# Properties

 Label 126.2.f.b.43.1 Level $126$ Weight $2$ Character 126.43 Analytic conductor $1.006$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$126 = 2 \cdot 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 126.f (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.00611506547$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 43.1 Root $$0.500000 - 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 126.43 Dual form 126.2.f.b.85.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 - 0.866025i) q^{2} +(1.50000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.00000 - 1.73205i) q^{5} +(1.50000 - 0.866025i) q^{6} +(0.500000 - 0.866025i) q^{7} -1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +O(q^{10})$$ $$q+(0.500000 - 0.866025i) q^{2} +(1.50000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.00000 - 1.73205i) q^{5} +(1.50000 - 0.866025i) q^{6} +(0.500000 - 0.866025i) q^{7} -1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} -2.00000 q^{10} +(-0.500000 + 0.866025i) q^{11} -1.73205i q^{12} +(3.00000 + 5.19615i) q^{13} +(-0.500000 - 0.866025i) q^{14} -3.46410i q^{15} +(-0.500000 + 0.866025i) q^{16} -5.00000 q^{17} +3.00000 q^{18} -7.00000 q^{19} +(-1.00000 + 1.73205i) q^{20} +(1.50000 - 0.866025i) q^{21} +(0.500000 + 0.866025i) q^{22} +(-2.00000 - 3.46410i) q^{23} +(-1.50000 - 0.866025i) q^{24} +(0.500000 - 0.866025i) q^{25} +6.00000 q^{26} +5.19615i q^{27} -1.00000 q^{28} +(2.00000 - 3.46410i) q^{29} +(-3.00000 - 1.73205i) q^{30} +(3.00000 + 5.19615i) q^{31} +(0.500000 + 0.866025i) q^{32} +(-1.50000 + 0.866025i) q^{33} +(-2.50000 + 4.33013i) q^{34} -2.00000 q^{35} +(1.50000 - 2.59808i) q^{36} +2.00000 q^{37} +(-3.50000 + 6.06218i) q^{38} +10.3923i q^{39} +(1.00000 + 1.73205i) q^{40} +(-1.50000 - 2.59808i) q^{41} -1.73205i q^{42} +(0.500000 - 0.866025i) q^{43} +1.00000 q^{44} +(3.00000 - 5.19615i) q^{45} -4.00000 q^{46} +(-1.50000 + 0.866025i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(-0.500000 - 0.866025i) q^{50} +(-7.50000 - 4.33013i) q^{51} +(3.00000 - 5.19615i) q^{52} +12.0000 q^{53} +(4.50000 + 2.59808i) q^{54} +2.00000 q^{55} +(-0.500000 + 0.866025i) q^{56} +(-10.5000 - 6.06218i) q^{57} +(-2.00000 - 3.46410i) q^{58} +(3.50000 + 6.06218i) q^{59} +(-3.00000 + 1.73205i) q^{60} +(6.00000 - 10.3923i) q^{61} +6.00000 q^{62} +3.00000 q^{63} +1.00000 q^{64} +(6.00000 - 10.3923i) q^{65} +1.73205i q^{66} +(-6.50000 - 11.2583i) q^{67} +(2.50000 + 4.33013i) q^{68} -6.92820i q^{69} +(-1.00000 + 1.73205i) q^{70} -8.00000 q^{71} +(-1.50000 - 2.59808i) q^{72} +1.00000 q^{73} +(1.00000 - 1.73205i) q^{74} +(1.50000 - 0.866025i) q^{75} +(3.50000 + 6.06218i) q^{76} +(0.500000 + 