# Properties

 Label 126.2.f.c.85.2 Level $126$ Weight $2$ Character 126.85 Analytic conductor $1.006$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$126 = 2 \cdot 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 126.f (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.00611506547$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\sqrt{-2}, \sqrt{-3})$$ Defining polynomial: $$x^{4} - 2 x^{2} + 4$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 85.2 Root $$1.22474 - 0.707107i$$ of defining polynomial Character $$\chi$$ $$=$$ 126.85 Dual form 126.2.f.c.43.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.500000 - 0.866025i) q^{2} +(1.00000 + 1.41421i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.72474 + 2.98735i) q^{5} +(0.724745 - 1.57313i) q^{6} +(0.500000 + 0.866025i) q^{7} +1.00000 q^{8} +(-1.00000 + 2.82843i) q^{9} +O(q^{10})$$ $$q+(-0.500000 - 0.866025i) q^{2} +(1.00000 + 1.41421i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-1.72474 + 2.98735i) q^{5} +(0.724745 - 1.57313i) q^{6} +(0.500000 + 0.866025i) q^{7} +1.00000 q^{8} +(-1.00000 + 2.82843i) q^{9} +3.44949 q^{10} +(-1.00000 - 1.73205i) q^{11} +(-1.72474 + 0.158919i) q^{12} +(2.44949 - 4.24264i) q^{13} +(0.500000 - 0.866025i) q^{14} +(-5.94949 + 0.548188i) q^{15} +(-0.500000 - 0.866025i) q^{16} +2.00000 q^{17} +(2.94949 - 0.548188i) q^{18} +7.44949 q^{19} +(-1.72474 - 2.98735i) q^{20} +(-0.724745 + 1.57313i) q^{21} +(-1.00000 + 1.73205i) q^{22} +(0.500000 - 0.866025i) q^{23} +(1.00000 + 1.41421i) q^{24} +(-3.44949 - 5.97469i) q^{25} -4.89898 q^{26} +(-5.00000 + 1.41421i) q^{27} -1.00000 q^{28} +(-1.44949 - 2.51059i) q^{29} +(3.44949 + 4.87832i) q^{30} +(-3.00000 + 5.19615i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(1.44949 - 3.14626i) q^{33} +(-1.00000 - 1.73205i) q^{34} -3.44949 q^{35} +(-1.94949 - 2.28024i) q^{36} -7.79796 q^{37} +(-3.72474 - 6.45145i) q^{38} +(8.44949 - 0.778539i) q^{39} +(-1.72474 + 2.98735i) q^{40} +(4.89898 - 8.48528i) q^{41} +(1.72474 - 0.158919i) q^{42} +(1.44949 + 2.51059i) q^{43} +2.00000 q^{44} +(-6.72474 - 7.86566i) q^{45} -1.00000 q^{46} +(4.89898 + 8.48528i) q^{47} +(0.724745 - 1.57313i) q^{48} +(-0.500000 + 0.866025i) q^{49} +(-3.44949 + 5.97469i) q^{50} +(2.00000 + 2.82843i) q^{51} +(2.44949 + 4.24264i) q^{52} -1.10102 q^{53} +(3.72474 + 3.62302i) q^{54} +6.89898 q^{55} +(0.500000 + 0.866025i) q^{56} +(7.44949 + 10.5352i) q^{57} +(-1.44949 + 2.51059i) q^{58} +(1.00000 - 1.73205i) q^{59} +(2.50000 - 5.42650i) q^{60} +(-5.72474 - 9.91555i) q^{61} +6.00000 q^{62} +(-2.94949 + 0.548188i) q^{63} +1.00000 q^{64} +(8.44949 + 14.6349i) q^{65} +(-3.44949 + 0.317837i) q^{66} +(1.55051 - 2.68556i) q^{67} +(-1.00000 + 1.73205i) q^{68} +(1.72474 - 0.158919i) q^{69} +(1.72474 + 2.98735i) q^{70} +9.89898 q^{71} +(-1.00000 + 2.82843i) q^{72} +2.89898 q^{73} +(3.89898 + 6.75323i) q^{74} +(5.00000 - 10.8530i) q^{75} +(-3.72474 + 6.45145i) q^{76} +(1.00000 - 1.73205i) q^{77} +(-4.89898 - 6.92820i) q^{78} +(-3.94949 - 6.84072i) q^{79} +3.44949 q^{80} +(-7.00000 - 5.65685i) q^{81} -9.79796 q^{82} +(-1.00000 - 1.73205i) q^{83} +(-1.00000 - 1.41421i) q^{84} +(-3.44949 + 5.97469i) q^{85} +(1.44949 - 2.51059i) q^{86} +(2.10102 - 4.56048i) q^{87} +(-1.00000 - 1.73205i) q^{88} -7.10102 q^{89} +(-3.44949 + 9.75663i) q^{90} +4.89898 q^{91} +(0.500000 + 0.866025i) q^{92} +(-10.3485 + 0.953512i) q^{93} +(4.89898 - 8.48528i) q^{94} +(-12.8485 + 22.2542i) q^{95} +(-1.72474 + 0.158919i) q^{96} +(3.44949 + 5.97469i) q^{97} +1.00000 q^{98} +(5.89898 - 1.09638i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - 2q^{2} + 4q^{3} - 2q^{4} - 2q^{5} - 2q^{6} + 2q^{7} + 4q^{8} - 4q^{9} + O(q^{10})$$ $$4q - 2q^{2} + 4q^{3} - 2q^{4} - 2q^{5} - 2q^{6} + 2q^{7} + 4q^{8} - 4q^{9} + 4q^{10} - 4q^{11} - 2q^{12} + 2q^{14} - 14q^{15} - 2q^{16} + 8q^{17} + 2q^{18} + 20q^{19} - 2q^{20} + 2q^{21} - 4q^{22} + 2q^{23} + 4q^{24} - 4q^{25} - 20q^{27} - 4q^{28} + 4q^{29} + 4q^{30} - 12q^{31} - 2q^{32} - 4q^{33} - 4q^{34} - 4q^{35} + 2q^{36} + 8q^{37} - 10q^{38} + 24q^{39} - 2q^{40} + 2q^{42} - 4q^{43} + 8q^{44} - 22q^{45} - 4q^{46} - 2q^{48} - 2q^{49} - 4q^{50} + 8q^{51} - 24q^{53} + 10q^{54} + 8q^{55} + 2q^{56} + 20q^{57} + 4q^{58} + 4q^{59} + 10q^{60} - 18q^{61} + 24q^{62} - 2q^{63} + 4q^{64} + 24q^{65} - 4q^{66} + 16q^{67} - 4q^{68} + 2q^{69} + 2q^{70} + 20q^{71} - 4q^{72} - 8q^{73} - 4q^{74} + 20q^{75} - 10q^{76} + 4q^{77} - 6q^{79} + 4q^{80} - 28q^{81} - 4q^{83} - 4q^{84} - 4q^{85} - 4q^{86} + 28q^{87} - 4q^{88} - 48q^{89} - 4q^{90} + 2q^{92} - 12q^{93} - 22q^{95} - 2q^{96} + 4q^{97} + 4q^{98} + 4q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/126\mathbb{Z}\right)^\times$$.

