Properties

Label 126.2.f.c.43.2
Level $126$
Weight $2$
Character 126.43
Analytic conductor $1.006$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} - 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 43.2
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 126.43
Dual form 126.2.f.c.85.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(1.00000 + 1.41421i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.724745 + 1.25529i) q^{5} +(-1.72474 + 0.158919i) q^{6} +(0.500000 - 0.866025i) q^{7} +1.00000 q^{8} +(-1.00000 + 2.82843i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(1.00000 + 1.41421i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.724745 + 1.25529i) q^{5} +(-1.72474 + 0.158919i) q^{6} +(0.500000 - 0.866025i) q^{7} +1.00000 q^{8} +(-1.00000 + 2.82843i) q^{9} -1.44949 q^{10} +(-1.00000 + 1.73205i) q^{11} +(0.724745 - 1.57313i) q^{12} +(-2.44949 - 4.24264i) q^{13} +(0.500000 + 0.866025i) q^{14} +(-1.05051 + 2.28024i) q^{15} +(-0.500000 + 0.866025i) q^{16} +2.00000 q^{17} +(-1.94949 - 2.28024i) q^{18} +2.55051 q^{19} +(0.724745 - 1.25529i) q^{20} +(1.72474 - 0.158919i) q^{21} +(-1.00000 - 1.73205i) q^{22} +(0.500000 + 0.866025i) q^{23} +(1.00000 + 1.41421i) q^{24} +(1.44949 - 2.51059i) q^{25} +4.89898 q^{26} +(-5.00000 + 1.41421i) q^{27} -1.00000 q^{28} +(3.44949 - 5.97469i) q^{29} +(-1.44949 - 2.04989i) q^{30} +(-3.00000 - 5.19615i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(-3.44949 + 0.317837i) q^{33} +(-1.00000 + 1.73205i) q^{34} +1.44949 q^{35} +(2.94949 - 0.548188i) q^{36} +11.7980 q^{37} +(-1.27526 + 2.20881i) q^{38} +(3.55051 - 7.70674i) q^{39} +(0.724745 + 1.25529i) q^{40} +(-4.89898 - 8.48528i) q^{41} +(-0.724745 + 1.57313i) q^{42} +(-3.44949 + 5.97469i) q^{43} +2.00000 q^{44} +(-4.27526 + 0.794593i) q^{45} -1.00000 q^{46} +(-4.89898 + 8.48528i) q^{47} +(-1.72474 + 0.158919i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(1.44949 + 2.51059i) q^{50} +(2.00000 + 2.82843i) q^{51} +(-2.44949 + 4.24264i) q^{52} -10.8990 q^{53} +(1.27526 - 5.03723i) q^{54} -2.89898 q^{55} +(0.500000 - 0.866025i) q^{56} +(2.55051 + 3.60697i) q^{57} +(3.44949 + 5.97469i) q^{58} +(1.00000 + 1.73205i) q^{59} +(2.50000 - 0.230351i) q^{60} +(-3.27526 + 5.67291i) q^{61} +6.00000 q^{62} +(1.94949 + 2.28024i) q^{63} +1.00000 q^{64} +(3.55051 - 6.14966i) q^{65} +(1.44949 - 3.14626i) q^{66} +(6.44949 + 11.1708i) q^{67} +(-1.00000 - 1.73205i) q^{68} +(-0.724745 + 1.57313i) q^{69} +(-0.724745 + 1.25529i) q^{70} +0.101021 q^{71} +(-1.00000 + 2.82843i) q^{72} -6.89898 q^{73} +(-5.89898 + 10.2173i) q^{74} +(5.00000 - 0.460702i) q^{75} +(-1.27526 - 2.20881i) q^{76} +(1.00000 + 1.73205i) q^{77} +(4.89898 + 6.92820i) q^{78} +(0.949490 - 1.64456i) q^{79} -1.44949 q^{80} +(-7.00000 - 5.65685i) q^{81} +9.79796 q^{82} +(-1.00000 + 1.73205i) q^{83} +(-1.00000 - 1.41421i) q^{84} +(1.44949 + 2.51059i) q^{85} +(-3.44949 - 5.97469i) q^{86} +(11.8990 - 1.09638i) q^{87} +(-1.00000 + 1.73205i) q^{88} -16.8990 q^{89} +(1.44949 - 4.09978i) q^{90} -4.89898 q^{91} +(0.500000 - 0.866025i) q^{92} +(4.34847 - 9.43879i) q^{93} +(-4.89898 - 8.48528i) q^{94} +(1.84847 + 3.20164i) q^{95} +(0.724745 - 1.57313i) q^{96} +(-1.44949 + 2.51059i) q^{97} +1.00000 q^{98} +(-3.89898 - 4.56048i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{2} + 4q^{3} - 2q^{4} - 2q^{5} - 2q^{6} + 2q^{7} + 4q^{8} - 4q^{9} + O(q^{10}) \) \( 4q - 2q^{2} + 4q^{3} - 2q^{4} - 2q^{5} - 2q^{6} + 2q^{7} + 4q^{8} - 4q^{9} + 4q^{10} - 4q^{11} - 2q^{12} + 2q^{14} - 14q^{15} - 2q^{16} + 8q^{17} + 2q^{18} + 20q^{19} - 2q^{20} + 2q^{21} - 4q^{22} + 2q^{23} + 4q^{24} - 4q^{25} - 20q^{27} - 4q^{28} + 4q^{29} + 4q^{30} - 12q^{31} - 2q^{32} - 4q^{33} - 4q^{34} - 4q^{35} + 2q^{36} + 8q^{37} - 10q^{38} + 24q^{39} - 2q^{40} + 2q^{42} - 4q^{43} + 8q^{44} - 22q^{45} - 4q^{46} - 2q^{48} - 2q^{49} - 4q^{50} + 8q^{51} - 24q^{53} + 10q^{54} + 8q^{55} + 2q^{56} + 20q^{57} + 4q^{58} + 4q^{59} + 10q^{60} - 18q^{61} + 24q^{62} - 2q^{63} + 4q^{64} + 24q^{65} - 4q^{66} + 16q^{67} - 4q^{68} + 2q^{69} + 2q^{70} + 20q^{71} - 4q^{72} - 8q^{73} - 4q^{74} + 20q^{75} - 10q^{76} + 4q^{77} - 6q^{79} + 4q^{80} - 28q^{81} - 4q^{83} - 4q^{84} - 4q^{85} - 4q^{86} + 28q^{87} - 4q^{88} - 48q^{89} - 4q^{90} + 2q^{92} - 12q^{93} - 22q^{95} - 2q^{96} + 4q^{97} + 4q^{98} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 1.00000 + 1.41421i 0.577350 + 0.816497i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.724745 + 1.25529i 0.324116 + 0.561385i 0.981333 0.192316i \(-0.0615999\pi\)
−0.657217 + 0.753701i \(0.728267\pi\)
\(6\) −1.72474 + 0.158919i −0.704124 + 0.0648783i
\(7\) 0.500000 0.866025i 0.188982 0.327327i
\(8\) 1.00000 0.353553
\(9\) −1.00000 + 2.82843i −0.333333 + 0.942809i
\(10\) −1.44949 −0.458369
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) 0.724745 1.57313i 0.209216 0.454124i
\(13\) −2.44949 4.24264i −0.679366 1.17670i −0.975172 0.221449i \(-0.928921\pi\)
0.295806 0.955248i \(-0.404412\pi\)
\(14\) 0.500000 + 0.866025i 0.133631 + 0.231455i
\(15\) −1.05051 + 2.28024i −0.271241 + 0.588755i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) −1.94949 2.28024i −0.459499 0.537457i
\(19\) 2.55051 0.585127 0.292564 0.956246i \(-0.405492\pi\)
0.292564 + 0.956246i \(0.405492\pi\)
\(20\) 0.724745 1.25529i 0.162058 0.280692i
\(21\) 1.72474 0.158919i 0.376370 0.0346789i
\(22\) −1.00000 1.73205i −0.213201 0.369274i
\(23\) 0.500000 + 0.866025i 0.104257 + 0.180579i 0.913434 0.406986i \(-0.133420\pi\)
−0.809177 + 0.587565i \(0.800087\pi\)
\(24\) 1.00000 + 1.41421i 0.204124 + 0.288675i
\(25\) 1.44949 2.51059i 0.289898 0.502118i
\(26\) 4.89898 0.960769
\(27\) −5.00000 + 1.41421i −0.962250 + 0.272166i
\(28\) −1.00000 −0.188982
\(29\) 3.44949 5.97469i 0.640554 1.10947i −0.344755 0.938693i \(-0.612038\pi\)
0.985309 0.170780i \(-0.0546286\pi\)
\(30\) −1.44949 2.04989i −0.264639 0.374257i
\(31\) −3.00000 5.19615i −0.538816 0.933257i −0.998968 0.0454165i \(-0.985539\pi\)
