 0.879264i \(0.658035\pi\)
\(654\) −7.00000 + 23.2164i −0.273722 + 0.907832i
\(655\) 3.55842 6.16337i 0.139039 0.240823i
\(656\) 4.62772 0.180682
\(657\) 32.5475 16.1870i 1.26980 0.631514i
\(658\) 0 0
\(659\) 10.3723 17.9653i 0.404047 0.699829i −0.590163 0.807284i \(-0.700937\pi\)
0.994210 + 0.107454i \(0.0342700\pi\)
\(660\) −7.11684 7.57301i −0.277023 0.294779i
\(661\) −13.5584 23.4839i −0.527361 0.913417i −0.999491 0.0318879i \(-0.989848\pi\)
0.472130 0.881529i \(-0.343485\pi\)
\(662\) 11.1168 + 19.2549i 0.432068 + 0.748364i
\(663\) 3.25544 + 3.46410i 0.126431 + 0.134535i
\(664\) 8.74456 15.1460i 0.339355 0.587780i
\(665\) 21.8614 0.847749
\(666\) 0.372281 5.98844i 0.0144256 0.232047i
\(667\) 14.2337 0.551131
\(668\) 2.74456 4.75372i 0.106190 0.183927i
\(669\) −2.00000 + 6.63325i −0.0773245 + 0.256456i
\(670\) −4.62772 8.01544i −0.178784 0.309664i
\(671\) 2.13859 + 3.70415i 0.0825595 + 0.142997i
\(672\) 1.68614 0.396143i 0.0650443 0.0152816i
\(673\) 1.44158 2.49689i 0.0555687 0.0962479i −0.836903 0.547351i \(-0.815636\pi\)
0.892472 + 0.451103i \(0.148969\pi\)
\(674\) 8.11684 0.312649
\(675\) −12.3139 72.3123i −0.473961 2.78330i
\(676\) −9.00000 −0.346154
\(677\) −17.2337 + 29.8496i −0.662344 + 1.14721i 0.317654 + 0.948207i \(0.397105\pi\)
−0.979998 + 0.199007i \(0.936228\pi\)
\(678\) −7.37228 + 1.73205i −0.283131 + 0.0665190i
\(679\) 4.05842 + 7.02939i 0.155748 + 0.269763i
\(680\) 3.00000 + 5.19615i 0.115045 + 0.199263i
\(681\) −6.12772 + 20.3233i −0.234815 + 0.778792i
\(682\) −1.37228 + 2.37686i −0.0525474 + 0.0910147i
\(683\) 29.8397 1.14178 0.570891 0.821026i \(-0.306598\pi\)
0.570891 + 0.821026i \(0.306598\pi\)
\(684\) −12.5000 8.29156i −0.477949 0.317036i
\(685\) 46.4674 1.77543
\(686\) 0.500000 0.866025i 0.0190901 0.0330650i
\(687\) −3.41983 3.63903i −0.130475 0.138838i
\(688\) 4.05842 + 7.02939i 0.154726 + 0.267993i
\(689\) 8.74456 + 15.1460i 0.333141 + 0.577018i
\(690\) 8.44158 + 8.98266i 0.321365 + 0.341964i
\(691\) 11.5584 20.0198i 0.439703 0.761588i −0.557963 0.829866i \(-0.688417\pi\)
0.997666 + 0.0682775i \(0.0217503\pi\)
\(692\) −6.00000 −0.228086
\(693\) 3.43070 + 2.27567i 0.130322 + 0.0864456i
\(694\) 10.1168 0.384030
\(695\) −28.9307 + 50.1094i −1.09740 + 1.90076i
\(696\) 4.37228 14.5012i 0.165731 0.549667i
\(697\) −3.17527 5.49972i −0.120272 0.208317i
\(698\) −11.0000 19.0526i −0.416356 0.721150i
\(699\) 0.430703 0.101190i 0.0162907 0.00382735i
\(700\) −7.05842 + 12.2255i −0.266783 + 0.462082i
\(701\) −38.2337 −1.44407 −0.722033 0.691858i \(-0.756792\pi\)
−0.722033 + 0.691858i \(0.756792\pi\)
\(702\) 8.00000 6.63325i 0.301941 0.250356i
\(703\) 10.0000 0.377157
\(704\) 0.686141 1.18843i 0.0258599 0.0447907i
\(705\) 0 0
\(706\) −6.68614 11.5807i −0.251636 0.435847i
\(707\) −0.813859 1.40965i −0.0306083 0.0530152i
\(708\) −5.05842 + 16.7769i −0.190107 + 0.630514i
\(709\) −22.0000 + 38.1051i −0.826227 + 1.43107i 0.0747503 + 0.997202i \(0.476184\pi\)
−0.900978 + 0.433865i \(0.857149\pi\)
\(710\) 31.1168 1.16779
\(711\) 0.952453 15.3210i 0.0357198 0.574581i
\(712\) −14.7446 −0.552576
\(713\) 1.62772 2.81929i 0.0609585 0.105583i
\(714\) −1.62772 1.73205i −0.0609158 0.0648204i
\(715\) 6.00000 + 10.3923i 0.224387 + 0.388650i