0.866025i) q^{77} +(9.00000 + 5.19615i) q^{78} +(3.00000 - 5.19615i) q^{79} +2.00000 q^{80} +(-4.50000 + 7.79423i) q^{81} -3.00000 q^{82} +(-8.00000 + 13.8564i) q^{83} +(-1.50000 - 0.866025i) q^{84} +(5.00000 + 8.66025i) q^{85} +(-0.500000 - 0.866025i) q^{86} +(6.00000 - 3.46410i) q^{87} +(0.500000 - 0.866025i) q^{88} -6.00000 q^{89} +(-3.00000 - 5.19615i) q^{90} +6.00000 q^{91} +(-2.00000 + 3.46410i) q^{92} +10.3923i q^{93} +(7.00000 + 12.1244i) q^{95} +1.73205i q^{96} +(2.50000 - 4.33013i) q^{97} -1.00000 q^{98} -3.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + q^{2} + 3 q^{3} - q^{4} - 2 q^{5} + 3 q^{6} + q^{7} - 2 q^{8} + 3 q^{9}+O(q^{10})$$ 2 * q + q^2 + 3 * q^3 - q^4 - 2 * q^5 + 3 * q^6 + q^7 - 2 * q^8 + 3 * q^9 $$2 q + q^{2} + 3 q^{3} - q^{4} - 2 q^{5} + 3 q^{6} + q^{7} - 2 q^{8} + 3 q^{9} - 4 q^{10} - q^{11} + 6 q^{13} - q^{14} - q^{16} - 10 q^{17} + 6 q^{18} - 14 q^{19} - 2 q^{20} + 3 q^{21} + q^{22} - 4 q^{23} - 3 q^{24} + q^{25} + 12 q^{26} - 2 q^{28} + 4 q^{29} - 6 q^{30} + 6 q^{31} + q^{32} - 3 q^{33} - 5 q^{34} - 4 q^{35} + 3 q^{36} + 4 q^{37} - 7 q^{38} + 2 q^{40} - 3 q^{41} + q^{43} + 2 q^{44} + 6 q^{45} - 8 q^{46} - 3 q^{48} - q^{49} - q^{50} - 15 q^{51} + 6 q^{52} + 24 q^{53} + 9 q^{54} + 4 q^{55} - q^{56} - 21 q^{57} - 4 q^{58} + 7 q^{59} - 6 q^{60} + 12 q^{61} + 12 q^{62} + 6 q^{63} + 2 q^{64} + 12 q^{65} - 13 q^{67} + 5 q^{68} - 2 q^{70} - 16 q^{71} - 3 q^{72} + 2 q^{73} + 2 q^{74} + 3 q^{75} + 7 q^{76} + q^{77} + 18 q^{78} + 6 q^{79} + 4 q^{80} - 9 q^{81} - 6 q^{82} - 16 q^{83} - 3 q^{84} + 10 q^{85} - q^{86} + 12 q^{87} + q^{88} - 12 q^{89} - 6 q^{90} + 12 q^{91} - 4 q^{92} + 14 q^{95} + 5 q^{97} - 2 q^{98} - 6 q^{99}+O(q^{100})$$ 2 * q + q^2 + 3 * q^3 - q^4 - 2 * q^5 + 3 * q^6 + q^7 - 2 * q^8 + 3 * q^9 - 4 * q^10 - q^11 + 6 * q^13 - q^14 - q^16 - 10 * q^17 + 6 * q^18 - 14 * q^19 - 2 * q^20 + 3 * q^21 + q^22 - 4 * q^23 - 3 * q^24 + q^25 + 12 * q^26 - 2 * q^28 + 4 * q^29 - 6 * q^30 + 6 * q^31 + q^32 - 3 * q^33 - 5 * q^34 - 4 * q^35 + 3 * q^36 + 4 * q^37 - 7 * q^38 + 2 * q^40 - 3 * q^41 + q^43 + 2 * q^44 + 6 * q^45 - 8 * q^46 - 3 * q^48 - q^49 - q^50 - 15 * q^51 + 6 * q^52 + 24 * q^53 + 9 * q^54 + 4 * q^55 - q^56 - 21 * q^57 - 4 * q^58 + 7 * q^59 - 6 * q^60 + 12 * q^61 + 12 * q^62 + 6 * q^63 + 2 * q^64 + 12 * q^65 - 13 * q^67 + 5 * q^68 - 2 * q^70 - 16 * q^71 - 3 * q^72 + 2 * q^73 + 2 * q^74 + 3 * q^75 + 7 * q^76 + q^77 + 18 * q^78 + 6 * q^79 + 4 * q^80 - 9 * q^81 - 6 * q^82 - 16 * q^83 - 3 * q^84 + 10 * q^85 - q^86 + 12 * q^87 + q^88 - 12 * q^89 - 6 * q^90 + 12 * q^91 - 4 * q^92 + 14 * q^95 + 5 * q^97 - 2 * q^98 - 6 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/126\mathbb{Z}\right)^\times$$.