0.460152 0.887840i \(-0.347795\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) −3.44949 + 0.317837i −0.600479 + 0.0553284i
\(34\) −1.00000 + 1.73205i −0.171499 + 0.297044i
\(35\) 1.44949 0.245008
\(36\) 2.94949 0.548188i 0.491582 0.0913647i
\(37\) 11.7980 1.93957 0.969786 0.243956i \(-0.0784453\pi\)
0.969786 + 0.243956i \(0.0784453\pi\)
\(38\) −1.27526 + 2.20881i −0.206874 + 0.358316i
\(39\) 3.55051 7.70674i 0.568537 1.23407i
\(40\) 0.724745 + 1.25529i 0.114592 + 0.198480i
\(41\) −4.89898 8.48528i −0.765092 1.32518i −0.940198 0.340629i \(-0.889360\pi\)
0.175106 0.984550i \(-0.443973\pi\)
\(42\) −0.724745 + 1.57313i −0.111831 + 0.242740i
\(43\) −3.44949 + 5.97469i −0.526042 + 0.911132i 0.473497 + 0.880795i \(0.342991\pi\)
−0.999540 + 0.0303367i \(0.990342\pi\)
\(44\) 2.00000 0.301511
\(45\) −4.27526 + 0.794593i −0.637317 + 0.118451i
\(46\) −1.00000 −0.147442
\(47\) −4.89898 + 8.48528i −0.714590 + 1.23771i 0.248528 + 0.968625i \(0.420053\pi\)
−0.963118 + 0.269081i \(0.913280\pi\)
\(48\) −1.72474 + 0.158919i −0.248945 + 0.0229379i
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 1.44949 + 2.51059i 0.204989 + 0.355051i
\(51\) 2.00000 + 2.82843i 0.280056 + 0.396059i
\(52\) −2.44949 + 4.24264i −0.339683 + 0.588348i
\(53\) −10.8990 −1.49709 −0.748545 0.663084i \(-0.769247\pi\)
−0.748545 + 0.663084i \(0.769247\pi\)
\(54\) 1.27526 5.03723i 0.173540 0.685481i
\(55\) −2.89898 −0.390898
\(56\) 0.500000 0.866025i 0.0668153 0.115728i
\(57\) 2.55051 + 3.60697i 0.337823 + 0.477754i
\(58\) 3.44949 + 5.97469i 0.452940 + 0.784515i
\(59\) 1.00000 + 1.73205i 0.130189 + 0.225494i 0.923749 0.382998i \(-0.125108\pi\)
−0.793560 + 0.608492i \(0.791775\pi\)
\(60\) 2.50000 0.230351i 0.322749 0.0297382i
\(61\) −3.27526 + 5.67291i −0.419353 + 0.726341i −0.995875 0.0907408i \(-0.971077\pi\)
0.576521 + 0.817082i \(0.304410\pi\)
\(62\) 6.00000 0.762001
\(63\) 1.94949 + 2.28024i 0.245613 + 0.287283i
\(64\) 1.00000 0.125000
\(65\) 3.55051 6.14966i 0.440387 0.762772i
\(66\) 1.44949 3.14626i 0.178420 0.387278i
\(67\) 6.44949 + 11.1708i 0.787931 + 1.36474i 0.927233 + 0.374486i \(0.122181\pi\)
−0.139302 + 0.990250i \(0.544486\pi\)
\(68\) −1.00000 1.73205i −0.121268 0.210042i
\(69\) −0.724745 + 1.57313i −0.0872490 + 0.189383i
\(70\) −0.724745 + 1.25529i −0.0866236 + 0.150036i
\(71\) 0.101021 0.0119889 0.00599446 0.999982i \(-0.498092\pi\)
0.00599446 + 0.999982i \(0.498092\pi\)
\(72\) −1.00000 + 2.82843i −0.117851 + 0.333333i
\(73\) −6.89898 −0.807464 −0.403732 0.914877i \(-0.632287\pi\)
−0.403732 + 0.914877i \(0.632287\pi\)
\(74\) −5.89898 + 10.2173i −0.685742 + 1.18774i
\(75\) 5.00000 0.460702i 0.577350 0.0531973i
\(76\) −1.27526 2.20881i −0.146282 0.253368i
\(77\) 1.00000 + 1.73205i 0.113961 + 0.197386i
\(78\) 4.89898 + 6.92820i 0.554700 + 0.784465i
\(79\) 0.949490 1.64456i 0.106826 0.185028i −0.807657 0.589653i \(-0.799265\pi\)
0.914483 + 0.404625i \(0.132598\pi\)
\(80\) −1.44949 −0.162058
\(81\) −7.00000 5.65685i −0.777778 0.628539i
\(82\) 9.79796 1.08200
\(83\) −1.00000 + 1.73205i −0.109764 + 0.190117i −0.915675 0.401920i \(-0.868343\pi\)
0.805910 + 0.592037i \(0.201676\pi\)
\(84\) −1.00000 1.41421i −0.109109 0.154303i
\(85\) 1.44949 + 2.51059i 0.157219 + 0.272312i
\(86\) −3.44949 5.97469i −0.371968 0.644268i
\(87\) 11.8990 1.09638i 1.27570 0.117544i
\(88\) −1.00000 + 1.73205i −0.106600 + 0.184637i
\(89\) −16.8990 −1.79129 −0.895644 0.444771i \(-0.853285\pi\)
−0.895644 + 0.444771i \(0.853285\pi\)
\(90\) 1.44949 4.09978i 0.152790 0.432154i
\(91\) −4.89898 −0.513553
\(92\) 0.500000 0.866025i 0.0521286 0.0902894i
\(93\) 4.34847 9.43879i 0.450915 0.978757i
\(94\) −4.89898 8.48528i −0.505291 0.875190i
\(95\) 1.84847 + 3.20164i 0.189649 + 0.328482i
\(96\) 0.724745 1.57313i 0.0739690 0.160557i
\(97\) −1.44949 + 2.51059i −0.147173 + 0.254912i −0.930182 0.367099i \(-0.880351\pi\)
0.783008 + 0.622011i \(0.213684\pi\)
\(98\) 1.00000 0.101015
\(99\) −3.89898 4.56048i −0.391862 0.458345i
\(100\) −2.89898 −0.289898
\(101\) 8.62372 14.9367i 0.858093 1.48626i −0.0156533 0.999877i \(-0.504983\pi\)
0.873746 0.486383i \(-0.161684\pi\)
\(102\) −3.44949 + 0.317837i −0.341550 + 0.0314706i
\(103\) −7.00000 12.1244i −0.689730 1.19465i −0.971925 0.235291i \(-0.924396\pi\)
0.282194 0.959357i \(-0.408938\pi\)
\(104\) −2.44949 4.24264i −0.240192 0.416025i
\(105\) 1.44949 + 2.04989i 0.141456 + 0.200049i
\(106\) 5.44949 9.43879i 0.529301 0.916777i
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 3.72474 + 3.62302i 0.358414 + 0.348625i
\(109\) 12.6969 1.21615 0.608073 0.793881i \(-0.291943\pi\)
0.608073 + 0.793881i \(0.291943\pi\)
\(110\) 1.44949 2.51059i 0.138203 0.239375i
\(111\) 11.7980 + 16.6848i 1.11981 + 1.58365i
\(112\) 0.500000 + 0.866025i 0.0472456 + 0.0818317i
\(113\) 3.05051 + 5.28364i 0.286968 + 0.497043i 0.973084 0.230449i \(-0.0740194\pi\)
−0.686117 + 0.727492i \(0.740686\pi\)
\(114\) −4.39898 + 0.405324i −0.412002 + 0.0379620i
\(115\) −0.724745 + 1.25529i −0.0675828 + 0.117057i
\(116\) −6.89898 −0.640554
\(117\) 14.4495 2.68556i 1.33586 0.248280i
\(118\) −2.00000 −0.184115
\(119\) 1.00000 1.73205i 0.0916698 0.158777i
\(120\) −1.05051 + 2.28024i −0.0958980 + 0.208156i
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) −3.27526 5.67291i −0.296528 0.513601i
\(123\) 7.10102 15.4135i 0.640277 1.38979i
\(124\) −3.00000 + 5.19615i −0.269408 + 0.466628i
\(125\) 11.4495 1.02407
\(126\) −2.94949 + 0.548188i −0.262761 + 0.0488365i
\(127\) −3.00000 −0.266207 −0.133103 0.991102i \(-0.542494\pi\)
−0.133103 + 0.991102i \(0.542494\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) −11.8990 + 1.09638i −1.04765 + 0.0965306i
\(130\) 3.55051 + 6.14966i 0.311400 + 0.539361i
\(131\) 4.27526 + 7.40496i 0.373531 + 0.646974i 0.990106 0.140322i \(-0.0448137\pi\)
−0.616575 + 0.787296i \(0.711480\pi\)
\(132\) 2.00000 + 2.82843i 0.174078 + 0.246183i
\(133\) 1.27526 2.20881i 0.110579 0.191528i