 $$n$$ $$29$$ $$73$$ $$\chi(n)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.500000 0.866025i −0.353553 0.612372i
$$3$$ 1.00000 + 1.41421i 0.577350 + 0.816497i
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ −1.72474 + 2.98735i −0.771329 + 1.33598i 0.165505 + 0.986209i $$0.447075\pi$$
−0.936835 + 0.349773i $$0.886259\pi$$
$$6$$ 0.724745 1.57313i 0.295876 0.642229i
$$7$$ 0.500000 + 0.866025i 0.188982 + 0.327327i
$$8$$ 1.00000 0.353553
$$9$$ −1.00000 + 2.82843i −0.333333 + 0.942809i
$$10$$ 3.44949 1.09082
$$11$$ −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i $$-0.264158\pi$$
−0.976478 + 0.215615i $$0.930824\pi$$
$$12$$ −1.72474 + 0.158919i −0.497891 + 0.0458759i
$$13$$ 2.44949 4.24264i 0.679366 1.17670i −0.295806 0.955248i $$-0.595588\pi$$
0.975172 0.221449i $$-0.0710785\pi$$
$$14$$ 0.500000 0.866025i 0.133631 0.231455i
$$15$$ −5.94949 + 0.548188i −1.53615 + 0.141542i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ 2.00000 0.485071 0.242536 0.970143i $$-0.422021\pi$$
0.242536 + 0.970143i $$0.422021\pi$$
$$18$$ 2.94949 0.548188i 0.695201 0.129209i
$$19$$ 7.44949 1.70903 0.854515 0.519427i $$-0.173854\pi$$
0.854515 + 0.519427i $$0.173854\pi$$
$$20$$ −1.72474 2.98735i −0.385665 0.667991i
$$21$$ −0.724745 + 1.57313i −0.158152 + 0.343286i
$$22$$ −1.00000 + 1.73205i −0.213201 + 0.369274i
$$23$$ 0.500000 0.866025i 0.104257 0.180579i −0.809177 0.587565i $$-0.800087\pi$$
0.913434 + 0.406986i $$0.133420\pi$$
$$24$$ 1.00000 + 1.41421i 0.204124 + 0.288675i
$$25$$ −3.44949 5.97469i −0.689898 1.19494i
$$26$$ −4.89898 −0.960769
$$27$$ −5.00000 + 1.41421i −0.962250 + 0.272166i
$$28$$ −1.00000 −0.188982
$$29$$ −1.44949 2.51059i −0.269163 0.466205i 0.699483 0.714650i $$-0.253414\pi$$
−0.968646 + 0.248445i $$0.920081\pi$$
$$30$$ 3.44949 + 4.87832i 0.629788 + 0.890654i
$$31$$ −3.00000 + 5.19615i −0.538816 + 0.933257i 0.460152 + 0.887840i $$0.347795\pi$$
−0.998968 + 0.0454165i $$0.985539\pi$$
$$32$$ −0.500000 + 0.866025i −0.0883883 + 0.153093i
$$33$$ 1.44949 3.14626i 0.252324 0.547694i
$$34$$ −1.00000 1.73205i −0.171499 0.297044i
$$35$$ −3.44949 −0.583070
$$36$$ −1.94949 2.28024i −0.324915 0.380040i
$$37$$ −7.79796 −1.28198 −0.640988 0.767551i $$-0.721475\pi$$
−0.640988 + 0.767551i $$0.721475\pi$$
$$38$$ −3.72474 6.45145i −0.604233 1.04656i
$$39$$ 8.44949 0.778539i 1.35300 0.124666i
$$40$$ −1.72474 + 2.98735i −0.272706 + 0.472341i
$$41$$ 4.89898 8.48528i 0.765092 1.32518i −0.175106 0.984550i $$-0.556027\pi$$
0.940198 0.340629i $$-0.110640\pi$$
$$42$$ 1.72474 0.158919i 0.266134 0.0245217i
$$43$$ 1.44949 + 2.51059i 0.221045 + 0.382861i 0.955126 0.296201i $$-0.0957199\pi$$
−0.734080 + 0.679062i $$0.762387\pi$$
$$44$$ 2.00000 0.301511
$$45$$ −6.72474 7.86566i −1.00247 1.17254i
$$46$$ −1.00000 −0.147442
$$47$$ 4.89898 + 8.48528i 0.714590 + 1.23771i 0.963118 + 0.269081i $$0.0867199\pi$$
−0.248528 + 0.968625i $$0.579947\pi$$
$$48$$ 0.724745 1.57313i 0.104608 0.227062i
$$49$$ −0.500000 + 0.866025i −0.0714286 + 0.123718i
$$50$$ −3.44949 + 5.97469i −0.487832 + 0.844949i
$$51$$ 2.00000 + 2.82843i 0.280056 + 0.396059i
$$52$$ 2.44949 + 4.24264i 0.339683 + 0.588348i
$$53$$ −1.10102 −0.151237 −0.0756184 0.997137i $$-0.524093\pi$$
−0.0756184 + 0.997137i $$0.524093\pi$$
$$54$$ 3.72474 + 3.62302i 0.506874 + 0.493031i
$$55$$ 6.89898 0.930258
$$56$$ 0.500000 + 0.866025i 0.0668153 + 0.115728i
$$57$$ 7.44949 + 10.5352i 0.986709 + 1.39542i
$$58$$ −1.44949 + 2.51059i −0.190327 + 0.329657i
$$59$$ 1.00000 1.73205i 0.130189 0.225494i −0.793560 0.608492i $$-0.791775\pi$$
0.923749 + 0.382998i $$0.125108\pi$$
$$60$$ 2.50000 5.42650i 0.322749 0.700559i
$$61$$ −5.72474 9.91555i −0.732978 1.26956i −0.955605 0.294652i $$-0.904796\pi$$
0.222626 0.974904i $$-0.428537\pi$$
$$62$$ 6.00000 0.762001
$$63$$ −2.94949 + 0.548188i −0.371601 + 0.0690652i
$$64$$ 1.00000 0.125000
$$65$$ 8.44949 + 14.6349i 1.04803 + 1.81524i
$$66$$ −3.44949 + 0.317837i −0.424603 + 0.0391231i
$$67$$ 1.55051 2.68556i 0.189425 0.328094i −0.755634 0.654994i $$-0.772671\pi$$
0.945059 + 0.326901i $$0.106004\pi$$
$$68$$ −1.00000 + 1.73205i −0.121268 + 0.210042i
$$69$$ 1.72474 0.158919i 0.207635 0.0191316i
$$70$$ 1.72474 + 2.98735i 0.206146 + 0.357056i
$$71$$ 9.89898 1.17479 0.587396 0.809299i $$-0.300153\pi$$
0.587396 + 0.809299i $$0.300153\pi$$
$$72$$ −1.00000 + 2.82843i −0.117851 + 0.333333i
$$73$$ 2.89898 0.339300 0.169650 0.985504i $$-0.445736\pi$$
0.169650 + 0.985504i $$0.445736\pi$$
$$74$$ 3.89898 + 6.75323i 0.453247 + 0.785047i
$$75$$ 5.00000 10.8530i 0.577350 1.25320i
$$76$$ −3.72474 + 6.45145i −0.427258 + 0.740032i
$$77$$ 1.00000 1.73205i 0.113961 0.197386i
$$78$$ −4.89898 6.92820i −0.554700 0.784465i
$$79$$ −3.94949 6.84072i −0.444352 0.769641i 0.553655 0.832746i $$-0.313233\pi$$
−0.998007 + 0.0631057i $$0.979899\pi$$
$$80$$ 3.44949 0.385665
$$81$$ −7.00000 5.65685i −0.777778 0.628539i
$$82$$ −9.79796 −1.08200
$$83$$ −1.00000 1.73205i −0.109764 0.190117i 0.805910 0.592037i $$-0.201676\pi$$
−0.915675 + 0.401920i $$0.868343\pi$$
$$84$$ −1.00000 1.41421i −0.109109 0.154303i
$$85$$ −3.44949 + 5.97469i −0.374150 + 0.648046i
$$86$$ 1.44949 2.51059i 0.156302 0.270724i
$$87$$ 2.10102 4.56048i 0.225253 0.488935i
$$88$$ −1.00000 1.73205i −0.106600 0.184637i
$$89$$ −7.10102 −0.752707 −0.376353 0.926476i $$-0.622822\pi$$
−0.376353 + 0.926476i $$0.622822\pi$$
$$90$$ −3.44949 + 9.75663i −0.363608 + 1.02844i
$$91$$ 4.89898 0.513553
$$92$$ 0.500000 + 0.866025i 0.0521286 + 0.0902894i
$$93$$ −10.3485 + 0.953512i −1.07309 + 0.0988746i
$$94$$ 4.89898 8.48528i 0.505291 0.875190i
$$95$$ −12.8485 + 22.2542i −1.31823 + 2.28323i
$$96$$ −1.72474 + 0.158919i −0.176031 + 0.0162196i
$$97$$ 3.44949 + 5.97469i 0.350243 + 0.606638i 0.986292 0.165011i $$-0.0527658\pi$$
−0.636049 + 0.771649i $$0.719432\pi$$
$$98$$ 1.00000 0.101015
$$99$$ 5.89898 1.09638i 0.592870 0.110190i
$$100$$ 6.89898 0.689898
$$101$$ −3.62372 6.27647i −0.360574 0.624533i 0.627481 0.778632i $$-0.284086\pi$$
−0.988055 + 0.154099i $$0.950753\pi$$
$$102$$ 1.44949 3.14626i 0.143521 0.311527i
$$103$$ −7.00000 + 12.1244i −0.689730 + 1.19465i 0.282194 + 0.959357i $$0.408938\pi$$
−0.971925 + 0.235291i $$0.924396\pi$$