 $$n$$ $$29$$ $$73$$ $$\chi(n)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 0.866025i 0.353553 0.612372i
$$3$$ 1.50000 + 0.866025i 0.866025 + 0.500000i
$$4$$ −0.500000 0.866025i −0.250000 0.433013i
$$5$$ −1.00000 1.73205i −0.447214 0.774597i 0.550990 0.834512i $$-0.314250\pi$$
−0.998203 + 0.0599153i $$0.980917\pi$$
$$6$$ 1.50000 0.866025i 0.612372 0.353553i
$$7$$ 0.500000 0.866025i 0.188982 0.327327i
$$8$$ −1.00000 −0.353553
$$9$$ 1.50000 + 2.59808i 0.500000 + 0.866025i
$$10$$ −2.00000 −0.632456
$$11$$ −0.500000 + 0.866025i −0.150756 + 0.261116i −0.931505 0.363727i $$-0.881504\pi$$
0.780750 + 0.624844i $$0.214837\pi$$
$$12$$ 1.73205i 0.500000i
$$13$$ 3.00000 + 5.19615i 0.832050 + 1.44115i 0.896410 + 0.443227i $$0.146166\pi$$
−0.0643593 + 0.997927i $$0.520500\pi$$
$$14$$ −0.500000 0.866025i −0.133631 0.231455i
$$15$$ 3.46410i 0.894427i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ −5.00000 −1.21268 −0.606339 0.795206i $$-0.707363\pi$$
−0.606339 + 0.795206i $$0.707363\pi$$
$$18$$ 3.00000 0.707107
$$19$$ −7.00000 −1.60591 −0.802955 0.596040i $$-0.796740\pi$$
−0.802955 + 0.596040i $$0.796740\pi$$
$$20$$ −1.00000 + 1.73205i −0.223607 + 0.387298i
$$21$$ 1.50000 0.866025i 0.327327 0.188982i
$$22$$ 0.500000 + 0.866025i 0.106600 + 0.184637i
$$23$$ −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i $$-0.303595\pi$$
−0.995639 + 0.0932891i $$0.970262\pi$$
$$24$$ −1.50000 0.866025i −0.306186 0.176777i
$$25$$ 0.500000 0.866025i 0.100000 0.173205i
$$26$$ 6.00000 1.17670
$$27$$ 5.19615i 1.00000i
$$28$$ −1.00000 −0.188982
$$29$$ 2.00000 3.46410i 0.371391 0.643268i −0.618389 0.785872i $$-0.712214\pi$$
0.989780 + 0.142605i $$0.0455477\pi$$
$$30$$ −3.00000 1.73205i −0.547723 0.316228i
$$31$$ 3.00000 + 5.19615i 0.538816 + 0.933257i 0.998968 + 0.0454165i $$0.0144615\pi$$
−0.460152 + 0.887840i $$0.652205\pi$$
$$32$$ 0.500000 + 0.866025i 0.0883883 + 0.153093i
$$33$$ −1.50000 + 0.866025i −0.261116 + 0.150756i
$$34$$ −2.50000 + 4.33013i −0.428746 + 0.742611i
$$35$$ −2.00000 −0.338062
$$36$$ 1.50000 2.59808i 0.250000 0.433013i
$$37$$ 2.00000 0.328798 0.164399 0.986394i $$-0.447432\pi$$
0.164399 + 0.986394i $$0.447432\pi$$
$$38$$ −3.50000 + 6.06218i −0.567775 + 0.983415i
$$39$$ 10.3923i 1.66410i
$$40$$ 1.00000 + 1.73205i 0.158114 + 0.273861i
$$41$$ −1.50000 2.59808i −0.234261 0.405751i 0.724797 0.688963i $$-0.241934\pi$$
−0.959058 + 0.283211i $$0.908600\pi$$
$$42$$ 1.73205i 0.267261i
$$43$$ 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i $$-0.809039\pi$$