\(134\) −12.8990 −1.11430
\(135\) −5.39898 5.25153i −0.464670 0.451980i
\(136\) 2.00000 0.171499
\(137\) −3.89898 + 6.75323i −0.333112 + 0.576967i −0.983120 0.182960i \(-0.941432\pi\)
0.650008 + 0.759927i \(0.274765\pi\)
\(138\) −1.00000 1.41421i −0.0851257 0.120386i
\(139\) −2.27526 3.94086i −0.192985 0.334259i 0.753253 0.657730i \(-0.228483\pi\)
−0.946238 + 0.323471i \(0.895150\pi\)
\(140\) −0.724745 1.25529i −0.0612521 0.106092i
\(141\) −16.8990 + 1.55708i −1.42315 + 0.131130i
\(142\) −0.0505103 + 0.0874863i −0.00423873 + 0.00734169i
\(143\) 9.79796 0.819346
\(144\) −1.94949 2.28024i −0.162457 0.190020i
\(145\) 10.0000 0.830455
\(146\) 3.44949 5.97469i 0.285482 0.494469i
\(147\) 0.724745 1.57313i 0.0597759 0.129750i
\(148\) −5.89898 10.2173i −0.484893 0.839860i
\(149\) 3.00000 + 5.19615i 0.245770 + 0.425685i 0.962348 0.271821i \(-0.0876260\pi\)
−0.716578 + 0.697507i \(0.754293\pi\)
\(150\) −2.10102 + 4.56048i −0.171548 + 0.372361i
\(151\) 2.50000 4.33013i 0.203447 0.352381i −0.746190 0.665733i \(-0.768119\pi\)
0.949637 + 0.313353i \(0.101452\pi\)
\(152\) 2.55051 0.206874
\(153\) −2.00000 + 5.65685i −0.161690 + 0.457330i
\(154\) −2.00000 −0.161165
\(155\) 4.34847 7.53177i 0.349277 0.604966i
\(156\) −8.44949 + 0.778539i −0.676501 + 0.0623330i
\(157\) 4.17423 + 7.22999i 0.333140 + 0.577016i 0.983126 0.182931i \(-0.0585584\pi\)
−0.649986 + 0.759947i \(0.725225\pi\)
\(158\) 0.949490 + 1.64456i 0.0755373 + 0.130835i
\(159\) −10.8990 15.4135i −0.864345 1.22237i
\(160\) 0.724745 1.25529i 0.0572961 0.0992398i
\(161\) 1.00000 0.0788110
\(162\) 8.39898 3.23375i 0.659886 0.254067i
\(163\) −19.7980 −1.55070 −0.775348 0.631534i \(-0.782425\pi\)
−0.775348 + 0.631534i \(0.782425\pi\)
\(164\) −4.89898 + 8.48528i −0.382546 + 0.662589i
\(165\) −2.89898 4.09978i −0.225685 0.319167i
\(166\) −1.00000 1.73205i −0.0776151 0.134433i
\(167\) 5.34847 + 9.26382i 0.413877 + 0.716856i 0.995310 0.0967384i \(-0.0308410\pi\)
−0.581433 + 0.813594i \(0.697508\pi\)
\(168\) 1.72474 0.158919i 0.133067 0.0122608i
\(169\) −5.50000 + 9.52628i −0.423077 + 0.732791i
\(170\) −2.89898 −0.222342
\(171\) −2.55051 + 7.21393i −0.195042 + 0.551663i
\(172\) 6.89898 0.526042
\(173\) 1.55051 2.68556i 0.117883 0.204180i −0.801045 0.598604i \(-0.795723\pi\)
0.918929 + 0.394424i \(0.129056\pi\)
\(174\) −5.00000 + 10.8530i −0.379049 + 0.822764i
\(175\) −1.44949 2.51059i −0.109571 0.189783i
\(176\) −1.00000 1.73205i −0.0753778 0.130558i
\(177\) −1.44949 + 3.14626i −0.108950 + 0.236488i
\(178\) 8.44949 14.6349i 0.633316 1.09694i
\(179\) 20.6969 1.54696 0.773481 0.633820i \(-0.218514\pi\)
0.773481 + 0.633820i \(0.218514\pi\)
\(180\) 2.82577 + 3.30518i 0.210620 + 0.246354i
\(181\) −10.3485 −0.769196 −0.384598 0.923084i \(-0.625660\pi\)
−0.384598 + 0.923084i \(0.625660\pi\)
\(182\) 2.44949 4.24264i 0.181568 0.314485i
\(183\) −11.2980 + 1.04100i −0.835169 + 0.0769528i
\(184\) 0.500000 + 0.866025i 0.0368605 + 0.0638442i
\(185\) 8.55051 + 14.8099i 0.628646 + 1.08885i
\(186\) 6.00000 + 8.48528i 0.439941 + 0.622171i
\(187\) −2.00000 + 3.46410i −0.146254 + 0.253320i
\(188\) 9.79796 0.714590
\(189\) −1.27526 + 5.03723i −0.0927612 + 0.366405i
\(190\) −3.69694 −0.268204
\(191\) −2.05051 + 3.55159i −0.148370 + 0.256984i −0.930625 0.365974i \(-0.880736\pi\)
0.782255 + 0.622958i \(0.214069\pi\)
\(192\) 1.00000 + 1.41421i 0.0721688 + 0.102062i
\(193\) 8.94949 + 15.5010i 0.644198 + 1.11578i 0.984486 + 0.175463i \(0.0561422\pi\)
−0.340288 + 0.940321i \(0.610524\pi\)
\(194\) −1.44949 2.51059i −0.104067 0.180250i
\(195\) 12.2474 1.12848i 0.877058 0.0808124i
\(196\) −0.500000 + 0.866025i −0.0357143 + 0.0618590i
\(197\) 16.6969 1.18961 0.594804 0.803871i \(-0.297230\pi\)
0.594804 + 0.803871i \(0.297230\pi\)
\(198\) 5.89898 1.09638i 0.419222 0.0779161i
\(199\) −2.89898 −0.205503 −0.102752 0.994707i \(-0.532765\pi\)
−0.102752 + 0.994707i \(0.532765\pi\)
\(200\) 1.44949 2.51059i 0.102494 0.177526i
\(201\) −9.34847 + 20.2918i −0.659390 + 1.43127i
\(202\) 8.62372 + 14.9367i 0.606763 + 1.05094i
\(203\) −3.44949 5.97469i −0.242107 0.419341i
\(204\) 1.44949 3.14626i 0.101485 0.220283i
\(205\) 7.10102 12.2993i 0.495957 0.859022i
\(206\) 14.0000 0.975426
\(207\) −2.94949 + 0.548188i −0.205004 + 0.0381017i
\(208\) 4.89898 0.339683
\(209\) −2.55051 + 4.41761i −0.176422 + 0.305573i
\(210\) −2.50000 + 0.230351i −0.172516 + 0.0158957i
\(211\) −6.44949 11.1708i −0.444001 0.769033i 0.553981 0.832529i \(-0.313108\pi\)
−0.997982 + 0.0634968i \(0.979775\pi\)
\(212\) 5.44949 + 9.43879i 0.374272 + 0.648259i
\(213\) 0.101021 + 0.142865i 0.00692181 + 0.00978892i
\(214\) 6.00000 10.3923i 0.410152 0.710403i
\(215\) −10.0000 −0.681994
\(216\) −5.00000 + 1.41421i −0.340207 + 0.0962250i
\(217\) −6.00000 −0.407307
\(218\) −6.34847 + 10.9959i −0.429973 + 0.744734i
\(219\) −6.89898 9.75663i −0.466190 0.659292i
\(220\) 1.44949 + 2.51059i 0.0977246 + 0.169264i
\(221\) −4.89898 8.48528i −0.329541 0.570782i
\(222\) −20.3485 + 1.87492i −1.36570 + 0.125836i
\(223\) 5.55051 9.61377i 0.371690 0.643785i −0.618136 0.786071i \(-0.712112\pi\)
0.989826 + 0.142286i \(0.0454452\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 5.65153 + 6.61037i 0.376769 + 0.440691i
\(226\) −6.10102 −0.405834
\(227\) 2.72474 4.71940i 0.180848 0.313237i −0.761322 0.648374i \(-0.775449\pi\)
0.942169 + 0.335137i \(0.108783\pi\)
\(228\) 1.84847 4.01229i 0.122418 0.265720i
\(229\) −0.623724 1.08032i −0.0412169 0.0713897i 0.844681 0.535270i \(-0.179790\pi\)
−0.885898 + 0.463880i \(0.846457\pi\)
\(230\) −0.724745 1.25529i −0.0477883 0.0827717i
\(231\) −1.44949 + 3.14626i −0.0953694 + 0.207009i
\(232\) 3.44949 5.97469i 0.226470 0.392258i
\(233\) −7.00000 −0.458585 −0.229293 0.973358i \(-0.573641\pi\)
−0.229293 + 0.973358i \(0.573641\pi\)
\(234\) −4.89898 + 13.8564i −0.320256 + 0.905822i
\(235\) −14.2020 −0.926439
\(236\) 1.00000 1.73205i 0.0650945 0.112747i
\(237\) 3.27526 0.301783i 0.212751 0.0196029i