$$104$$ 2.44949 4.24264i 0.240192 0.416025i
$$105$$ −3.44949 4.87832i −0.336636 0.476075i
$$106$$ 0.550510 + 0.953512i 0.0534703 + 0.0926132i
$$107$$ −12.0000 −1.16008 −0.580042 0.814587i $$-0.696964\pi$$
−0.580042 + 0.814587i $$0.696964\pi$$
$$108$$ 1.27526 5.03723i 0.122711 0.484708i
$$109$$ −16.6969 −1.59928 −0.799638 0.600482i $$-0.794975\pi$$
−0.799638 + 0.600482i $$0.794975\pi$$
$$110$$ −3.44949 5.97469i −0.328896 0.569664i
$$111$$ −7.79796 11.0280i −0.740150 1.04673i
$$112$$ 0.500000 0.866025i 0.0472456 0.0818317i
$$113$$ 7.94949 13.7689i 0.747825 1.29527i −0.201038 0.979583i $$-0.564431\pi$$
0.948863 0.315688i $$-0.102235\pi$$
$$114$$ 5.39898 11.7190i 0.505661 1.09759i
$$115$$ 1.72474 + 2.98735i 0.160833 + 0.278571i
$$116$$ 2.89898 0.269163
$$117$$ 9.55051 + 11.1708i 0.882945 + 1.03274i
$$118$$ −2.00000 −0.184115
$$119$$ 1.00000 + 1.73205i 0.0916698 + 0.158777i
$$120$$ −5.94949 + 0.548188i −0.543112 + 0.0500425i
$$121$$ 3.50000 6.06218i 0.318182 0.551107i
$$122$$ −5.72474 + 9.91555i −0.518294 + 0.897712i
$$123$$ 16.8990 1.55708i 1.52373 0.140397i
$$124$$ −3.00000 5.19615i −0.269408 0.466628i
$$125$$ 6.55051 0.585895
$$126$$ 1.94949 + 2.28024i 0.173674 + 0.203140i
$$127$$ −3.00000 −0.266207 −0.133103 0.991102i $$-0.542494\pi$$
−0.133103 + 0.991102i $$0.542494\pi$$
$$128$$ −0.500000 0.866025i −0.0441942 0.0765466i
$$129$$ −2.10102 + 4.56048i −0.184985 + 0.401528i
$$130$$ 8.44949 14.6349i 0.741069 1.28357i
$$131$$ 6.72474 11.6476i 0.587544 1.01766i −0.407009 0.913424i $$-0.633428\pi$$
0.994553 0.104232i $$-0.0332383\pi$$
$$132$$ 2.00000 + 2.82843i 0.174078 + 0.246183i
$$133$$ 3.72474 + 6.45145i 0.322976 + 0.559411i
$$134$$ −3.10102 −0.267887
$$135$$ 4.39898 17.3759i 0.378604 1.49548i
$$136$$ 2.00000 0.171499
$$137$$ 5.89898 + 10.2173i 0.503984 + 0.872926i 0.999989 + 0.00460626i $$0.00146622\pi$$
−0.496006 + 0.868319i $$0.665200\pi$$
$$138$$ −1.00000 1.41421i −0.0851257 0.120386i
$$139$$ −4.72474 + 8.18350i −0.400748 + 0.694115i −0.993816 0.111037i $$-0.964583\pi$$
0.593069 + 0.805152i $$0.297916\pi$$
$$140$$ 1.72474 2.98735i 0.145768 0.252477i
$$141$$ −7.10102 + 15.4135i −0.598014 + 1.29805i
$$142$$ −4.94949 8.57277i −0.415352 0.719411i
$$143$$ −9.79796 −0.819346
$$144$$ 2.94949 0.548188i 0.245791 0.0456823i
$$145$$ 10.0000 0.830455
$$146$$ −1.44949 2.51059i −0.119961 0.207778i
$$147$$ −1.72474 + 0.158919i −0.142255 + 0.0131074i
$$148$$ 3.89898 6.75323i 0.320494 0.555112i
$$149$$ 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i $$-0.754293\pi$$
0.962348 + 0.271821i $$0.0876260\pi$$
$$150$$ −11.8990 + 1.09638i −0.971548 + 0.0895188i
$$151$$ 2.50000 + 4.33013i 0.203447 + 0.352381i 0.949637 0.313353i $$-0.101452\pi$$
−0.746190 + 0.665733i $$0.768119\pi$$
$$152$$ 7.44949 0.604233
$$153$$ −2.00000 + 5.65685i −0.161690 + 0.457330i
$$154$$ −2.00000 −0.161165
$$155$$ −10.3485 17.9241i −0.831209 1.43970i
$$156$$ −3.55051 + 7.70674i −0.284268 + 0.617033i
$$157$$ −3.17423 + 5.49794i −0.253332 + 0.438783i −0.964441 0.264298i $$-0.914860\pi$$
0.711109 + 0.703081i $$0.248193\pi$$
$$158$$ −3.94949 + 6.84072i −0.314205 + 0.544218i
$$159$$ −1.10102 1.55708i −0.0873166 0.123484i
$$160$$ −1.72474 2.98735i −0.136353 0.236170i
$$161$$ 1.00000 0.0788110
$$162$$ −1.39898 + 8.89060i −0.109914 + 0.698512i
$$163$$ −0.202041 −0.0158251 −0.00791254 0.999969i $$-0.502519\pi$$
−0.00791254 + 0.999969i $$0.502519\pi$$
$$164$$ 4.89898 + 8.48528i 0.382546 + 0.662589i
$$165$$ 6.89898 + 9.75663i 0.537085 + 0.759553i
$$166$$ −1.00000 + 1.73205i −0.0776151 + 0.134433i
$$167$$ −9.34847 + 16.1920i −0.723406 + 1.25298i 0.236220 + 0.971700i $$0.424091\pi$$
−0.959627 + 0.281277i $$0.909242\pi$$
$$168$$ −0.724745 + 1.57313i −0.0559153 + 0.121370i
$$169$$ −5.50000 9.52628i −0.423077 0.732791i
$$170$$ 6.89898 0.529128
$$171$$ −7.44949 + 21.0703i −0.569677 + 1.61129i
$$172$$ −2.89898 −0.221045
$$173$$ 6.44949 + 11.1708i 0.490346 + 0.849304i 0.999938 0.0111123i $$-0.00353722\pi$$
−0.509593 + 0.860416i $$0.670204\pi$$
$$174$$ −5.00000 + 0.460702i −0.379049 + 0.0349257i
$$175$$ 3.44949 5.97469i 0.260757 0.451644i
$$176$$ −1.00000 + 1.73205i −0.0753778 + 0.130558i
$$177$$ 3.44949 0.317837i 0.259280 0.0238901i
$$178$$ 3.55051 + 6.14966i 0.266122 + 0.460937i
$$179$$ −8.69694 −0.650040 −0.325020 0.945707i $$-0.605371\pi$$
−0.325020 + 0.945707i $$0.605371\pi$$
$$180$$ 10.1742 1.89097i 0.758343 0.140945i
$$181$$ 4.34847 0.323219 0.161610 0.986855i $$-0.448331\pi$$
0.161610 + 0.986855i $$0.448331\pi$$
$$182$$ −2.44949 4.24264i −0.181568 0.314485i
$$183$$ 8.29796 18.0116i 0.613403 1.33145i
$$184$$ 0.500000 0.866025i 0.0368605 0.0638442i
$$185$$ 13.4495 23.2952i 0.988826 1.71270i
$$186$$ 6.00000 + 8.48528i 0.439941 + 0.622171i
$$187$$ −2.00000 3.46410i −0.146254 0.253320i
$$188$$ −9.79796 −0.714590
$$189$$ −3.72474 3.62302i −0.270935 0.263536i
$$190$$ 25.6969 1.86425
$$191$$ −6.94949 12.0369i −0.502847 0.870957i −0.999995 0.00329106i $$-0.998952\pi$$
0.497147 0.867666i $$-0.334381\pi$$
$$192$$ 1.00000 + 1.41421i 0.0721688 + 0.102062i
$$193$$ 4.05051 7.01569i 0.291562 0.505000i −0.682617 0.730776i $$-0.739158\pi$$
0.974179 + 0.225776i $$0.0724917\pi$$
$$194$$ 3.44949 5.97469i 0.247659 0.428958i
$$195$$ −12.2474 + 26.5843i −0.877058 + 1.90374i
$$196$$ −0.500000 0.866025i −0.0357143 0.0618590i
$$197$$ −12.6969 −0.904619 −0.452310 0.891861i $$-0.649400\pi$$
−0.452310 + 0.891861i $$0.649400\pi$$
$$198$$ −3.89898 4.56048i −0.277088 0.324099i
$$199$$ 6.89898 0.489056 0.244528 0.969642i $$-0.421367\pi$$
0.244528 + 0.969642i $$0.421367\pi$$
$$200$$ −3.44949 5.97469i −0.243916 0.422474i
$$201$$ 5.34847 0.492810i 0.377252 0.0347601i
$$202$$ −3.62372 + 6.27647i −0.254964 + 0.441611i
$$203$$ 1.44949 2.51059i 0.101734 0.176209i
$$204$$ −3.44949 + 0.317837i −0.241513 + 0.0222531i
$$205$$ 16.8990 + 29.2699i 1.18028 + 2.04430i
$$206$$ 14.0000 0.975426
$$207$$ 1.94949 + 2.28024i 0.135499 + 0.158488i
$$208$$ −4.89898 −0.339683
$$209$$ −7.44949 12.9029i −0.515292 0.892512i
$$210$$ −2.50000 + 5.42650i −0.172516 + 0.374464i
$$211$$ −1.55051 + 2.68556i −0.106742 + 0.184882i −0.914448 0.404703i $$-0.867375\pi$$
0.807707 + 0.589584i $$0.200708\pi$$
$$212$$ 0.550510 0.953512i 0.0378092 0.0654875i