0.901629 + 0.432511i $$0.142372\pi$$
$$44$$ 1.00000 0.150756
$$45$$ 3.00000 5.19615i 0.447214 0.774597i
$$46$$ −4.00000 −0.589768
$$47$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$48$$ −1.50000 + 0.866025i −0.216506 + 0.125000i
$$49$$ −0.500000 0.866025i −0.0714286 0.123718i
$$50$$ −0.500000 0.866025i −0.0707107 0.122474i
$$51$$ −7.50000 4.33013i −1.05021 0.606339i
$$52$$ 3.00000 5.19615i 0.416025 0.720577i
$$53$$ 12.0000 1.64833 0.824163 0.566352i $$-0.191646\pi$$
0.824163 + 0.566352i $$0.191646\pi$$
$$54$$ 4.50000 + 2.59808i 0.612372 + 0.353553i
$$55$$ 2.00000 0.269680
$$56$$ −0.500000 + 0.866025i −0.0668153 + 0.115728i
$$57$$ −10.5000 6.06218i −1.39076 0.802955i
$$58$$ −2.00000 3.46410i −0.262613 0.454859i
$$59$$ 3.50000 + 6.06218i 0.455661 + 0.789228i 0.998726 0.0504625i $$-0.0160695\pi$$
−0.543065 + 0.839691i $$0.682736\pi$$
$$60$$ −3.00000 + 1.73205i −0.387298 + 0.223607i
$$61$$ 6.00000 10.3923i 0.768221 1.33060i −0.170305 0.985391i $$-0.554475\pi$$
0.938527 0.345207i $$-0.112191\pi$$
$$62$$ 6.00000 0.762001
$$63$$ 3.00000 0.377964
$$64$$ 1.00000 0.125000
$$65$$ 6.00000 10.3923i 0.744208 1.28901i
$$66$$ 1.73205i 0.213201i
$$67$$ −6.50000 11.2583i −0.794101 1.37542i −0.923408 0.383819i $$-0.874609\pi$$
0.129307 0.991605i $$-0.458725\pi$$
$$68$$ 2.50000 + 4.33013i 0.303170 + 0.525105i
$$69$$ 6.92820i 0.834058i
$$70$$ −1.00000 + 1.73205i −0.119523 + 0.207020i
$$71$$ −8.00000 −0.949425 −0.474713 0.880141i $$-0.657448\pi$$
−0.474713 + 0.880141i $$0.657448\pi$$
$$72$$ −1.50000 2.59808i −0.176777 0.306186i
$$73$$ 1.00000 0.117041 0.0585206 0.998286i $$-0.481362\pi$$
0.0585206 + 0.998286i $$0.481362\pi$$
$$74$$ 1.00000 1.73205i 0.116248 0.201347i
$$75$$ 1.50000 0.866025i 0.173205 0.100000i
$$76$$ 3.50000 + 6.06218i 0.401478 + 0.695379i
$$77$$ 0.500000 + 0.866025i 0.0569803 + 0.0986928i
$$78$$ 9.00000 + 5.19615i 1.01905 + 0.588348i
$$79$$ 3.00000 5.19615i 0.337526 0.584613i −0.646440 0.762964i $$-0.723743\pi$$
0.983967 + 0.178352i $$0.0570765\pi$$
$$80$$ 2.00000 0.223607
$$81$$ −4.50000 + 7.79423i −0.500000 + 0.866025i
$$82$$ −3.00000 −0.331295
$$83$$ −8.00000 + 13.8564i −0.878114 + 1.52094i −0.0247060 + 0.999695i $$0.507865\pi$$
−0.853408 + 0.521243i $$0.825468\pi$$
$$84$$ −1.50000 0.866025i −0.163663 0.0944911i
$$85$$ 5.00000 + 8.66025i 0.542326 + 0.939336i
$$86$$ −0.500000 0.866025i −0.0539164 0.0933859i
$$87$$ 6.00000 3.46410i 0.643268 0.371391i
$$88$$ 0.500000 0.866025i 0.0533002 0.0923186i