\(238\) 1.00000 + 1.73205i 0.0648204 + 0.112272i
\(239\) −3.39898 5.88721i −0.219862 0.380812i 0.734904 0.678171i \(-0.237227\pi\)
−0.954766 + 0.297360i \(0.903894\pi\)
\(240\) −1.44949 2.04989i −0.0935642 0.132320i
\(241\) −0.449490 + 0.778539i −0.0289542 + 0.0501501i −0.880139 0.474715i \(-0.842551\pi\)
0.851185 + 0.524865i \(0.175884\pi\)
\(242\) −7.00000 −0.449977
\(243\) 1.00000 15.5563i 0.0641500 0.997940i
\(244\) 6.55051 0.419353
\(245\) 0.724745 1.25529i 0.0463023 0.0801979i
\(246\) 9.79796 + 13.8564i 0.624695 + 0.883452i
\(247\) −6.24745 10.8209i −0.397516 0.688517i
\(248\) −3.00000 5.19615i −0.190500 0.329956i
\(249\) −3.44949 + 0.317837i −0.218603 + 0.0201421i
\(250\) −5.72474 + 9.91555i −0.362065 + 0.627114i
\(251\) 17.4495 1.10140 0.550701 0.834703i \(-0.314360\pi\)
0.550701 + 0.834703i \(0.314360\pi\)
\(252\) 1.00000 2.82843i 0.0629941 0.178174i
\(253\) −2.00000 −0.125739
\(254\) 1.50000 2.59808i 0.0941184 0.163018i
\(255\) −2.10102 + 4.56048i −0.131571 + 0.285588i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −4.10102 7.10318i −0.255815 0.443084i 0.709302 0.704905i \(-0.249010\pi\)
−0.965116 + 0.261821i \(0.915677\pi\)
\(258\) 5.00000 10.8530i 0.311286 0.675679i
\(259\) 5.89898 10.2173i 0.366545 0.634874i
\(260\) −7.10102 −0.440387
\(261\) 13.4495 + 15.7313i 0.832503 + 0.973744i
\(262\) −8.55051 −0.528252
\(263\) −12.9495 + 22.4292i −0.798500 + 1.38304i 0.122093 + 0.992519i \(0.461039\pi\)
−0.920593 + 0.390523i \(0.872294\pi\)
\(264\) −3.44949 + 0.317837i −0.212301 + 0.0195615i
\(265\) −7.89898 13.6814i −0.485230 0.840444i
\(266\) 1.27526 + 2.20881i 0.0781909 + 0.135431i
\(267\) −16.8990 23.8988i −1.03420 1.46258i
\(268\) 6.44949 11.1708i 0.393965 0.682368i
\(269\) −18.3485 −1.11873 −0.559363 0.828923i \(-0.688954\pi\)
−0.559363 + 0.828923i \(0.688954\pi\)
\(270\) 7.24745 2.04989i 0.441066 0.124752i
\(271\) 7.10102 0.431356 0.215678 0.976465i \(-0.430804\pi\)
0.215678 + 0.976465i \(0.430804\pi\)
\(272\) −1.00000 + 1.73205i −0.0606339 + 0.105021i
\(273\) −4.89898 6.92820i −0.296500 0.419314i
\(274\) −3.89898 6.75323i −0.235546 0.407978i
\(275\) 2.89898 + 5.02118i 0.174815 + 0.302789i
\(276\) 1.72474 0.158919i 0.103817 0.00956578i
\(277\) 9.34847 16.1920i 0.561695 0.972884i −0.435654 0.900114i \(-0.643483\pi\)
0.997349 0.0727700i \(-0.0231839\pi\)
\(278\) 4.55051 0.272921
\(279\) 17.6969 3.28913i 1.05949 0.196915i
\(280\) 1.44949 0.0866236
\(281\) 9.50000 16.4545i 0.566722 0.981592i −0.430165 0.902750i \(-0.641545\pi\)
0.996887 0.0788417i \(-0.0251222\pi\)
\(282\) 7.10102 15.4135i 0.422860 0.917860i
\(283\) 12.7247 + 22.0399i 0.756408 + 1.31014i 0.944672 + 0.328018i \(0.106381\pi\)
−0.188264 + 0.982118i \(0.560286\pi\)
\(284\) −0.0505103 0.0874863i −0.00299723 0.00519136i
\(285\) −2.67934 + 5.81577i −0.158710 + 0.344497i
\(286\) −4.89898 + 8.48528i −0.289683 + 0.501745i
\(287\) −9.79796 −0.578355
\(288\) 2.94949 0.548188i 0.173800 0.0323023i
\(289\) −13.0000 −0.764706
\(290\) −5.00000 + 8.66025i −0.293610 + 0.508548i
\(291\) −5.00000 + 0.460702i −0.293105 + 0.0270068i
\(292\) 3.44949 + 5.97469i 0.201866 + 0.349642i
\(293\) −1.37628 2.38378i −0.0804029 0.139262i 0.823020 0.568012i \(-0.192287\pi\)
−0.903423 + 0.428750i \(0.858954\pi\)
\(294\) 1.00000 + 1.41421i 0.0583212 + 0.0824786i
\(295\) −1.44949 + 2.51059i −0.0843926 + 0.146172i
\(296\) 11.7980 0.685742
\(297\) 2.55051 10.0745i 0.147996 0.584580i
\(298\) −6.00000 −0.347571
\(299\) 2.44949 4.24264i 0.141658 0.245358i
\(300\) −2.89898 4.09978i −0.167373 0.236701i
\(301\) 3.44949 + 5.97469i 0.198825 + 0.344375i
\(302\) 2.50000 + 4.33013i 0.143859 + 0.249171i
\(303\) 29.7474 2.74094i 1.70895 0.157463i
\(304\) −1.27526 + 2.20881i −0.0731409 + 0.126684i
\(305\) −9.49490 −0.543676
\(306\) −3.89898 4.56048i −0.222890 0.260705i
\(307\) 25.2474 1.44095 0.720474 0.693482i \(-0.243924\pi\)
0.720474 + 0.693482i \(0.243924\pi\)
\(308\) 1.00000 1.73205i 0.0569803 0.0986928i
\(309\) 10.1464 22.0239i 0.577210 1.25289i
\(310\) 4.34847 + 7.53177i 0.246976 + 0.427776i
\(311\) −15.3485 26.5843i −0.870332 1.50746i −0.861654 0.507497i \(-0.830571\pi\)
−0.00867810 0.999962i \(-0.502762\pi\)
\(312\) 3.55051 7.70674i 0.201008 0.436308i
\(313\) 2.34847 4.06767i 0.132743 0.229918i −0.791990 0.610534i \(-0.790955\pi\)
0.924733 + 0.380616i \(0.124288\pi\)
\(314\) −8.34847 −0.471131
\(315\) −1.44949 + 4.09978i −0.0816695 + 0.230996i
\(316\) −1.89898 −0.106826
\(317\) −10.3485 + 17.9241i −0.581228 + 1.00672i 0.414106 + 0.910229i \(0.364094\pi\)
−0.995334 + 0.0964878i \(0.969239\pi\)
\(318\) 18.7980 1.73205i 1.05414 0.0971286i
\(319\) 6.89898 + 11.9494i 0.386269 + 0.669037i
\(320\) 0.724745 + 1.25529i 0.0405145 + 0.0701731i
\(321\) −12.0000 16.9706i −0.669775 0.947204i
\(322\) −0.500000 + 0.866025i −0.0278639 + 0.0482617i
\(323\) 5.10102 0.283828
\(324\) −1.39898 + 8.89060i −0.0777211 + 0.493922i
\(325\) −14.2020 −0.787787
\(326\) 9.89898 17.1455i 0.548254 0.949603i
\(327\) 12.6969 + 17.9562i 0.702142 + 0.992979i
\(328\) −4.89898 8.48528i −0.270501 0.468521i
\(329\) 4.89898 + 8.48528i 0.270089 + 0.467809i
\(330\) 5.00000 0.460702i 0.275241 0.0253608i
\(331\) −2.34847 + 4.06767i −0.129084 + 0.223579i −0.923322 0.384027i \(-0.874537\pi\)
0.794238 + 0.607606i \(0.207870\pi\)
\(332\) 2.00000 0.109764
\(333\) −11.7980 + 33.3697i −0.646524 + 1.82865i
\(334\) −10.6969 −0.585310
\(335\) −9.34847 + 16.1920i −0.510761 + 0.884665i
\(336\) −0.724745 + 1.57313i −0.0395381 + 0.0858214i
\(337\) 11.6969 + 20.2597i 0.637173 + 1.10362i 0.986050 + 0.166447i \(0.0532296\pi\)
−0.348877 + 0.937168i \(0.613437\pi\)
\(338\) −5.50000 9.52628i −0.299161 0.518161i
\(339\) −4.42168 + 9.59771i −0.240153 + 0.521276i
\(340\) 1.44949 2.51059i 0.0786096 0.136156i
\(341\) 12.0000 0.649836
\(342\) −4.97219 5.81577i −0.268865 0.314481i
\(343\) −1.00000 −0.0539949
\(344\) −3.44949 + 5.97469i −0.185984 + 0.322134i