\(716\) −1.62772 2.81929i −0.0608307 0.105362i
\(717\) 11.6970 + 12.4468i 0.436833 + 0.464833i
\(718\) 10.9307 18.9325i 0.407930 0.706556i
\(719\) 2.74456 0.102355 0.0511775 0.998690i \(-0.483703\pi\)
0.0511775 + 0.998690i \(0.483703\pi\)
\(720\) 11.7446 5.84096i 0.437694 0.217680i
\(721\) −10.0000 −0.372419
\(722\) 3.00000 5.19615i 0.111648 0.193381i
\(723\) 9.05842 30.0434i 0.336886 1.11733i
\(724\) −0.441578 0.764836i −0.0164111 0.0284249i
\(725\) 61.7228 + 106.907i 2.29233 + 3.97043i
\(726\) −15.3723 + 3.61158i −0.570519 + 0.134038i
\(727\) 18.1168 31.3793i 0.671917 1.16379i −0.305443 0.952210i \(-0.598805\pi\)
0.977360 0.211583i \(-0.0678620\pi\)
\(728\) −2.00000 −0.0741249
\(729\) 5.00000 26.5330i 0.185185 0.982704i
\(730\) −52.9783 −1.96081
\(731\) 5.56930 9.64630i 0.205988 0.356781i
\(732\) −5.25544 + 1.23472i −0.194247 + 0.0456365i
\(733\) 20.5584 + 35.6082i 0.759343 + 1.31522i 0.943186 + 0.332265i \(0.107813\pi\)
−0.183844 + 0.982956i \(0.558854\pi\)
\(734\) −6.11684 10.5947i −0.225777 0.391057i
\(735\) 2.18614 7.25061i 0.0806370 0.267443i
\(736\) −0.813859 + 1.40965i −0.0299993 + 0.0519602i
\(737\) 2.90491 0.107004
\(738\) −12.4307 + 6.18220i −0.457581 + 0.227570i
\(739\) −8.11684 −0.298583 −0.149291 0.988793i \(-0.547699\pi\)
−0.149291 + 0.988793i \(0.547699\pi\)
\(740\) −4.37228 + 7.57301i −0.160728 + 0.278390i
\(741\) 11.8614 + 12.6217i 0.435740 + 0.463669i
\(742\) −4.37228 7.57301i −0.160511 0.278014i
\(743\) 6.86141 + 11.8843i 0.251721 + 0.435993i 0.964000 0.265904i \(-0.0856703\pi\)
−0.712279 + 0.701896i \(0.752337\pi\)
\(744\) −2.37228 2.52434i −0.0869721 0.0925467i
\(745\) −7.11684 + 12.3267i −0.260741 + 0.451617i
\(746\) 10.0000 0.366126
\(747\) −3.25544 + 52.3663i −0.119110 + 1.91598i
\(748\) −1.88316 −0.0688550
\(749\) 3.68614 6.38458i 0.134689 0.233288i
\(750\) −19.9307 + 66.1027i −0.727766 + 2.41373i
\(751\) 8.55842 + 14.8236i 0.312301 + 0.540922i 0.978860 0.204531i \(-0.0655668\pi\)
−0.666559 + 0.745452i \(0.732234\pi\)
\(752\) 0 0
\(753\) 15.1753 3.56529i 0.553017 0.129926i
\(754\) −8.74456 + 15.1460i −0.318458 + 0.551586i
\(755\) 39.8614 1.45071
\(756\) −4.00000 + 3.31662i −0.145479 + 0.120624i
\(757\) 46.2337 1.68039 0.840196 0.542283i \(-0.182440\pi\)
0.840196 + 0.542283i \(0.182440\pi\)
\(758\) −4.05842 + 7.02939i −0.147409 + 0.255319i
\(759\) −3.76631 + 0.884861i −0.136708 + 0.0321184i
\(760\) 10.9307 + 18.9325i 0.396498 + 0.686755i
\(761\) −17.7446 30.7345i −0.643240 1.11412i −0.984705 0.174230i \(-0.944256\pi\)
0.341465 0.939894i \(-0.389077\pi\)
\(762\) −1.55842 + 5.16870i −0.0564557 + 0.187242i
\(763\) −7.00000 + 12.1244i −0.253417 + 0.438931i
\(764\) −19.1168 −0.691623
\(765\) −15.0000 9.94987i −0.542326 0.359738i
\(766\) 32.7446 1.18311
\(767\) 10.1168 17.5229i 0.365298 0.632715i
\(768\) 1.18614 + 1.26217i 0.0428012 + 0.0455446i
\(769\) 5.00000 + 8.66025i 0.180305 + 0.312297i 0.941984 0.335657i \(-0.108958\pi\)
−0.761680 + 0.647954i \(0.775625\pi\)
\(770\) −3.00000 5.19615i −0.108112 0.187256i
\(771\) −8.13859 8.66025i −0.293104 0.311891i
\(772\) 3.50000 6.06218i 0.125968 0.218183i
\(773\) −39.8614 −1.43372 −0.716858 0.697220i \(-0.754420\pi\)
−0.716858 + 0.697220i \(0.754420\pi\)
\(774\) −20.2921 13.4603i −0.729385 0.483819i