$$213$$ 9.89898 + 13.9993i 0.678267 + 0.959214i
$$214$$ 6.00000 + 10.3923i 0.410152 + 0.710403i
$$215$$ −10.0000 −0.681994
$$216$$ −5.00000 + 1.41421i −0.340207 + 0.0962250i
$$217$$ −6.00000 −0.407307
$$218$$ 8.34847 + 14.4600i 0.565430 + 0.979353i
$$219$$ 2.89898 + 4.09978i 0.195895 + 0.277037i
$$220$$ −3.44949 + 5.97469i −0.232565 + 0.402814i
$$221$$ 4.89898 8.48528i 0.329541 0.570782i
$$222$$ −5.65153 + 12.2672i −0.379306 + 0.823322i
$$223$$ 10.4495 + 18.0990i 0.699750 + 1.21200i 0.968553 + 0.248807i $$0.0800384\pi$$
−0.268804 + 0.963195i $$0.586628\pi$$
$$224$$ −1.00000 −0.0668153
$$225$$ 20.3485 3.78194i 1.35656 0.252129i
$$226$$ −15.8990 −1.05758
$$227$$ 0.275255 + 0.476756i 0.0182693 + 0.0316434i 0.875016 0.484095i $$-0.160851\pi$$
−0.856746 + 0.515738i $$0.827518\pi$$
$$228$$ −12.8485 + 1.18386i −0.850911 + 0.0784032i
$$229$$ 11.6237 20.1329i 0.768117 1.33042i −0.170465 0.985364i $$-0.554527\pi$$
0.938583 0.345055i $$-0.112140\pi$$
$$230$$ 1.72474 2.98735i 0.113726 0.196980i
$$231$$ 3.44949 0.317837i 0.226960 0.0209122i
$$232$$ −1.44949 2.51059i −0.0951637 0.164828i
$$233$$ −7.00000 −0.458585 −0.229293 0.973358i $$-0.573641\pi$$
−0.229293 + 0.973358i $$0.573641\pi$$
$$234$$ 4.89898 13.8564i 0.320256 0.905822i
$$235$$ −33.7980 −2.20474
$$236$$ 1.00000 + 1.73205i 0.0650945 + 0.112747i
$$237$$ 5.72474 12.4261i 0.371862 0.807164i
$$238$$ 1.00000 1.73205i 0.0648204 0.112272i
$$239$$ 6.39898 11.0834i 0.413916 0.716923i −0.581398 0.813619i $$-0.697494\pi$$
0.995314 + 0.0966962i $$0.0308275\pi$$
$$240$$ 3.44949 + 4.87832i 0.222664 + 0.314894i
$$241$$ 4.44949 + 7.70674i 0.286617 + 0.496435i 0.973000 0.230805i $$-0.0741360\pi$$
−0.686383 + 0.727240i $$0.740803\pi$$
$$242$$ −7.00000 −0.449977
$$243$$ 1.00000 15.5563i 0.0641500 0.997940i
$$244$$ 11.4495 0.732978
$$245$$ −1.72474 2.98735i −0.110190 0.190855i
$$246$$ −9.79796 13.8564i −0.624695 0.883452i
$$247$$ 18.2474 31.6055i 1.16106 2.01101i
$$248$$ −3.00000 + 5.19615i −0.190500 + 0.329956i
$$249$$ 1.44949 3.14626i 0.0918577 0.199386i
$$250$$ −3.27526 5.67291i −0.207145 0.358786i
$$251$$ 12.5505 0.792181 0.396091 0.918211i $$-0.370367\pi$$
0.396091 + 0.918211i $$0.370367\pi$$
$$252$$ 1.00000 2.82843i 0.0629941 0.178174i
$$253$$ −2.00000 −0.125739
$$254$$ 1.50000 + 2.59808i 0.0941184 + 0.163018i
$$255$$ −11.8990 + 1.09638i −0.745143 + 0.0686577i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ −13.8990 + 24.0737i −0.866995 + 1.50168i −0.00194150 + 0.999998i $$0.500618\pi$$
−0.865053 + 0.501680i $$0.832715\pi$$
$$258$$ 5.00000 0.460702i 0.311286 0.0286820i
$$259$$ −3.89898 6.75323i −0.242271 0.419625i
$$260$$ −16.8990 −1.04803
$$261$$ 8.55051 1.58919i 0.529263 0.0983682i
$$262$$ −13.4495 −0.830912
$$263$$ −8.05051 13.9439i −0.496416 0.859817i 0.503576 0.863951i $$-0.332017\pi$$
−0.999991 + 0.00413383i $$0.998684\pi$$
$$264$$ 1.44949 3.14626i 0.0892099 0.193639i
$$265$$ 1.89898 3.28913i 0.116653 0.202050i
$$266$$ 3.72474 6.45145i 0.228379 0.395564i
$$267$$ −7.10102 10.0424i −0.434575 0.614582i
$$268$$ 1.55051 + 2.68556i 0.0947125 + 0.164047i
$$269$$ −3.65153 −0.222638 −0.111319 0.993785i $$-0.535507\pi$$
−0.111319 + 0.993785i $$0.535507\pi$$
$$270$$ −17.2474 + 4.87832i −1.04965 + 0.296885i
$$271$$ 16.8990 1.02654 0.513270 0.858227i $$-0.328434\pi$$
0.513270 + 0.858227i $$0.328434\pi$$
$$272$$ −1.00000 1.73205i −0.0606339 0.105021i
$$273$$ 4.89898 + 6.92820i 0.296500 + 0.419314i
$$274$$ 5.89898 10.2173i 0.356370 0.617252i
$$275$$ −6.89898 + 11.9494i −0.416024 + 0.720575i
$$276$$ −0.724745 + 1.57313i −0.0436245 + 0.0946914i
$$277$$ −5.34847 9.26382i −0.321358 0.556609i 0.659410 0.751783i $$-0.270806\pi$$
−0.980769 + 0.195174i $$0.937473\pi$$
$$278$$ 9.44949 0.566743
$$279$$ −11.6969 13.6814i −0.700277 0.819086i
$$280$$ −3.44949 −0.206146
$$281$$ 9.50000 + 16.4545i 0.566722 + 0.981592i 0.996887 + 0.0788417i $$0.0251222\pi$$
−0.430165 + 0.902750i $$0.641545\pi$$
$$282$$ 16.8990 1.55708i 1.00632 0.0927227i
$$283$$ 10.2753 17.7973i 0.610801 1.05794i −0.380305 0.924861i $$-0.624181\pi$$
0.991106 0.133077i $$-0.0424856\pi$$
$$284$$ −4.94949 + 8.57277i −0.293698 + 0.508700i
$$285$$ −44.3207 + 4.08372i −2.62533 + 0.241899i
$$286$$ 4.89898 + 8.48528i 0.289683 + 0.501745i
$$287$$ 9.79796 0.578355
$$288$$ −1.94949 2.28024i −0.114875 0.134364i
$$289$$ −13.0000 −0.764706
$$290$$ −5.00000 8.66025i −0.293610 0.508548i
$$291$$ −5.00000 + 10.8530i −0.293105 + 0.636215i
$$292$$ −1.44949 + 2.51059i −0.0848250 + 0.146921i
$$293$$ −13.6237 + 23.5970i −0.795906 + 1.37855i 0.126356 + 0.991985i $$0.459672\pi$$
−0.922262 + 0.386565i $$0.873661\pi$$
$$294$$ 1.00000 + 1.41421i 0.0583212 + 0.0824786i
$$295$$ 3.44949 + 5.97469i 0.200837 + 0.347860i
$$296$$ −7.79796 −0.453247
$$297$$ 7.44949 + 7.24604i 0.432263 + 0.420458i
$$298$$ −6.00000 −0.347571
$$299$$ −2.44949 4.24264i −0.141658 0.245358i
$$300$$ 6.89898 + 9.75663i 0.398313 + 0.563299i
$$301$$ −1.44949 + 2.51059i −0.0835472 + 0.144708i
$$302$$ 2.50000 4.33013i 0.143859 0.249171i
$$303$$ 5.25255 11.4012i 0.301751 0.654982i
$$304$$ −3.72474 6.45145i −0.213629 0.370016i
$$305$$ 39.4949 2.26147
$$306$$ 5.89898 1.09638i 0.337222 0.0626757i
$$307$$ 0.752551 0.0429504 0.0214752 0.999769i $$-0.493164\pi$$
0.0214752 + 0.999769i $$0.493164\pi$$
$$308$$ 1.00000 + 1.73205i 0.0569803 + 0.0986928i
$$309$$ −24.1464 + 2.22486i −1.37364 + 0.126568i
$$310$$ −10.3485 + 17.9241i −0.587754 + 1.01802i
$$311$$ −0.651531 + 1.12848i −0.0369449 + 0.0639905i −0.883907 0.467663i $$-0.845096\pi$$
0.846962 + 0.531654i $$0.178429\pi$$
$$312$$ 8.44949 0.778539i 0.478358 0.0440761i
$$313$$ −12.3485 21.3882i −0.697977 1.20893i −0.969167 0.246405i $$-0.920751\pi$$
0.271190 0.962526i $$-0.412583\pi$$
$$314$$ 6.34847 0.358265
$$315$$ 3.44949 9.75663i 0.194357 0.549724i
$$316$$ 7.89898 0.444352
$$317$$ 4.34847 + 7.53177i 0.244234 + 0.423026i 0.961916 0.273345i $$-0.0881300\pi$$
−0.717682 + 0.696371i $$0.754797\pi$$
$$318$$ −0.797959 + 1.73205i −0.0447473 + 0.0971286i
$$319$$ −2.89898 + 5.02118i −0.162312 + 0.281132i
$$320$$ −1.72474 + 2.98735i −0.0964162 + 0.166998i
$$321$$ −12.0000 16.9706i −0.669775 0.947204i
$$322$$ −0.500000 0.866025i −0.0278639 0.0482617i