\(345\) −2.50000 + 0.230351i −0.134595 + 0.0124017i
\(346\) 1.55051 + 2.68556i 0.0833559 + 0.144377i
\(347\) −9.79796 16.9706i −0.525982 0.911028i −0.999542 0.0302659i \(-0.990365\pi\)
0.473560 0.880762i \(-0.342969\pi\)
\(348\) −6.89898 9.75663i −0.369824 0.523010i
\(349\) −5.55051 + 9.61377i −0.297112 + 0.514613i −0.975474 0.220115i \(-0.929357\pi\)
0.678362 + 0.734728i \(0.262690\pi\)
\(350\) 2.89898 0.154957
\(351\) 18.2474 + 17.7491i 0.973977 + 0.947377i
\(352\) 2.00000 0.106600
\(353\) 3.00000 5.19615i 0.159674 0.276563i −0.775077 0.631867i \(-0.782289\pi\)
0.934751 + 0.355303i \(0.115622\pi\)
\(354\) −2.00000 2.82843i −0.106299 0.150329i
\(355\) 0.0732141 + 0.126811i 0.00388580 + 0.00673040i
\(356\) 8.44949 + 14.6349i 0.447822 + 0.775651i
\(357\) 3.44949 0.317837i 0.182566 0.0168217i
\(358\) −10.3485 + 17.9241i −0.546934 + 0.947317i
\(359\) −8.79796 −0.464339 −0.232169 0.972675i \(-0.574582\pi\)
−0.232169 + 0.972675i \(0.574582\pi\)
\(360\) −4.27526 + 0.794593i −0.225326 + 0.0418787i
\(361\) −12.4949 −0.657626
\(362\) 5.17423 8.96204i 0.271952 0.471034i
\(363\) −5.07321 + 11.0119i −0.266275 + 0.577976i
\(364\) 2.44949 + 4.24264i 0.128388 + 0.222375i
\(365\) −5.00000 8.66025i −0.261712 0.453298i
\(366\) 4.74745 10.3048i 0.248153 0.538641i
\(367\) 6.89898 11.9494i 0.360124 0.623753i −0.627857 0.778329i \(-0.716068\pi\)
0.987981 + 0.154576i \(0.0494011\pi\)
\(368\) −1.00000 −0.0521286
\(369\) 28.8990 5.37113i 1.50442 0.279610i
\(370\) −17.1010 −0.889040
\(371\) −5.44949 + 9.43879i −0.282923 + 0.490038i
\(372\) −10.3485 + 0.953512i −0.536543 + 0.0494373i
\(373\) 3.44949 + 5.97469i 0.178608 + 0.309358i 0.941404 0.337281i \(-0.109507\pi\)
−0.762796 + 0.646639i \(0.776174\pi\)
\(374\) −2.00000 3.46410i −0.103418 0.179124i
\(375\) 11.4495 + 16.1920i 0.591249 + 0.836153i
\(376\) −4.89898 + 8.48528i −0.252646 + 0.437595i
\(377\) −33.7980 −1.74068
\(378\) −3.72474 3.62302i −0.191580 0.186348i
\(379\) 22.4949 1.15549 0.577743 0.816219i \(-0.303934\pi\)
0.577743 + 0.816219i \(0.303934\pi\)
\(380\) 1.84847 3.20164i 0.0948245 0.164241i
\(381\) −3.00000 4.24264i −0.153695 0.217357i
\(382\) −2.05051 3.55159i −0.104913 0.181715i
\(383\) 1.44949 + 2.51059i 0.0740655 + 0.128285i 0.900679 0.434484i \(-0.143069\pi\)
−0.826614 + 0.562769i \(0.809736\pi\)
\(384\) −1.72474 + 0.158919i −0.0880155 + 0.00810978i
\(385\) −1.44949 + 2.51059i −0.0738728 + 0.127952i
\(386\) −17.8990 −0.911034
\(387\) −13.4495 15.7313i −0.683676 0.799668i
\(388\) 2.89898 0.147173
\(389\) 12.4495 21.5631i 0.631214 1.09330i −0.356090 0.934452i \(-0.615890\pi\)
0.987304 0.158843i \(-0.0507764\pi\)
\(390\) −5.14643 + 11.1708i −0.260600 + 0.565658i
\(391\) 1.00000 + 1.73205i 0.0505722 + 0.0875936i
\(392\) −0.500000 0.866025i −0.0252538 0.0437409i
\(393\) −6.19694 + 13.4511i −0.312594 + 0.678517i
\(394\) −8.34847 + 14.4600i −0.420590 + 0.728483i
\(395\) 2.75255 0.138496
\(396\) −2.00000 + 5.65685i −0.100504 + 0.284268i
\(397\) 38.6969 1.94214 0.971072 0.238788i \(-0.0767500\pi\)
0.971072 + 0.238788i \(0.0767500\pi\)
\(398\) 1.44949 2.51059i 0.0726564 0.125844i
\(399\) 4.39898 0.405324i 0.220224 0.0202916i
\(400\) 1.44949 + 2.51059i 0.0724745 + 0.125529i
\(401\) 9.94949 + 17.2330i 0.496854 + 0.860576i 0.999993 0.00362911i \(-0.00115518\pi\)
−0.503140 + 0.864205i \(0.667822\pi\)
\(402\) −12.8990 18.2419i −0.643343 0.909824i
\(403\) −14.6969 + 25.4558i −0.732107 + 1.26805i
\(404\) −17.2474 −0.858093
\(405\) 2.02781 12.8868i 0.100763 0.640352i
\(406\) 6.89898 0.342391
\(407\) −11.7980 + 20.4347i −0.584803 + 1.01291i
\(408\) 2.00000 + 2.82843i 0.0990148 + 0.140028i
\(409\) 6.89898 + 11.9494i 0.341133 + 0.590859i 0.984643 0.174578i \(-0.0558562\pi\)
−0.643511 + 0.765437i \(0.722523\pi\)
\(410\) 7.10102 + 12.2993i 0.350694 + 0.607421i
\(411\) −13.4495 + 1.23924i −0.663414 + 0.0611272i
\(412\) −7.00000 + 12.1244i −0.344865 + 0.597324i
\(413\) 2.00000 0.0984136
\(414\) 1.00000 2.82843i 0.0491473 0.139010i
\(415\) −2.89898 −0.142305
\(416\) −2.44949 + 4.24264i −0.120096 + 0.208013i
\(417\) 3.29796 7.15855i 0.161502 0.350556i
\(418\) −2.55051 4.41761i −0.124750 0.216073i
\(419\) −14.7247 25.5040i −0.719351 1.24595i −0.961257 0.275653i \(-0.911106\pi\)
0.241906 0.970300i \(-0.422227\pi\)
\(420\) 1.05051 2.28024i 0.0512597 0.111264i
\(421\) −11.4495 + 19.8311i −0.558014 + 0.966509i 0.439648 + 0.898170i \(0.355103\pi\)
−0.997662 + 0.0683385i \(0.978230\pi\)
\(422\) 12.8990 0.627912
\(423\) −19.1010 22.3417i −0.928723 1.08629i
\(424\) −10.8990 −0.529301
\(425\) 2.89898 5.02118i 0.140621 0.243563i
\(426\) −0.174235 + 0.0160540i −0.00844169 + 0.000777821i
\(427\) 3.27526 + 5.67291i 0.158501 + 0.274531i
\(428\) 6.00000 + 10.3923i 0.290021 + 0.502331i
\(429\) 9.79796 + 13.8564i 0.473050 + 0.668994i
\(430\) 5.00000 8.66025i 0.241121 0.417635i
\(431\) 31.5959 1.52192 0.760961 0.648798i \(-0.224728\pi\)
0.760961 + 0.648798i \(0.224728\pi\)
\(432\) 1.27526 5.03723i 0.0613557 0.242354i
\(433\) −7.79796 −0.374746 −0.187373 0.982289i \(-0.559997\pi\)
−0.187373 + 0.982289i \(0.559997\pi\)
\(434\) 3.00000 5.19615i 0.144005 0.249423i
\(435\) 10.0000 + 14.1421i 0.479463 + 0.678064i
\(436\) −6.34847 10.9959i −0.304037 0.526607i
\(437\) 1.27526 + 2.20881i 0.0610037 + 0.105662i
\(438\) 11.8990 1.09638i 0.568555 0.0523869i
\(439\) −1.10102 + 1.90702i −0.0525488 + 0.0910173i −0.891103 0.453801i \(-0.850068\pi\)
0.838554 + 0.544818i \(0.183401\pi\)
\(440\) −2.89898 −0.138203
\(441\) 2.94949 0.548188i 0.140452 0.0261042i
\(442\) 9.79796 0.466041
\(443\) 7.44949 12.9029i 0.353936 0.613035i −0.632999 0.774152i \(-0.718176\pi\)
0.986935 + 0.161117i \(0.0515098\pi\)
\(444\) 8.55051 18.5597i 0.405789 0.880807i
\(445\) −12.2474 21.2132i −0.580585 1.00560i
\(446\) 5.55051 + 9.61377i 0.262824 + 0.455225i
\(447\) −4.34847 + 9.43879i −0.205676 + 0.446440i
\(448\) 0.500000 0.866025i 0.0236228 0.0409159i
\(449\) 20.5959 0.971981 0.485991 0.873964i \(-0.338459\pi\)