$$89$$ −6.00000 −0.635999 −0.317999 0.948091i $$-0.603011\pi$$
−0.317999 + 0.948091i $$0.603011\pi$$
$$90$$ −3.00000 5.19615i −0.316228 0.547723i
$$91$$ 6.00000 0.628971
$$92$$ −2.00000 + 3.46410i −0.208514 + 0.361158i
$$93$$ 10.3923i 1.07763i
$$94$$ 0 0
$$95$$ 7.00000 + 12.1244i 0.718185 + 1.24393i
$$96$$ 1.73205i 0.176777i
$$97$$ 2.50000 4.33013i 0.253837 0.439658i −0.710742 0.703452i $$-0.751641\pi$$
0.964579 + 0.263795i $$0.0849741\pi$$
$$98$$ −1.00000 −0.101015
$$99$$ −3.00000 −0.301511
$$100$$ −1.00000 −0.100000
$$101$$ 2.00000 3.46410i 0.199007 0.344691i −0.749199 0.662344i $$-0.769562\pi$$
0.948207 + 0.317653i $$0.102895\pi$$
$$102$$ −7.50000 + 4.33013i −0.742611 + 0.428746i
$$103$$ −7.00000 12.1244i −0.689730 1.19465i −0.971925 0.235291i $$-0.924396\pi$$
0.282194 0.959357i $$-0.408938\pi$$
$$104$$ −3.00000 5.19615i −0.294174 0.509525i
$$105$$ −3.00000 1.73205i −0.292770 0.169031i
$$106$$ 6.00000 10.3923i 0.582772 1.00939i
$$107$$ 3.00000 0.290021 0.145010 0.989430i $$-0.453678\pi$$
0.145010 + 0.989430i $$0.453678\pi$$
$$108$$ 4.50000 2.59808i 0.433013 0.250000i
$$109$$ −2.00000 −0.191565 −0.0957826 0.995402i $$-0.530535\pi$$
−0.0957826 + 0.995402i $$0.530535\pi$$
$$110$$ 1.00000 1.73205i 0.0953463 0.165145i
$$111$$ 3.00000 + 1.73205i 0.284747 + 0.164399i
$$112$$ 0.500000 + 0.866025i 0.0472456 + 0.0818317i
$$113$$ 5.00000 + 8.66025i 0.470360 + 0.814688i 0.999425 0.0338931i $$-0.0107906\pi$$
−0.529065 + 0.848581i $$0.677457\pi$$
$$114$$ −10.5000 + 6.06218i −0.983415 + 0.567775i
$$115$$ −4.00000 + 6.92820i −0.373002 + 0.646058i
$$116$$ −4.00000 −0.371391
$$117$$ −9.00000 + 15.5885i −0.832050 + 1.44115i
$$118$$ 7.00000 0.644402
$$119$$ −2.50000 + 4.33013i −0.229175 + 0.396942i
$$120$$ 3.46410i 0.316228i
$$121$$ 5.00000 + 8.66025i 0.454545 + 0.787296i
$$122$$ −6.00000 10.3923i −0.543214 0.940875i
$$123$$ 5.19615i 0.468521i
$$124$$ 3.00000 5.19615i 0.269408 0.466628i
$$125$$ −12.0000 −1.07331
$$126$$ 1.50000 2.59808i 0.133631 0.231455i
$$127$$ −12.0000 −1.06483 −0.532414 0.846484i $$-0.678715\pi$$
−0.532414 + 0.846484i $$0.678715\pi$$
$$128$$ 0.500000 0.866025i 0.0441942 0.0765466i
$$129$$ 1.50000 0.866025i 0.132068 0.0762493i
$$130$$ −6.00000 10.3923i −0.526235 0.911465i
$$131$$ 2.00000 + 3.46410i 0.174741 + 0.302660i 0.940072 0.340977i $$-0.110758\pi$$
−0.765331 + 0.643637i $$0.777425\pi$$
$$132$$ 1.50000 + 0.866025i 0.130558 + 0.0753778i
$$133$$ −3.50000 + 6.06218i −0.303488 + 0.525657i
$$134$$ −13.0000 −1.12303