$$323$$ 14.8990 0.829001
$$324$$ 8.39898 3.23375i 0.466610 0.179653i
$$325$$ −33.7980 −1.87477
$$326$$ 0.101021 + 0.174973i 0.00559501 + 0.00969084i
$$327$$ −16.6969 23.6130i −0.923343 1.30580i
$$328$$ 4.89898 8.48528i 0.270501 0.468521i
$$329$$ −4.89898 + 8.48528i −0.270089 + 0.467809i
$$330$$ 5.00000 10.8530i 0.275241 0.597438i
$$331$$ 12.3485 + 21.3882i 0.678733 + 1.17560i 0.975363 + 0.220608i $$0.0708041\pi$$
−0.296629 + 0.954993i $$0.595863\pi$$
$$332$$ 2.00000 0.109764
$$333$$ 7.79796 22.0560i 0.427326 1.20866i
$$334$$ 18.6969 1.02305
$$335$$ 5.34847 + 9.26382i 0.292218 + 0.506137i
$$336$$ 1.72474 0.158919i 0.0940925 0.00866972i
$$337$$ −17.6969 + 30.6520i −0.964014 + 1.66972i −0.251772 + 0.967787i $$0.581013\pi$$
−0.712242 + 0.701934i $$0.752320\pi$$
$$338$$ −5.50000 + 9.52628i −0.299161 + 0.518161i
$$339$$ 27.4217 2.52664i 1.48934 0.137228i
$$340$$ −3.44949 5.97469i −0.187075 0.324023i
$$341$$ 12.0000 0.649836
$$342$$ 21.9722 4.08372i 1.18812 0.220822i
$$343$$ −1.00000 −0.0539949
$$344$$ 1.44949 + 2.51059i 0.0781512 + 0.135362i
$$345$$ −2.50000 + 5.42650i −0.134595 + 0.292153i
$$346$$ 6.44949 11.1708i 0.346727 0.600548i
$$347$$ 9.79796 16.9706i 0.525982 0.911028i −0.473560 0.880762i $$-0.657031\pi$$
0.999542 0.0302659i $$-0.00963541\pi$$
$$348$$ 2.89898 + 4.09978i 0.155402 + 0.219771i
$$349$$ −10.4495 18.0990i −0.559348 0.968820i −0.997551 0.0699435i $$-0.977718\pi$$
0.438203 0.898876i $$-0.355615\pi$$
$$350$$ −6.89898 −0.368766
$$351$$ −6.24745 + 24.6773i −0.333464 + 1.31718i
$$352$$ 2.00000 0.106600
$$353$$ 3.00000 + 5.19615i 0.159674 + 0.276563i 0.934751 0.355303i $$-0.115622\pi$$
−0.775077 + 0.631867i $$0.782289\pi$$
$$354$$ −2.00000 2.82843i −0.106299 0.150329i
$$355$$ −17.0732 + 29.5717i −0.906152 + 1.56950i
$$356$$ 3.55051 6.14966i 0.188177 0.325932i
$$357$$ −1.44949 + 3.14626i −0.0767151 + 0.166518i
$$358$$ 4.34847 + 7.53177i 0.229824 + 0.398066i
$$359$$ 10.7980 0.569894 0.284947 0.958543i $$-0.408024\pi$$
0.284947 + 0.958543i $$0.408024\pi$$
$$360$$ −6.72474 7.86566i −0.354425 0.414557i
$$361$$ 36.4949 1.92078
$$362$$ −2.17423 3.76588i −0.114275 0.197931i
$$363$$ 12.0732 1.11243i 0.633679 0.0583875i
$$364$$ −2.44949 + 4.24264i −0.128388 + 0.222375i
$$365$$ −5.00000 + 8.66025i −0.261712 + 0.453298i
$$366$$ −19.7474 + 1.81954i −1.03222 + 0.0951087i
$$367$$ −2.89898 5.02118i −0.151325 0.262103i 0.780389 0.625294i $$-0.215021\pi$$
−0.931715 + 0.363190i $$0.881687\pi$$
$$368$$ −1.00000 −0.0521286
$$369$$ 19.1010 + 22.3417i 0.994359 + 1.16306i
$$370$$ −26.8990 −1.39841
$$371$$ −0.550510 0.953512i −0.0285811 0.0495039i
$$372$$ 4.34847 9.43879i 0.225458 0.489379i
$$373$$ −1.44949 + 2.51059i −0.0750517 + 0.129993i −0.901109 0.433593i $$-0.857246\pi$$
0.826057 + 0.563587i $$0.190579\pi$$
$$374$$ −2.00000 + 3.46410i −0.103418 + 0.179124i
$$375$$ 6.55051 + 9.26382i 0.338267 + 0.478382i
$$376$$ 4.89898 + 8.48528i 0.252646 + 0.437595i
$$377$$ −14.2020 −0.731442
$$378$$ −1.27526 + 5.03723i −0.0655920 + 0.259087i
$$379$$ −26.4949 −1.36095 −0.680476 0.732771i $$-0.738227\pi$$
−0.680476 + 0.732771i $$0.738227\pi$$
$$380$$ −12.8485 22.2542i −0.659113 1.14162i
$$381$$ −3.00000 4.24264i −0.153695 0.217357i
$$382$$ −6.94949 + 12.0369i −0.355567 + 0.615860i
$$383$$ −3.44949 + 5.97469i −0.176261 + 0.305292i −0.940597 0.339526i $$-0.889734\pi$$
0.764336 + 0.644818i $$0.223067\pi$$
$$384$$ 0.724745 1.57313i 0.0369845 0.0802786i
$$385$$ 3.44949 + 5.97469i 0.175802 + 0.304498i
$$386$$ −8.10102 −0.412331
$$387$$ −8.55051 + 1.58919i −0.434647 + 0.0807829i
$$388$$ −6.89898 −0.350243
$$389$$ 7.55051 + 13.0779i 0.382826 + 0.663074i 0.991465 0.130373i $$-0.0416175\pi$$
−0.608639 + 0.793447i $$0.708284\pi$$
$$390$$ 29.1464 2.68556i 1.47589 0.135989i
$$391$$ 1.00000 1.73205i 0.0505722 0.0875936i
$$392$$ −0.500000 + 0.866025i −0.0252538 + 0.0437409i
$$393$$ 23.1969 2.13737i 1.17013 0.107816i
$$394$$ 6.34847 + 10.9959i 0.319831 + 0.553964i
$$395$$ 27.2474 1.37097
$$396$$ −2.00000 + 5.65685i −0.100504 + 0.284268i
$$397$$ 9.30306 0.466907 0.233454 0.972368i $$-0.424997\pi$$
0.233454 + 0.972368i $$0.424997\pi$$
$$398$$ −3.44949 5.97469i −0.172907 0.299484i
$$399$$ −5.39898 + 11.7190i −0.270287 + 0.586685i
$$400$$ −3.44949 + 5.97469i −0.172474 + 0.298735i
$$401$$ 5.05051 8.74774i 0.252210 0.436841i −0.711924 0.702257i $$-0.752176\pi$$
0.964134 + 0.265416i $$0.0855091\pi$$
$$402$$ −3.10102 4.38551i −0.154665 0.218729i
$$403$$ 14.6969 + 25.4558i 0.732107 + 1.26805i
$$404$$ 7.24745 0.360574
$$405$$ 28.9722 11.1548i 1.43964 0.554286i
$$406$$ −2.89898 −0.143874
$$407$$ 7.79796 + 13.5065i 0.386530 + 0.669490i
$$408$$ 2.00000 + 2.82843i 0.0990148 + 0.140028i
$$409$$ −2.89898 + 5.02118i −0.143345 + 0.248281i −0.928754 0.370696i $$-0.879119\pi$$
0.785409 + 0.618977i $$0.212453\pi$$
$$410$$ 16.8990 29.2699i 0.834581 1.44554i
$$411$$ −8.55051 + 18.5597i −0.421766 + 0.915485i
$$412$$ −7.00000 12.1244i −0.344865 0.597324i
$$413$$ 2.00000 0.0984136
$$414$$ 1.00000 2.82843i 0.0491473 0.139010i
$$415$$ 6.89898 0.338658
$$416$$ 2.44949 + 4.24264i 0.120096 + 0.208013i
$$417$$ −16.2980 + 1.50170i −0.798114 + 0.0735386i
$$418$$ −7.44949 + 12.9029i −0.364366 + 0.631101i
$$419$$ −12.2753 + 21.2614i −0.599685 + 1.03869i 0.393182 + 0.919461i $$0.371374\pi$$
−0.992867 + 0.119225i $$0.961959\pi$$
$$420$$ 5.94949 0.548188i 0.290305 0.0267488i
$$421$$ −6.55051 11.3458i −0.319252 0.552961i 0.661080 0.750316i $$-0.270098\pi$$
−0.980332 + 0.197354i $$0.936765\pi$$
$$422$$ 3.10102 0.150955
$$423$$ −28.8990 + 5.37113i −1.40512 + 0.261153i
$$424$$ −1.10102 −0.0534703
$$425$$ −6.89898 11.9494i −0.334650 0.579630i
$$426$$ 7.17423 15.5724i 0.347593 0.754485i
$$427$$ 5.72474 9.91555i 0.277040 0.479847i
$$428$$ 6.00000 10.3923i 0.290021 0.502331i
$$429$$ −9.79796 13.8564i −0.473050 0.668994i
$$430$$ 5.00000 + 8.66025i 0.241121 + 0.417635i
$$431$$ −7.59592 −0.365882 −0.182941 0.983124i $$-0.558562\pi$$
−0.182941 + 0.983124i $$0.558562\pi$$
$$432$$ 3.72474 + 3.62302i 0.179207 + 0.174313i
$$433$$ 11.7980 0.566974 0.283487 0.958976i $$-0.408509\pi$$
0.283487 + 0.958976i $$0.408509\pi$$
$$434$$ 3.00000 + 5.19615i 0.144005 + 0.249423i
$$435$$ 10.0000 + 14.1421i 0.479463 + 0.678064i