0.485991 + 0.873964i \(0.338459\pi\)
\(450\) −8.55051 + 1.58919i −0.403075 + 0.0749150i
\(451\) 19.5959 0.922736
\(452\) 3.05051 5.28364i 0.143484 0.248521i
\(453\) 8.62372 0.794593i 0.405178 0.0373332i
\(454\) 2.72474 + 4.71940i 0.127879 + 0.221492i
\(455\) −3.55051 6.14966i −0.166450 0.288301i
\(456\) 2.55051 + 3.60697i 0.119439 + 0.168912i
\(457\) 8.74745 15.1510i 0.409188 0.708735i −0.585611 0.810593i \(-0.699145\pi\)
0.994799 + 0.101857i \(0.0324785\pi\)
\(458\) 1.24745 0.0582895
\(459\) −10.0000 + 2.82843i −0.466760 + 0.132020i
\(460\) 1.44949 0.0675828
\(461\) −2.82577 + 4.89437i −0.131609 + 0.227954i −0.924297 0.381674i \(-0.875348\pi\)
0.792688 + 0.609628i \(0.208681\pi\)
\(462\) −2.00000 2.82843i −0.0930484 0.131590i
\(463\) −1.84847 3.20164i −0.0859057 0.148793i 0.819871 0.572548i \(-0.194045\pi\)
−0.905777 + 0.423755i \(0.860712\pi\)
\(464\) 3.44949 + 5.97469i 0.160139 + 0.277368i
\(465\) 15.0000 1.38211i 0.695608 0.0640936i
\(466\) 3.50000 6.06218i 0.162134 0.280825i
\(467\) 10.0000 0.462745 0.231372 0.972865i \(-0.425678\pi\)
0.231372 + 0.972865i \(0.425678\pi\)
\(468\) −9.55051 11.1708i −0.441472 0.516372i
\(469\) 12.8990 0.595620
\(470\) 7.10102 12.2993i 0.327546 0.567326i
\(471\) −6.05051 + 13.1332i −0.278793 + 0.605148i
\(472\) 1.00000 + 1.73205i 0.0460287 + 0.0797241i
\(473\) −6.89898 11.9494i −0.317215 0.549433i
\(474\) −1.37628 + 2.98735i −0.0632144 + 0.137213i
\(475\) 3.69694 6.40329i 0.169627 0.293803i
\(476\) −2.00000 −0.0916698
\(477\) 10.8990 30.8270i 0.499030 1.41147i
\(478\) 6.79796 0.310931
\(479\) −4.79796 + 8.31031i −0.219224 + 0.379708i −0.954571 0.297983i \(-0.903686\pi\)
0.735347 + 0.677691i \(0.237019\pi\)
\(480\) 2.50000 0.230351i 0.114109 0.0105140i
\(481\) −28.8990 50.0545i −1.31768 2.28229i
\(482\) −0.449490 0.778539i −0.0204737 0.0354615i
\(483\) 1.00000 + 1.41421i 0.0455016 + 0.0643489i
\(484\) 3.50000 6.06218i 0.159091 0.275554i
\(485\) −4.20204 −0.190805
\(486\) 12.9722 + 8.64420i 0.588431 + 0.392109i
\(487\) −36.3939 −1.64916 −0.824582 0.565742i \(-0.808590\pi\)
−0.824582 + 0.565742i \(0.808590\pi\)
\(488\) −3.27526 + 5.67291i −0.148264 + 0.256800i
\(489\) −19.7980 27.9985i −0.895295 1.26614i
\(490\) 0.724745 + 1.25529i 0.0327406 + 0.0567084i
\(491\) −7.89898 13.6814i −0.356476 0.617434i 0.630893 0.775869i \(-0.282688\pi\)
−0.987369 + 0.158435i \(0.949355\pi\)
\(492\) −16.8990 + 1.55708i −0.761865 + 0.0701985i
\(493\) 6.89898 11.9494i 0.310714 0.538173i
\(494\) 12.4949 0.562172
\(495\) 2.89898 8.19955i 0.130299 0.368542i
\(496\) 6.00000 0.269408
\(497\) 0.0505103 0.0874863i 0.00226569 0.00392430i
\(498\) 1.44949 3.14626i 0.0649532 0.140987i
\(499\) 12.6969 + 21.9917i 0.568393 + 0.984486i 0.996725 + 0.0808642i \(0.0257680\pi\)
−0.428332 + 0.903621i \(0.640899\pi\)
\(500\) −5.72474 9.91555i −0.256018 0.443437i
\(501\) −7.75255 + 16.8277i −0.346358 + 0.751806i
\(502\) −8.72474 + 15.1117i −0.389404 + 0.674468i
\(503\) −24.4949 −1.09217 −0.546087 0.837729i \(-0.683883\pi\)
−0.546087 + 0.837729i \(0.683883\pi\)
\(504\) 1.94949 + 2.28024i 0.0868372 + 0.101570i
\(505\) 25.0000 1.11249
\(506\) 1.00000 1.73205i 0.0444554 0.0769991i
\(507\) −18.9722 + 1.74810i −0.842585 + 0.0776361i
\(508\) 1.50000 + 2.59808i 0.0665517 + 0.115271i
\(509\) 3.55051 + 6.14966i 0.157374 + 0.272579i 0.933921 0.357480i \(-0.116364\pi\)
−0.776547 + 0.630059i \(0.783031\pi\)
\(510\) −2.89898 4.09978i −0.128369 0.181541i
\(511\) −3.44949 + 5.97469i −0.152596 + 0.264305i
\(512\) 1.00000 0.0441942
\(513\) −12.7526 + 3.60697i −0.563039 + 0.159251i
\(514\) 8.20204 0.361777
\(515\) 10.1464 17.5741i 0.447105 0.774409i
\(516\) 6.89898 + 9.75663i 0.303711 + 0.429512i
\(517\) −9.79796 16.9706i −0.430914 0.746364i
\(518\) 5.89898 + 10.2173i 0.259186 + 0.448924i
\(519\) 5.34847 0.492810i 0.234772 0.0216320i
\(520\) 3.55051 6.14966i 0.155700 0.269681i
\(521\) −9.30306 −0.407575 −0.203787 0.979015i \(-0.565325\pi\)
−0.203787 + 0.979015i \(0.565325\pi\)
\(522\) −20.3485 + 3.78194i −0.890628 + 0.165531i
\(523\) −14.3485 −0.627415 −0.313707 0.949520i \(-0.601571\pi\)
−0.313707 + 0.949520i \(0.601571\pi\)
\(524\) 4.27526 7.40496i 0.186765 0.323487i
\(525\) 2.10102 4.56048i 0.0916961 0.199036i
\(526\) −12.9495 22.4292i −0.564625 0.977958i
\(527\) −6.00000 10.3923i −0.261364 0.452696i
\(528\) 1.44949 3.14626i 0.0630809 0.136924i
\(529\) 11.0000 19.0526i 0.478261 0.828372i
\(530\) 15.7980 0.686219
\(531\) −5.89898 + 1.09638i −0.255994 + 0.0475787i
\(532\) −2.55051 −0.110579
\(533\) −24.0000 + 41.5692i −1.03956 + 1.80056i
\(534\) 29.1464 2.68556i 1.26129 0.116216i
\(535\) −8.69694 15.0635i −0.376001 0.651254i
\(536\) 6.44949 + 11.1708i 0.278576 + 0.482507i
\(537\) 20.6969 + 29.2699i 0.893139 + 1.26309i
\(538\) 9.17423 15.8902i 0.395529 0.685077i
\(539\) 2.00000 0.0861461
\(540\) −1.84847 + 7.30142i −0.0795455 + 0.314203i
\(541\) −18.4949 −0.795158 −0.397579 0.917568i \(-0.630149\pi\)
−0.397579 + 0.917568i \(0.630149\pi\)
\(542\) −3.55051 + 6.14966i −0.152507 + 0.264151i
\(543\) −10.3485 14.6349i −0.444095 0.628046i
\(544\) −1.00000 1.73205i −0.0428746 0.0742611i
\(545\) 9.20204 + 15.9384i 0.394172 + 0.682726i
\(546\) 8.44949 0.778539i 0.361605 0.0333184i
\(547\) 3.79796 6.57826i 0.162389 0.281266i −0.773336 0.633996i \(-0.781413\pi\)
0.935725 + 0.352730i \(0.114747\pi\)
\(548\) 7.79796 0.333112
\(549\) −12.7702 14.9367i −0.545017 0.637484i
\(550\) −5.79796 −0.247226
\(551\) 8.79796 15.2385i 0.374806 0.649182i
\(552\) −0.724745 + 1.57313i −0.0308472 + 0.0669570i
\(553\) −0.949490 1.64456i −0.0403764 0.0699340i
\(554\) 9.34847 + 16.1920i 0.397178 + 0.687933i
\(555\) −12.3939 + 26.9022i −0.526091 + 1.14193i
\(556\) −2.27526 + 3.94086i −0.0964923 + 0.167130i
\(557\) −12.8990 −0.546547 −0.273274 0.961936i \(-0.588106\pi\)
−0.273274 + 0.961936i \(0.588106\pi\)
\(558\) −6.00000 + 16.9706i −0.254000 + 0.718421i
\(559\) 33.7980 1.42950
\(560\) −0.724745 + 1.25529i −0.0306261 + 0.0530459i