$$135$$ 9.00000 5.19615i 0.774597 0.447214i
$$136$$ 5.00000 0.428746
$$137$$ 9.50000 16.4545i 0.811640 1.40580i −0.100076 0.994980i $$-0.531909\pi$$
0.911716 0.410822i $$-0.134758\pi$$
$$138$$ −6.00000 3.46410i −0.510754 0.294884i
$$139$$ 2.50000 + 4.33013i 0.212047 + 0.367277i 0.952355 0.304991i $$-0.0986536\pi$$
−0.740308 + 0.672268i $$0.765320\pi$$
$$140$$ 1.00000 + 1.73205i 0.0845154 + 0.146385i
$$141$$ 0 0
$$142$$ −4.00000 + 6.92820i −0.335673 + 0.581402i
$$143$$ −6.00000 −0.501745
$$144$$ −3.00000 −0.250000
$$145$$ −8.00000 −0.664364
$$146$$ 0.500000 0.866025i 0.0413803 0.0716728i
$$147$$ 1.73205i 0.142857i
$$148$$ −1.00000 1.73205i −0.0821995 0.142374i
$$149$$ 12.0000 + 20.7846i 0.983078 + 1.70274i 0.650183 + 0.759778i $$0.274692\pi$$
0.332896 + 0.942964i $$0.391974\pi$$
$$150$$ 1.73205i 0.141421i
$$151$$ −5.00000 + 8.66025i −0.406894 + 0.704761i −0.994540 0.104357i $$-0.966722\pi$$
0.587646 + 0.809118i $$0.300055\pi$$
$$152$$ 7.00000 0.567775
$$153$$ −7.50000 12.9904i −0.606339 1.05021i
$$154$$ 1.00000 0.0805823
$$155$$ 6.00000 10.3923i 0.481932 0.834730i
$$156$$ 9.00000 5.19615i 0.720577 0.416025i
$$157$$ −1.00000 1.73205i −0.0798087 0.138233i 0.823359 0.567521i $$-0.192098\pi$$
−0.903167 + 0.429289i $$0.858764\pi$$
$$158$$ −3.00000 5.19615i −0.238667 0.413384i
$$159$$ 18.0000 + 10.3923i 1.42749 + 0.824163i
$$160$$ 1.00000 1.73205i 0.0790569 0.136931i
$$161$$ −4.00000 −0.315244
$$162$$ 4.50000 + 7.79423i 0.353553 + 0.612372i
$$163$$ −4.00000 −0.313304 −0.156652 0.987654i $$-0.550070\pi$$
−0.156652 + 0.987654i $$0.550070\pi$$
$$164$$ −1.50000 + 2.59808i −0.117130 + 0.202876i
$$165$$ 3.00000 + 1.73205i 0.233550 + 0.134840i
$$166$$ 8.00000 + 13.8564i 0.620920 + 1.07547i
$$167$$ −10.0000 17.3205i −0.773823 1.34030i −0.935454 0.353450i $$-0.885009\pi$$
0.161630 0.986851i $$-0.448325\pi$$
$$168$$ −1.50000 + 0.866025i −0.115728 + 0.0668153i
$$169$$ −11.5000 + 19.9186i −0.884615 + 1.53220i
$$170$$ 10.0000 0.766965
$$171$$ −10.5000 18.1865i −0.802955 1.39076i
$$172$$ −1.00000 −0.0762493
$$173$$ −1.00000 + 1.73205i −0.0760286 + 0.131685i −0.901533 0.432710i $$-0.857557\pi$$
0.825505 + 0.564396i $$0.190891\pi$$
$$174$$ 6.92820i 0.525226i
$$175$$ −0.500000 0.866025i −0.0377964 0.0654654i
$$176$$ −0.500000 0.866025i −0.0376889 0.0652791i
$$177$$ 12.1244i 0.911322i
$$178$$ −3.00000 + 5.19615i −0.224860 + 0.389468i
$$179$$ 24.0000 1.79384 0.896922 0.442189i $$-0.145798\pi$$
0.896922 + 0.442189i $$0.145798\pi$$
$$180$$ −6.00000 −0.447214