$$436$$ 8.34847 14.4600i 0.399819 0.692507i
$$437$$ 3.72474 6.45145i 0.178179 0.308615i
$$438$$ 2.10102 4.56048i 0.100391 0.217908i
$$439$$ −10.8990 18.8776i −0.520180 0.900978i −0.999725 0.0234607i $$-0.992532\pi$$
0.479545 0.877517i $$-0.340802\pi$$
$$440$$ 6.89898 0.328896
$$441$$ −1.94949 2.28024i −0.0928328 0.108583i
$$442$$ −9.79796 −0.466041
$$443$$ 2.55051 + 4.41761i 0.121178 + 0.209887i 0.920233 0.391372i $$-0.127999\pi$$
−0.799054 + 0.601259i $$0.794666\pi$$
$$444$$ 13.4495 1.23924i 0.638285 0.0588118i
$$445$$ 12.2474 21.2132i 0.580585 1.00560i
$$446$$ 10.4495 18.0990i 0.494798 0.857015i
$$447$$ 10.3485 0.953512i 0.489466 0.0450996i
$$448$$ 0.500000 + 0.866025i 0.0236228 + 0.0409159i
$$449$$ −18.5959 −0.877596 −0.438798 0.898586i $$-0.644596\pi$$
−0.438798 + 0.898586i $$0.644596\pi$$
$$450$$ −13.4495 15.7313i −0.634015 0.741582i
$$451$$ −19.5959 −0.922736
$$452$$ 7.94949 + 13.7689i 0.373913 + 0.647636i
$$453$$ −3.62372 + 7.86566i −0.170257 + 0.369561i
$$454$$ 0.275255 0.476756i 0.0129184 0.0223753i
$$455$$ −8.44949 + 14.6349i −0.396118 + 0.686097i
$$456$$ 7.44949 + 10.5352i 0.348854 + 0.493355i
$$457$$ −15.7474 27.2754i −0.736635 1.27589i −0.954002 0.299799i $$-0.903080\pi$$
0.217368 0.976090i $$-0.430253\pi$$
$$458$$ −23.2474 −1.08628
$$459$$ −10.0000 + 2.82843i −0.466760 + 0.132020i
$$460$$ −3.44949 −0.160833
$$461$$ −10.1742 17.6223i −0.473861 0.820752i 0.525691 0.850676i $$-0.323807\pi$$
−0.999552 + 0.0299238i $$0.990474\pi$$
$$462$$ −2.00000 2.82843i −0.0930484 0.131590i
$$463$$ 12.8485 22.2542i 0.597119 1.03424i −0.396125 0.918197i $$-0.629645\pi$$
0.993244 0.116044i $$-0.0370213\pi$$
$$464$$ −1.44949 + 2.51059i −0.0672909 + 0.116551i
$$465$$ 15.0000 32.5590i 0.695608 1.50989i
$$466$$ 3.50000 + 6.06218i 0.162134 + 0.280825i
$$467$$ 10.0000 0.462745 0.231372 0.972865i $$-0.425678\pi$$
0.231372 + 0.972865i $$0.425678\pi$$
$$468$$ −14.4495 + 2.68556i −0.667928 + 0.124140i
$$469$$ 3.10102 0.143192
$$470$$ 16.8990 + 29.2699i 0.779492 + 1.35012i
$$471$$ −10.9495 + 1.00889i −0.504526 + 0.0464872i
$$472$$ 1.00000 1.73205i 0.0460287 0.0797241i
$$473$$ 2.89898 5.02118i 0.133295 0.230874i
$$474$$ −13.6237 + 1.25529i −0.625758 + 0.0576576i
$$475$$ −25.6969 44.5084i −1.17906 2.04219i
$$476$$ −2.00000 −0.0916698
$$477$$ 1.10102 3.11416i 0.0504123 0.142587i
$$478$$ −12.7980 −0.585365
$$479$$ 14.7980 + 25.6308i 0.676136 + 1.17110i 0.976135 + 0.217163i $$0.0696802\pi$$
−0.299999 + 0.953939i $$0.596987\pi$$
$$480$$ 2.50000 5.42650i 0.114109 0.247685i
$$481$$ −19.1010 + 33.0839i −0.870932 + 1.50850i
$$482$$ 4.44949 7.70674i 0.202669 0.351032i
$$483$$ 1.00000 + 1.41421i 0.0455016 + 0.0643489i
$$484$$ 3.50000 + 6.06218i 0.159091 + 0.275554i
$$485$$ −23.7980 −1.08061
$$486$$ −13.9722 + 6.91215i −0.633792 + 0.313541i
$$487$$ 22.3939 1.01476 0.507382 0.861721i $$-0.330613\pi$$
0.507382 + 0.861721i $$0.330613\pi$$
$$488$$ −5.72474 9.91555i −0.259147 0.448856i
$$489$$ −0.202041 0.285729i −0.00913661 0.0129211i
$$490$$ −1.72474 + 2.98735i −0.0779160 + 0.134955i
$$491$$ 1.89898 3.28913i 0.0856997 0.148436i −0.819989 0.572379i $$-0.806021\pi$$
0.905689 + 0.423942i $$0.139354\pi$$
$$492$$ −7.10102 + 15.4135i −0.320139 + 0.694894i
$$493$$ −2.89898 5.02118i −0.130563 0.226143i
$$494$$ −36.4949 −1.64198
$$495$$ −6.89898 + 19.5133i −0.310086 + 0.877056i
$$496$$ 6.00000 0.269408
$$497$$ 4.94949 + 8.57277i 0.222015 + 0.384541i
$$498$$ −3.44949 + 0.317837i −0.154575 + 0.0142426i
$$499$$ −16.6969 + 28.9199i −0.747458 + 1.29463i 0.201580 + 0.979472i $$0.435392\pi$$
−0.949038 + 0.315163i $$0.897941\pi$$
$$500$$ −3.27526 + 5.67291i −0.146474 + 0.253700i
$$501$$ −32.2474 + 2.97129i −1.44071 + 0.132748i
$$502$$ −6.27526 10.8691i −0.280078 0.485110i
$$503$$ 24.4949 1.09217 0.546087 0.837729i $$-0.316117\pi$$
0.546087 + 0.837729i $$0.316117\pi$$
$$504$$ −2.94949 + 0.548188i −0.131381 + 0.0244182i
$$505$$ 25.0000 1.11249
$$506$$ 1.00000 + 1.73205i 0.0444554 + 0.0769991i
$$507$$ 7.97219 17.3045i 0.354058 0.768518i
$$508$$ 1.50000 2.59808i 0.0665517 0.115271i
$$509$$ 8.44949 14.6349i 0.374517 0.648683i −0.615738 0.787951i $$-0.711142\pi$$
0.990255 + 0.139269i $$0.0444752\pi$$
$$510$$ 6.89898 + 9.75663i 0.305492 + 0.432031i
$$511$$ 1.44949 + 2.51059i 0.0641217 + 0.111062i
$$512$$ 1.00000 0.0441942
$$513$$ −37.2474 + 10.5352i −1.64452 + 0.465139i
$$514$$ 27.7980 1.22612
$$515$$ −24.1464 41.8228i −1.06402 1.84293i
$$516$$ −2.89898 4.09978i −0.127620 0.180483i
$$517$$ 9.79796 16.9706i 0.430914 0.746364i
$$518$$ −3.89898 + 6.75323i −0.171311 + 0.296720i
$$519$$ −9.34847 + 20.2918i −0.410352 + 0.890711i
$$520$$ 8.44949 + 14.6349i 0.370535 + 0.641785i
$$521$$ −38.6969 −1.69534 −0.847672 0.530521i $$-0.821996\pi$$
−0.847672 + 0.530521i $$0.821996\pi$$
$$522$$ −5.65153 6.61037i −0.247361 0.289328i
$$523$$ 0.348469 0.0152375 0.00761875 0.999971i $$-0.497575\pi$$
0.00761875 + 0.999971i $$0.497575\pi$$
$$524$$ 6.72474 + 11.6476i 0.293772 + 0.508828i
$$525$$ 11.8990 1.09638i 0.519314 0.0478498i
$$526$$ −8.05051 + 13.9439i −0.351019 + 0.607983i
$$527$$ −6.00000 + 10.3923i −0.261364 + 0.452696i
$$528$$ −3.44949 + 0.317837i −0.150120 + 0.0138321i
$$529$$ 11.0000 + 19.0526i 0.478261 + 0.828372i
$$530$$ −3.79796 −0.164973
$$531$$ 3.89898 + 4.56048i 0.169201 + 0.197908i
$$532$$ −7.44949 −0.322976
$$533$$ −24.0000 41.5692i −1.03956 1.80056i
$$534$$ −5.14643 + 11.1708i −0.222708 + 0.483410i
$$535$$ 20.6969 35.8481i 0.894807 1.54985i
$$536$$ 1.55051 2.68556i 0.0669718 0.115999i
$$537$$ −8.69694 12.2993i −0.375301 0.530755i
$$538$$ 1.82577 + 3.16232i 0.0787143 + 0.136337i
$$539$$ 2.00000 0.0861461
$$540$$ 12.8485 + 12.4976i 0.552910 + 0.537810i
$$541$$ 30.4949 1.31108 0.655539 0.755161i $$-0.272441\pi$$
0.655539 + 0.755161i $$0.272441\pi$$
$$542$$ −8.44949 14.6349i −0.362937 0.628625i
$$543$$ 4.34847 + 6.14966i 0.186611 + 0.263907i
$$544$$ −1.00000 + 1.73205i −0.0428746 + 0.0742611i
$$545$$ 28.7980 49.8795i 1.23357 2.13660i
$$546$$ 3.55051 7.70674i 0.151948 0.329818i
$$547$$ −15.7980 27.3629i −0.675472 1.16995i −0.976331 0.216283i $$-0.930607\pi$$
0.300859 0.953669i $$-0.402727\pi$$
$$548$$ −11.7980 −0.503984
$$549$$ 33.7702 6.27647i 1.44127 0.267873i
$$550$$ 13.7980 0.588347