\(561\) −6.89898 + 0.635674i −0.291275 + 0.0268382i
\(562\) 9.50000 + 16.4545i 0.400733 + 0.694090i
\(563\) 19.9722 + 34.5929i 0.841728 + 1.45791i 0.888433 + 0.459006i \(0.151794\pi\)
−0.0467054 + 0.998909i \(0.514872\pi\)
\(564\) 9.79796 + 13.8564i 0.412568 + 0.583460i
\(565\) −4.42168 + 7.65858i −0.186022 + 0.322199i
\(566\) −25.4495 −1.06972
\(567\) −8.39898 + 3.23375i −0.352724 + 0.135805i
\(568\) 0.101021 0.00423873
\(569\) 15.0000 25.9808i 0.628833 1.08917i −0.358954 0.933355i \(-0.616866\pi\)
0.987786 0.155815i \(-0.0498003\pi\)
\(570\) −3.69694 5.22826i −0.154848 0.218988i
\(571\) −16.8990 29.2699i −0.707200 1.22491i −0.965892 0.258947i \(-0.916625\pi\)
0.258691 0.965960i \(-0.416709\pi\)
\(572\) −4.89898 8.48528i −0.204837 0.354787i
\(573\) −7.07321 + 0.651729i −0.295488 + 0.0272263i
\(574\) 4.89898 8.48528i 0.204479 0.354169i
\(575\) 2.89898 0.120896
\(576\) −1.00000 + 2.82843i −0.0416667 + 0.117851i
\(577\) −15.5959 −0.649267 −0.324633 0.945840i \(-0.605241\pi\)
−0.324633 + 0.945840i \(0.605241\pi\)
\(578\) 6.50000 11.2583i 0.270364 0.468285i
\(579\) −12.9722 + 28.1575i −0.539106 + 1.17018i
\(580\) −5.00000 8.66025i −0.207614 0.359597i
\(581\) 1.00000 + 1.73205i 0.0414870 + 0.0718576i
\(582\) 2.10102 4.56048i 0.0870901 0.189038i
\(583\) 10.8990 18.8776i 0.451390 0.781830i
\(584\) −6.89898 −0.285482
\(585\) 13.8434 + 16.1920i 0.572353 + 0.669458i
\(586\) 2.75255 0.113707
\(587\) −8.07321 + 13.9832i −0.333217 + 0.577149i −0.983141 0.182850i \(-0.941468\pi\)
0.649924 + 0.760000i \(0.274801\pi\)
\(588\) −1.72474 + 0.158919i −0.0711273 + 0.00655369i
\(589\) −7.65153 13.2528i −0.315276 0.546074i
\(590\) −1.44949 2.51059i −0.0596745 0.103359i
\(591\) 16.6969 + 23.6130i 0.686820 + 0.971311i
\(592\) −5.89898 + 10.2173i −0.242447 + 0.419930i
\(593\) 14.6969 0.603531 0.301765 0.953382i \(-0.402424\pi\)
0.301765 + 0.953382i \(0.402424\pi\)
\(594\) 7.44949 + 7.24604i 0.305656 + 0.297309i
\(595\) 2.89898 0.118847
\(596\) 3.00000 5.19615i 0.122885 0.212843i
\(597\) −2.89898 4.09978i −0.118647 0.167793i
\(598\) 2.44949 + 4.24264i 0.100167 + 0.173494i
\(599\) 16.8990 + 29.2699i 0.690474 + 1.19594i 0.971683 + 0.236289i \(0.0759312\pi\)
−0.281209 + 0.959646i \(0.590736\pi\)
\(600\) 5.00000 0.460702i 0.204124 0.0188081i
\(601\) −8.34847 + 14.4600i −0.340541 + 0.589835i −0.984533 0.175198i \(-0.943944\pi\)
0.643992 + 0.765032i \(0.277277\pi\)
\(602\) −6.89898 −0.281181
\(603\) −38.0454 + 7.07107i −1.54933 + 0.287956i
\(604\) −5.00000 −0.203447
\(605\) −5.07321 + 8.78706i −0.206255 + 0.357245i
\(606\) −12.5000 + 27.1325i −0.507778 + 1.10218i
\(607\) −10.3485 17.9241i −0.420031 0.727516i 0.575911 0.817513i \(-0.304648\pi\)
−0.995942 + 0.0899969i \(0.971314\pi\)
\(608\) −1.27526 2.20881i −0.0517184 0.0895789i
\(609\) 5.00000 10.8530i 0.202610 0.439786i
\(610\) 4.74745 8.22282i 0.192219 0.332932i
\(611\) 48.0000 1.94187
\(612\) 5.89898 1.09638i 0.238452 0.0443184i
\(613\) −14.6969 −0.593604 −0.296802 0.954939i \(-0.595920\pi\)
−0.296802 + 0.954939i \(0.595920\pi\)
\(614\) −12.6237 + 21.8649i −0.509452 + 0.882397i
\(615\) 24.4949 2.25697i 0.987730 0.0910098i
\(616\) 1.00000 + 1.73205i 0.0402911 + 0.0697863i
\(617\) 7.69694 + 13.3315i 0.309867 + 0.536706i 0.978333 0.207037i \(-0.0663821\pi\)
−0.668466 + 0.743743i \(0.733049\pi\)
\(618\) 14.0000 + 19.7990i 0.563163 + 0.796432i
\(619\) −15.0732 + 26.1076i −0.605844 + 1.04935i 0.386074 + 0.922468i \(0.373831\pi\)
−0.991918 + 0.126884i \(0.959502\pi\)
\(620\) −8.69694 −0.349277
\(621\) −3.72474 3.62302i −0.149469 0.145387i
\(622\) 30.6969 1.23084
\(623\) −8.44949 + 14.6349i −0.338522 + 0.586337i
\(624\) 4.89898 + 6.92820i 0.196116 + 0.277350i
\(625\) 1.05051 + 1.81954i 0.0420204 + 0.0727815i
\(626\) 2.34847 + 4.06767i 0.0938637 + 0.162577i
\(627\) −8.79796 + 0.810647i −0.351357 + 0.0323741i
\(628\) 4.17423 7.22999i 0.166570 0.288508i
\(629\) 23.5959 0.940831
\(630\) −2.82577 3.30518i −0.112581 0.131682i
\(631\) 27.8990 1.11064 0.555320 0.831636i \(-0.312596\pi\)
0.555320 + 0.831636i \(0.312596\pi\)
\(632\) 0.949490 1.64456i 0.0377687 0.0654173i
\(633\) 9.34847 20.2918i 0.371568 0.806527i
\(634\) −10.3485 17.9241i −0.410990 0.711856i
\(635\) −2.17423 3.76588i −0.0862819 0.149445i
\(636\) −7.89898 + 17.1455i −0.313215 + 0.679865i
\(637\) −2.44949 + 4.24264i −0.0970523 + 0.168100i
\(638\) −13.7980 −0.546266
\(639\) −0.101021 + 0.285729i −0.00399631 + 0.0113033i
\(640\) −1.44949 −0.0572961
\(641\) 3.74745 6.49077i 0.148015 0.256370i −0.782479 0.622678i \(-0.786045\pi\)
0.930494 + 0.366308i \(0.119378\pi\)
\(642\) 20.6969 1.90702i 0.816843 0.0752642i
\(643\) 19.6969 + 34.1161i 0.776771 + 1.34541i 0.933793 + 0.357812i \(0.116477\pi\)
−0.157022 + 0.987595i \(0.550189\pi\)
\(644\) −0.500000 0.866025i −0.0197028 0.0341262i
\(645\) −10.0000 14.1421i −0.393750 0.556846i
\(646\) −2.55051 + 4.41761i −0.100348 + 0.173809i
\(647\) −50.6969 −1.99310 −0.996551 0.0829807i \(-0.973556\pi\)
−0.996551 + 0.0829807i \(0.973556\pi\)
\(648\) −7.00000 5.65685i −0.274986 0.222222i
\(649\) −4.00000 −0.157014
\(650\) 7.10102 12.2993i 0.278525 0.482419i
\(651\) −6.00000 8.48528i −0.235159 0.332564i
\(652\) 9.89898 + 17.1455i 0.387674 + 0.671471i
\(653\) −4.89898 8.48528i −0.191712 0.332055i 0.754106 0.656753i \(-0.228071\pi\)
−0.945818 + 0.324698i \(0.894737\pi\)
\(654\) −21.8990 + 2.01778i −0.856318 + 0.0789014i
\(655\) −6.19694 + 10.7334i −0.242134 + 0.419389i
\(656\) 9.79796 0.382546
\(657\) 6.89898 19.5133i 0.269155 0.761285i
\(658\) −9.79796 −0.381964
\(659\) 12.3485 21.3882i 0.481028 0.833165i −0.518735 0.854935i \(-0.673597\pi\)
0.999763 + 0.0217701i \(0.00693018\pi\)
\(660\) −2.10102 + 4.56048i −0.0817821 + 0.177516i
\(661\) −2.27526 3.94086i −0.0884972 0.153282i 0.818379 0.574679i \(-0.194873\pi\)
−0.906876 + 0.421397i \(0.861540\pi\)
\(662\) −2.34847 4.06767i −0.0912758 0.158094i
\(663\) 7.10102 15.4135i 0.275781 0.598610i
\(664\) −1.00000 + 1.73205i −0.0388075 + 0.0672166i