$$181$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$182$$ 3.00000 5.19615i 0.222375 0.385164i
$$183$$ 18.0000 10.3923i 1.33060 0.768221i
$$184$$ 2.00000 + 3.46410i 0.147442 + 0.255377i
$$185$$ −2.00000 3.46410i −0.147043 0.254686i
$$186$$ 9.00000 + 5.19615i 0.659912 + 0.381000i
$$187$$ 2.50000 4.33013i 0.182818 0.316650i
$$188$$ 0 0
$$189$$ 4.50000 + 2.59808i 0.327327 + 0.188982i
$$190$$ 14.0000 1.01567
$$191$$ −6.00000 + 10.3923i −0.434145 + 0.751961i −0.997225 0.0744412i $$-0.976283\pi$$
0.563081 + 0.826402i $$0.309616\pi$$
$$192$$ 1.50000 + 0.866025i 0.108253 + 0.0625000i
$$193$$ −8.50000 14.7224i −0.611843 1.05974i −0.990930 0.134382i $$-0.957095\pi$$
0.379086 0.925361i $$-0.376238\pi$$
$$194$$ −2.50000 4.33013i −0.179490 0.310885i
$$195$$ 18.0000 10.3923i 1.28901 0.744208i
$$196$$ −0.500000 + 0.866025i −0.0357143 + 0.0618590i
$$197$$ 10.0000 0.712470 0.356235 0.934396i $$-0.384060\pi$$
0.356235 + 0.934396i $$0.384060\pi$$
$$198$$ −1.50000 + 2.59808i −0.106600 + 0.184637i
$$199$$ 14.0000 0.992434 0.496217 0.868199i $$-0.334722\pi$$
0.496217 + 0.868199i $$0.334722\pi$$
$$200$$ −0.500000 + 0.866025i −0.0353553 + 0.0612372i
$$201$$ 22.5167i 1.58820i
$$202$$ −2.00000 3.46410i −0.140720 0.243733i
$$203$$ −2.00000 3.46410i −0.140372 0.243132i
$$204$$ 8.66025i 0.606339i
$$205$$ −3.00000 + 5.19615i −0.209529 + 0.362915i
$$206$$ −14.0000 −0.975426
$$207$$ 6.00000 10.3923i 0.417029 0.722315i
$$208$$ −6.00000 −0.416025
$$209$$ 3.50000 6.06218i 0.242100 0.419330i
$$210$$ −3.00000 + 1.73205i −0.207020 + 0.119523i
$$211$$ 8.00000 + 13.8564i 0.550743 + 0.953914i 0.998221 + 0.0596196i $$0.0189888\pi$$
−0.447478 + 0.894295i $$0.647678\pi$$
$$212$$ −6.00000 10.3923i −0.412082 0.713746i
$$213$$ −12.0000 6.92820i −0.822226 0.474713i
$$214$$ 1.50000 2.59808i 0.102538 0.177601i
$$215$$ −2.00000 −0.136399
$$216$$ 5.19615i 0.353553i
$$217$$ 6.00000 0.407307
$$218$$ −1.00000 + 1.73205i −0.0677285 + 0.117309i
$$219$$ 1.50000 + 0.866025i 0.101361 + 0.0585206i
$$220$$ −1.00000 1.73205i −0.0674200 0.116775i
$$221$$ −15.0000 25.9808i −1.00901 1.74766i
$$222$$ 3.00000 1.73205i 0.201347 0.116248i
$$223$$ 2.00000 3.46410i 0.133930 0.231973i −0.791258 0.611482i $$-0.790574\pi$$
0.925188 + 0.379509i $$0.123907\pi$$
$$224$$ 1.00000 0.0668153
$$225$$ 3.00000 0.200000
$$226$$ 10.0000 0.665190
$$227$$ −1.50000 + 2.59808i −0.0995585 + 0.172440i −0.911502 0.411296i $$-0.865076\pi$$
0.811943 + 0.583736i $$0.198410\pi$$
$$228$$ 12.1244i 0.802955i