$$551$$ −10.7980 18.7026i −0.460009 0.796758i
$$552$$ 1.72474 0.158919i 0.0734100 0.00676403i
$$553$$ 3.94949 6.84072i 0.167949 0.290897i
$$554$$ −5.34847 + 9.26382i −0.227235 + 0.393582i
$$555$$ 46.3939 4.27475i 1.96931 0.181453i
$$556$$ −4.72474 8.18350i −0.200374 0.347058i
$$557$$ −3.10102 −0.131394 −0.0656972 0.997840i $$-0.520927\pi$$
−0.0656972 + 0.997840i $$0.520927\pi$$
$$558$$ −6.00000 + 16.9706i −0.254000 + 0.718421i
$$559$$ 14.2020 0.600682
$$560$$ 1.72474 + 2.98735i 0.0728838 + 0.126238i
$$561$$ 2.89898 6.29253i 0.122395 0.265671i
$$562$$ 9.50000 16.4545i 0.400733 0.694090i
$$563$$ −6.97219 + 12.0762i −0.293843 + 0.508951i −0.974715 0.223451i $$-0.928268\pi$$
0.680872 + 0.732402i $$0.261601\pi$$
$$564$$ −9.79796 13.8564i −0.412568 0.583460i
$$565$$ 27.4217 + 47.4957i 1.15364 + 1.99816i
$$566$$ −20.5505 −0.863802
$$567$$ 1.39898 8.89060i 0.0587516 0.373370i
$$568$$ 9.89898 0.415352
$$569$$ 15.0000 + 25.9808i 0.628833 + 1.08917i 0.987786 + 0.155815i $$0.0498003\pi$$
−0.358954 + 0.933355i $$0.616866\pi$$
$$570$$ 25.6969 + 36.3410i 1.07633 + 1.52216i
$$571$$ −7.10102 + 12.2993i −0.297168 + 0.514711i −0.975487 0.220057i $$-0.929376\pi$$
0.678319 + 0.734768i $$0.262709\pi$$
$$572$$ 4.89898 8.48528i 0.204837 0.354787i
$$573$$ 10.0732 21.8649i 0.420815 0.913421i
$$574$$ −4.89898 8.48528i −0.204479 0.354169i
$$575$$ −6.89898 −0.287707
$$576$$ −1.00000 + 2.82843i −0.0416667 + 0.117851i
$$577$$ 23.5959 0.982311 0.491155 0.871072i $$-0.336575\pi$$
0.491155 + 0.871072i $$0.336575\pi$$
$$578$$ 6.50000 + 11.2583i 0.270364 + 0.468285i
$$579$$ 13.9722 1.28740i 0.580665 0.0535026i
$$580$$ −5.00000 + 8.66025i −0.207614 + 0.359597i
$$581$$ 1.00000 1.73205i 0.0414870 0.0718576i
$$582$$ 11.8990 1.09638i 0.493229 0.0454463i
$$583$$ 1.10102 + 1.90702i 0.0455996 + 0.0789808i
$$584$$ 2.89898 0.119961
$$585$$ −49.8434 + 9.26382i −2.06077 + 0.383012i
$$586$$ 27.2474 1.12558
$$587$$ 9.07321 + 15.7153i 0.374492 + 0.648639i 0.990251 0.139296i $$-0.0444839\pi$$
−0.615759 + 0.787934i $$0.711151\pi$$
$$588$$ 0.724745 1.57313i 0.0298880 0.0648749i
$$589$$ −22.3485 + 38.7087i −0.920853 + 1.59496i
$$590$$ 3.44949 5.97469i 0.142013 0.245974i
$$591$$ −12.6969 17.9562i −0.522282 0.738619i
$$592$$ 3.89898 + 6.75323i 0.160247 + 0.277556i
$$593$$ −14.6969 −0.603531 −0.301765 0.953382i $$-0.597576\pi$$
−0.301765 + 0.953382i $$0.597576\pi$$
$$594$$ 2.55051 10.0745i 0.104649 0.413360i
$$595$$ −6.89898 −0.282831
$$596$$ 3.00000 + 5.19615i 0.122885 + 0.212843i
$$597$$ 6.89898 + 9.75663i 0.282356 + 0.399312i
$$598$$ −2.44949 + 4.24264i −0.100167 + 0.173494i
$$599$$ 7.10102 12.2993i 0.290140 0.502537i −0.683703 0.729761i $$-0.739632\pi$$
0.973843 + 0.227224i $$0.0729648\pi$$
$$600$$ 5.00000 10.8530i 0.204124 0.443072i
$$601$$ 6.34847 + 10.9959i 0.258959 + 0.448531i 0.965963 0.258679i $$-0.0832871\pi$$
−0.707004 + 0.707210i $$0.749954\pi$$
$$602$$ 2.89898 0.118154
$$603$$ 6.04541 + 7.07107i 0.246188 + 0.287956i
$$604$$ −5.00000 −0.203447
$$605$$ 12.0732 + 20.9114i 0.490846 + 0.850170i
$$606$$ −12.5000 + 1.15175i −0.507778 + 0.0467868i
$$607$$ 4.34847 7.53177i 0.176499 0.305705i −0.764180 0.645003i $$-0.776856\pi$$
0.940679 + 0.339298i $$0.110189\pi$$
$$608$$ −3.72474 + 6.45145i −0.151058 + 0.261641i
$$609$$ 5.00000 0.460702i 0.202610 0.0186686i
$$610$$ −19.7474 34.2036i −0.799551 1.38486i
$$611$$ 48.0000 1.94187
$$612$$ −3.89898 4.56048i −0.157607 0.184346i
$$613$$ 14.6969 0.593604 0.296802 0.954939i $$-0.404080\pi$$
0.296802 + 0.954939i $$0.404080\pi$$
$$614$$ −0.376276 0.651729i −0.0151852 0.0263016i
$$615$$ −24.4949 + 53.1687i −0.987730 + 2.14397i
$$616$$ 1.00000 1.73205i 0.0402911 0.0697863i
$$617$$ −21.6969 + 37.5802i −0.873486 + 1.51292i −0.0151189 + 0.999886i $$0.504813\pi$$
−0.858367 + 0.513036i $$0.828521\pi$$
$$618$$ 14.0000 + 19.7990i 0.563163 + 0.796432i
$$619$$ 2.07321 + 3.59091i 0.0833295 + 0.144331i 0.904678 0.426096i $$-0.140111\pi$$
−0.821349 + 0.570426i $$0.806778\pi$$
$$620$$ 20.6969 0.831209
$$621$$ −1.27526 + 5.03723i −0.0511742 + 0.202137i
$$622$$ 1.30306 0.0522480
$$623$$ −3.55051 6.14966i −0.142248 0.246381i
$$624$$ −4.89898 6.92820i −0.196116 0.277350i
$$625$$ 5.94949 10.3048i 0.237980 0.412193i
$$626$$ −12.3485 + 21.3882i −0.493544 + 0.854843i
$$627$$ 10.7980 23.4381i 0.431229 0.936026i
$$628$$ −3.17423 5.49794i −0.126666 0.219392i
$$629$$ −15.5959 −0.621850
$$630$$ −10.1742 + 1.89097i −0.405351 + 0.0753380i
$$631$$ 18.1010 0.720590 0.360295 0.932838i $$-0.382676\pi$$
0.360295 + 0.932838i $$0.382676\pi$$
$$632$$ −3.94949 6.84072i −0.157102 0.272109i
$$633$$ −5.34847 + 0.492810i −0.212583 + 0.0195874i
$$634$$ 4.34847 7.53177i 0.172700 0.299125i
$$635$$ 5.17423 8.96204i 0.205333 0.355648i
$$636$$ 1.89898 0.174973i 0.0752994 0.00693812i
$$637$$ 2.44949 + 4.24264i 0.0970523 + 0.168100i
$$638$$ 5.79796 0.229543
$$639$$ −9.89898 + 27.9985i −0.391598 + 1.10761i
$$640$$ 3.44949 0.136353
$$641$$ −20.7474 35.9356i −0.819475 1.41937i −0.906070 0.423129i $$-0.860932\pi$$
0.0865947 0.996244i $$-0.472401\pi$$
$$642$$ −8.69694 + 18.8776i −0.343241 + 0.745039i
$$643$$ −9.69694 + 16.7956i −0.382410 + 0.662353i −0.991406 0.130820i $$-0.958239\pi$$
0.608996 + 0.793173i $$0.291572\pi$$
$$644$$ −0.500000 + 0.866025i −0.0197028 + 0.0341262i
$$645$$ −10.0000 14.1421i −0.393750 0.556846i
$$646$$ −7.44949 12.9029i −0.293096 0.507658i
$$647$$ −21.3031 −0.837510 −0.418755 0.908099i $$-0.637533\pi$$
−0.418755 + 0.908099i $$0.637533\pi$$
$$648$$ −7.00000 5.65685i −0.274986 0.222222i
$$649$$ −4.00000 −0.157014
$$650$$ 16.8990 + 29.2699i 0.662833 + 1.14806i
$$651$$ −6.00000 8.48528i −0.235159 0.332564i
$$652$$ 0.101021 0.174973i 0.00395627 0.00685246i
$$653$$ 4.89898 8.48528i 0.191712 0.332055i −0.754106 0.656753i $$-0.771929\pi$$
0.945818 + 0.324698i $$0.105263\pi$$
$$654$$ −12.1010 + 26.2665i −0.473187 + 1.02710i
$$655$$ 23.1969 + 40.1783i 0.906379 + 1.56990i
$$656$$ −9.79796 −0.382546
$$657$$ −2.89898 + 8.19955i −0.113100 + 0.319895i
$$658$$ 9.79796 0.381964
$$659$$ −2.34847 4.06767i −0.0914834 0.158454i 0.816652 0.577130i $$-0.195828\pi$$
−0.908136 + 0.418676i $$0.862494\pi$$
$$660$$ −11.8990 + 1.09638i −0.463167 + 0.0426764i