\(665\) 3.69694 0.143361
\(666\) −23.0000 26.9022i −0.891232 1.04244i
\(667\) 6.89898 0.267130
\(668\) 5.34847 9.26382i 0.206938 0.358428i
\(669\) 19.1464 1.76416i 0.740244 0.0682063i
\(670\) −9.34847 16.1920i −0.361163 0.625552i
\(671\) −6.55051 11.3458i −0.252880 0.438000i
\(672\) −1.00000 1.41421i −0.0385758 0.0545545i
\(673\) 4.29796 7.44428i 0.165674 0.286956i −0.771220 0.636568i \(-0.780353\pi\)
0.936894 + 0.349612i \(0.113687\pi\)
\(674\) −23.3939 −0.901098
\(675\) −3.69694 + 14.6028i −0.142295 + 0.562063i
\(676\) 11.0000 0.423077
\(677\) −7.34847 + 12.7279i −0.282425 + 0.489174i −0.971981 0.235058i \(-0.924472\pi\)
0.689557 + 0.724232i \(0.257805\pi\)
\(678\) −6.10102 8.62815i −0.234308 0.331362i
\(679\) 1.44949 + 2.51059i 0.0556263 + 0.0963476i
\(680\) 1.44949 + 2.51059i 0.0555854 + 0.0962767i
\(681\) 9.39898 0.866025i 0.360170 0.0331862i
\(682\) −6.00000 + 10.3923i −0.229752 + 0.397942i
\(683\) 51.7980 1.98199 0.990997 0.133885i \(-0.0427452\pi\)
0.990997 + 0.133885i \(0.0427452\pi\)
\(684\) 7.52270 1.39816i 0.287638 0.0534600i
\(685\) −11.3031 −0.431868
\(686\) 0.500000 0.866025i 0.0190901 0.0330650i
\(687\) 0.904082 1.96240i 0.0344929 0.0748703i
\(688\) −3.44949 5.97469i −0.131511 0.227783i
\(689\) 26.6969 + 46.2405i 1.01707 + 1.76162i
\(690\) 1.05051 2.28024i 0.0399922 0.0868072i
\(691\) −25.5227 + 44.2066i −0.970929 + 1.68170i −0.278168 + 0.960533i \(0.589727\pi\)
−0.692762 + 0.721167i \(0.743606\pi\)
\(692\) −3.10102 −0.117883
\(693\) −5.89898 + 1.09638i −0.224084 + 0.0416479i
\(694\) 19.5959 0.743851
\(695\) 3.29796 5.71223i 0.125099 0.216677i
\(696\) 11.8990 1.09638i 0.451030 0.0415580i
\(697\) −9.79796 16.9706i −0.371124 0.642806i
\(698\) −5.55051 9.61377i −0.210090 0.363886i
\(699\) −7.00000 9.89949i −0.264764 0.374433i
\(700\) −1.44949 + 2.51059i −0.0547856 + 0.0948914i
\(701\) −7.39388 −0.279263 −0.139631 0.990204i \(-0.544592\pi\)
−0.139631 + 0.990204i \(0.544592\pi\)
\(702\) −24.4949 + 6.92820i −0.924500 + 0.261488i
\(703\) 30.0908 1.13490
\(704\) −1.00000 + 1.73205i −0.0376889 + 0.0652791i
\(705\) −14.2020 20.0847i −0.534880 0.756434i
\(706\) 3.00000 + 5.19615i 0.112906 + 0.195560i
\(707\) −8.62372 14.9367i −0.324329 0.561754i
\(708\) 3.44949 0.317837i 0.129640 0.0119451i
\(709\) −13.7980 + 23.8988i −0.518193 + 0.897537i 0.481583 + 0.876400i \(0.340062\pi\)
−0.999777 + 0.0211367i \(0.993271\pi\)
\(710\) −0.146428 −0.00549535
\(711\) 3.70204 + 4.33013i 0.138837 + 0.162392i
\(712\) −16.8990 −0.633316
\(713\) 3.00000 5.19615i 0.112351 0.194597i
\(714\) −1.44949 + 3.14626i −0.0542458 + 0.117746i
\(715\) 7.10102 + 12.2993i 0.265563 + 0.459969i
\(716\) −10.3485 17.9241i −0.386740 0.669854i
\(717\) 4.92679 10.6941i 0.183994 0.399378i
\(718\) 4.39898 7.61926i 0.164168 0.284348i
\(719\) 9.79796 0.365402 0.182701 0.983169i \(-0.441516\pi\)
0.182701 + 0.983169i \(0.441516\pi\)
\(720\) 1.44949 4.09978i 0.0540193 0.152790i
\(721\) −14.0000 −0.521387
\(722\) 6.24745 10.8209i 0.232506 0.402712i
\(723\) −1.55051 + 0.142865i −0.0576641 + 0.00531319i
\(724\) 5.17423 + 8.96204i 0.192299 + 0.333071i
\(725\) −10.0000 17.3205i −0.371391 0.643268i
\(726\) −7.00000 9.89949i −0.259794 0.367405i
\(727\) 4.24745 7.35680i 0.157529 0.272848i −0.776448 0.630181i \(-0.782981\pi\)
0.933977 + 0.357333i \(0.116314\pi\)
\(728\) −4.89898 −0.181568
\(729\) 23.0000 14.1421i 0.851852 0.523783i
\(730\) 10.0000 0.370117
\(731\) −6.89898 + 11.9494i −0.255168 + 0.441964i
\(732\) 6.55051 + 9.26382i 0.242114 + 0.342401i
\(733\) 8.72474 + 15.1117i 0.322256 + 0.558163i 0.980953 0.194245i \(-0.0622255\pi\)
−0.658697 + 0.752408i \(0.728892\pi\)
\(734\) 6.89898 + 11.9494i 0.254646 + 0.441060i
\(735\) 2.50000 0.230351i 0.0922139 0.00849662i
\(736\) 0.500000 0.866025i 0.0184302 0.0319221i
\(737\) −25.7980 −0.950280
\(738\) −9.79796 + 27.7128i −0.360668 + 1.02012i
\(739\) 13.5959 0.500134 0.250067 0.968229i \(-0.419547\pi\)
0.250067 + 0.968229i \(0.419547\pi\)
\(740\) 8.55051 14.8099i 0.314323 0.544423i
\(741\) 9.05561 19.6561i 0.332666 0.722086i
\(742\) −5.44949 9.43879i −0.200057 0.346509i
\(743\) −18.0000 31.1769i −0.660356 1.14377i −0.980522 0.196409i \(-0.937072\pi\)
0.320166 0.947361i \(-0.396261\pi\)
\(744\) 4.34847 9.43879i 0.159423 0.346043i
\(745\) −4.34847 + 7.53177i −0.159316 + 0.275943i
\(746\) −6.89898 −0.252590
\(747\) −3.89898 4.56048i −0.142656 0.166859i
\(748\) 4.00000 0.146254
\(749\) −6.00000 + 10.3923i −0.219235 + 0.379727i
\(750\) −19.7474 + 1.81954i −0.721075 + 0.0664401i
\(751\) −0.702041 1.21597i −0.0256178 0.0443714i 0.852932 0.522022i \(-0.174822\pi\)
−0.878550 + 0.477650i \(0.841489\pi\)
\(752\) −4.89898 8.48528i −0.178647 0.309426i
\(753\) 17.4495 + 24.6773i 0.635895 + 0.899291i
\(754\) 16.8990 29.2699i 0.615425 1.06595i
\(755\) 7.24745 0.263762
\(756\) 5.00000 1.41421i 0.181848 0.0514344i
\(757\) −35.3939 −1.28641 −0.643206 0.765693i \(-0.722396\pi\)
−0.643206 + 0.765693i \(0.722396\pi\)
\(758\) −11.2474 + 19.4812i −0.408526 + 0.707587i
\(759\) −2.00000 2.82843i −0.0725954 0.102665i
\(760\) 1.84847 + 3.20164i 0.0670510 + 0.116136i
\(761\) −1.00000 1.73205i −0.0362500 0.0627868i 0.847331 0.531065i \(-0.178208\pi\)
−0.883581 + 0.468278i \(0.844875\pi\)
\(762\) 5.17423 0.476756i 0.187443 0.0172710i
\(763\) 6.34847 10.9959i 0.229830 0.398077i
\(764\) 4.10102 0.148370
\(765\) −8.55051 + 1.58919i −0.309144 + 0.0574571i
\(766\) −2.89898 −0.104744
\(767\) 4.89898 8.48528i 0.176892 0.306386i
\(768\) 0.724745 1.57313i 0.0261520 0.0567655i
\(769\) 17.0454 + 29.5235i 0.614673 + 1.06465i 0.990442 + 0.137932i \(0.0440454\pi\)
−0.375769 + 0.926714i \(0.622621\pi\)
\(770\) −1.44949 2.51059i −0.0522360 0.0904754i
\(771\) 5.94439 12.9029i 0.214082 0.464686i
\(772\) 8.94949 15.5010i 0.322099 0.557892i
\(773\) 33.9444 1.22089 0.610447 0.792057i \(-0.290990\pi\)
0.610447 + 0.792057i \(0.290990\pi\)
\(774\) 20.3485 3.78194i 0.731411 0.135939i
\(775\) −17.3939