$$661$$ −4.72474 + 8.18350i −0.183771 + 0.318301i −0.943162 0.332334i $$-0.892164\pi$$
0.759391 + 0.650635i $$0.225497\pi$$
$$662$$ 12.3485 21.3882i 0.479937 0.831275i
$$663$$ 16.8990 1.55708i 0.656302 0.0604719i
$$664$$ −1.00000 1.73205i −0.0388075 0.0672166i
$$665$$ −25.6969 −0.996485
$$666$$ −23.0000 + 4.27475i −0.891232 + 0.165643i
$$667$$ −2.89898 −0.112249
$$668$$ −9.34847 16.1920i −0.361703 0.626488i
$$669$$ −15.1464 + 32.8769i −0.585595 + 1.27109i
$$670$$ 5.34847 9.26382i 0.206629 0.357893i
$$671$$ −11.4495 + 19.8311i −0.442003 + 0.765571i
$$672$$ −1.00000 1.41421i −0.0385758 0.0545545i
$$673$$ −15.2980 26.4968i −0.589693 1.02138i −0.994272 0.106875i $$-0.965915\pi$$
0.404579 0.914503i $$-0.367418\pi$$
$$674$$ 35.3939 1.36332
$$675$$ 25.6969 + 24.9951i 0.989076 + 0.962063i
$$676$$ 11.0000 0.423077
$$677$$ 7.34847 + 12.7279i 0.282425 + 0.489174i 0.971981 0.235058i $$-0.0755280\pi$$
−0.689557 + 0.724232i $$0.742195\pi$$
$$678$$ −15.8990 22.4846i −0.610597 0.863514i
$$679$$ −3.44949 + 5.97469i −0.132379 + 0.229288i
$$680$$ −3.44949 + 5.97469i −0.132282 + 0.229119i
$$681$$ −0.398979 + 0.866025i −0.0152889 + 0.0331862i
$$682$$ −6.00000 10.3923i −0.229752 0.397942i
$$683$$ 32.2020 1.23218 0.616088 0.787677i $$-0.288716\pi$$
0.616088 + 0.787677i $$0.288716\pi$$
$$684$$ −14.5227 16.9866i −0.555289 0.649500i
$$685$$ −40.6969 −1.55495
$$686$$ 0.500000 + 0.866025i 0.0190901 + 0.0330650i
$$687$$ 40.0959 3.69445i 1.52975 0.140952i
$$688$$ 1.44949 2.51059i 0.0552613 0.0957153i
$$689$$ −2.69694 + 4.67123i −0.102745 + 0.177960i
$$690$$ 5.94949 0.548188i 0.226493 0.0208692i
$$691$$ −3.47730 6.02285i −0.132283 0.229120i 0.792274 0.610166i $$-0.208897\pi$$
−0.924556 + 0.381046i $$0.875564\pi$$
$$692$$ −12.8990 −0.490346
$$693$$ 3.89898 + 4.56048i 0.148110 + 0.173238i
$$694$$ −19.5959 −0.743851
$$695$$ −16.2980 28.2289i −0.618217 1.07078i
$$696$$ 2.10102 4.56048i 0.0796390 0.172864i
$$697$$ 9.79796 16.9706i 0.371124 0.642806i
$$698$$ −10.4495 + 18.0990i −0.395519 + 0.685059i
$$699$$ −7.00000 9.89949i −0.264764 0.374433i
$$700$$ 3.44949 + 5.97469i 0.130378 + 0.225822i
$$701$$ 51.3939 1.94112 0.970560 0.240860i $$-0.0774293\pi$$
0.970560 + 0.240860i $$0.0774293\pi$$
$$702$$ 24.4949 6.92820i 0.924500 0.261488i
$$703$$ −58.0908 −2.19094
$$704$$ −1.00000 1.73205i −0.0376889 0.0652791i
$$705$$ −33.7980 47.7975i −1.27290 1.80016i
$$706$$ 3.00000 5.19615i 0.112906 0.195560i
$$707$$ 3.62372 6.27647i 0.136284 0.236051i
$$708$$ −1.44949 + 3.14626i −0.0544752 + 0.118244i
$$709$$ 5.79796 + 10.0424i 0.217747 + 0.377149i 0.954119 0.299428i $$-0.0967959\pi$$
−0.736372 + 0.676577i $$0.763463\pi$$
$$710$$ 34.1464 1.28149
$$711$$ 23.2980 4.33013i 0.873742 0.162392i
$$712$$ −7.10102 −0.266122
$$713$$ 3.00000 + 5.19615i 0.112351 + 0.194597i
$$714$$ 3.44949 0.317837i 0.129094 0.0118948i
$$715$$ 16.8990 29.2699i 0.631986 1.09463i
$$716$$ 4.34847 7.53177i 0.162510 0.281475i
$$717$$ 22.0732 2.03383i 0.824339 0.0759549i
$$718$$ −5.39898 9.35131i −0.201488 0.348988i
$$719$$ −9.79796 −0.365402 −0.182701 0.983169i $$-0.558484\pi$$
−0.182701 + 0.983169i $$0.558484\pi$$
$$720$$ −3.44949 + 9.75663i −0.128555 + 0.363608i
$$721$$ −14.0000 −0.521387
$$722$$ −18.2474 31.6055i −0.679100 1.17624i
$$723$$ −6.44949 + 13.9993i −0.239859 + 0.520638i
$$724$$ −2.17423 + 3.76588i −0.0808048 + 0.139958i
$$725$$ −10.0000 + 17.3205i −0.371391 + 0.643268i
$$726$$ −7.00000 9.89949i −0.259794 0.367405i
$$727$$ −20.2474 35.0696i −0.750936 1.30066i −0.947369 0.320143i $$-0.896269\pi$$
0.196433 0.980517i $$-0.437064\pi$$
$$728$$ 4.89898 0.181568
$$729$$ 23.0000 14.1421i 0.851852 0.523783i
$$730$$ 10.0000 0.370117
$$731$$ 2.89898 + 5.02118i 0.107223 + 0.185715i
$$732$$ 11.4495 + 16.1920i 0.423185 + 0.598474i
$$733$$ 6.27526 10.8691i 0.231782 0.401458i −0.726551 0.687113i $$-0.758878\pi$$
0.958333 + 0.285655i $$0.0922111\pi$$
$$734$$ −2.89898 + 5.02118i −0.107003 + 0.185335i
$$735$$ 2.50000 5.42650i 0.0922139 0.200160i
$$736$$ 0.500000 + 0.866025i 0.0184302 + 0.0319221i
$$737$$ −6.20204 −0.228455
$$738$$ 9.79796 27.7128i 0.360668 1.02012i
$$739$$ −25.5959 −0.941561 −0.470781 0.882250i $$-0.656028\pi$$
−0.470781 + 0.882250i $$0.656028\pi$$
$$740$$ 13.4495 + 23.2952i 0.494413 + 0.856349i
$$741$$ 62.9444 5.79972i 2.31232 0.213058i
$$742$$ −0.550510 + 0.953512i −0.0202099 + 0.0350045i
$$743$$ −18.0000 + 31.1769i −0.660356 + 1.14377i 0.320166 + 0.947361i $$0.396261\pi$$
−0.980522 + 0.196409i $$0.937072\pi$$
$$744$$ −10.3485 + 0.953512i −0.379393 + 0.0349574i
$$745$$ 10.3485 + 17.9241i 0.379139 + 0.656687i
$$746$$ 2.89898 0.106139
$$747$$ 5.89898 1.09638i 0.215832 0.0401143i
$$748$$ 4.00000 0.146254
$$749$$ −6.00000 10.3923i −0.219235 0.379727i
$$750$$ 4.74745 10.3048i 0.173352 0.376279i
$$751$$ −20.2980 + 35.1571i −0.740683 + 1.28290i 0.211502 + 0.977378i $$0.432165\pi$$
−0.952185 + 0.305523i $$0.901169\pi$$
$$752$$ 4.89898 8.48528i 0.178647 0.309426i
$$753$$ 12.5505 + 17.7491i 0.457366 + 0.646813i
$$754$$ 7.10102 + 12.2993i 0.258604 + 0.447915i
$$755$$ −17.2474 −0.627699
$$756$$ 5.00000 1.41421i 0.181848 0.0514344i
$$757$$ 23.3939 0.850265 0.425132 0.905131i $$-0.360228\pi$$
0.425132 + 0.905131i $$0.360228\pi$$
$$758$$ 13.2474 + 22.9453i 0.481169 + 0.833409i
$$759$$ −2.00000 2.82843i −0.0725954 0.102665i
$$760$$ −12.8485 + 22.2542i −0.466063 + 0.807245i
$$761$$ −1.00000 + 1.73205i −0.0362500 + 0.0627868i −0.883581 0.468278i $$-0.844875\pi$$
0.847331 + 0.531065i $$0.178208\pi$$
$$762$$ −2.17423 + 4.71940i −0.0787642 + 0.170966i
$$763$$ −8.34847 14.4600i −0.302235 0.523486i
$$764$$ 13.8990 0.502847
$$765$$ −13.4495 15.7313i −0.486267 0.568767i
$$766$$ 6.89898 0.249270
$$767$$ −4.89898 8.48528i −0.176892 0.306386i
$$768$$ −1.72474 + 0.158919i −0.0622364 + 0.00573448i
$$769$$ −27.0454 + 46.8440i −0.975282 + 1.68924i −0.296282 + 0.955100i $$0.595747\pi$$
−0.679000 + 0.734138i $$0.737586\pi$$
$$770$$ 3.44949 5.97469i 0.124311 0.215313i
$$771$$ −47.9444 + 4.41761i −1.72667 + 0.159096i
$$772$$ 4.05051 + 7.01569i 0.145781 + 0.252500i
$$773$$ −19.9444 −0.717350 −0.358675 0.933463i $$-0.616771\pi$$
−0.358675 + 0.933463i $$0.616771\pi$$
$$774$$ 5.65153 + 6.61037i 0.203140 + 0.237605i
$$775$$ 41.3939