$$229$$ 13.0000 + 22.5167i 0.859064 + 1.48794i 0.872823 + 0.488037i $$0.162287\pi$$
−0.0137585 + 0.999905i $$0.504380\pi$$
$$230$$ 4.00000 + 6.92820i 0.263752 + 0.456832i
$$231$$ 1.73205i 0.113961i
$$232$$ −2.00000 + 3.46410i −0.131306 + 0.227429i
$$233$$ −29.0000 −1.89985 −0.949927 0.312473i $$-0.898843\pi$$
−0.949927 + 0.312473i $$0.898843\pi$$
$$234$$ 9.00000 + 15.5885i 0.588348 + 1.01905i
$$235$$ 0 0
$$236$$ 3.50000 6.06218i 0.227831 0.394614i
$$237$$ 9.00000 5.19615i 0.584613 0.337526i
$$238$$ 2.50000 + 4.33013i 0.162051 + 0.280680i
$$239$$ −3.00000 5.19615i −0.194054 0.336111i 0.752536 0.658551i $$-0.228830\pi$$
−0.946590 + 0.322440i $$0.895497\pi$$
$$240$$ 3.00000 + 1.73205i 0.193649 + 0.111803i
$$241$$ −11.5000 + 19.9186i −0.740780 + 1.28307i 0.211360 + 0.977408i $$0.432211\pi$$
−0.952141 + 0.305661i $$0.901123\pi$$
$$242$$ 10.0000 0.642824
$$243$$ −13.5000 + 7.79423i −0.866025 + 0.500000i
$$244$$ −12.0000 −0.768221
$$245$$ −1.00000 + 1.73205i −0.0638877 + 0.110657i
$$246$$ −4.50000 2.59808i −0.286910 0.165647i
$$247$$ −21.0000 36.3731i −1.33620 2.31436i
$$248$$ −3.00000 5.19615i −0.190500 0.329956i
$$249$$ −24.0000 + 13.8564i −1.52094 + 0.878114i
$$250$$ −6.00000 + 10.3923i −0.379473 + 0.657267i
$$251$$ 3.00000 0.189358 0.0946792 0.995508i $$-0.469817\pi$$
0.0946792 + 0.995508i $$0.469817\pi$$
$$252$$ −1.50000 2.59808i −0.0944911 0.163663i
$$253$$ 4.00000 0.251478
$$254$$ −6.00000 + 10.3923i −0.376473 + 0.652071i
$$255$$ 17.3205i 1.08465i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ 7.50000 + 12.9904i 0.467837 + 0.810318i 0.999325 0.0367485i $$-0.0117000\pi$$
−0.531487 + 0.847066i $$0.678367\pi$$
$$258$$ 1.73205i 0.107833i
$$259$$ 1.00000 1.73205i 0.0621370 0.107624i
$$260$$ −12.0000 −0.744208
$$261$$ 12.0000 0.742781
$$262$$ 4.00000 0.247121
$$263$$ −9.00000 + 15.5885i −0.554964 + 0.961225i 0.442943 + 0.896550i $$0.353935\pi$$
−0.997906 + 0.0646755i $$0.979399\pi$$
$$264$$ 1.50000 0.866025i 0.0923186 0.0533002i
$$265$$ −12.0000 20.7846i −0.737154 1.27679i
$$266$$ 3.50000 + 6.06218i 0.214599 + 0.371696i
$$267$$ −9.00000 5.19615i −0.550791 0.317999i
$$268$$ −6.50000 + 11.2583i −0.397051 + 0.687712i
$$269$$ 20.0000 1.21942 0.609711 0.792624i $$-0.291286\pi$$
0.609711 + 0.792624i $$0.291286\pi$$
$$270$$ 10.3923i 0.632456i
$$271$$ −6.00000 −0.364474 −0.182237 0.983255i $$-0.558334\pi$$
−0.182237 + 0.983255i $$0.558334\pi$$
$$272$$ 2.50000 4.33013i 0.151585 0.262553i
$$273$$ 9.00000 + 5.19615i 0.544705 + 0.314485i
$$274$$ −9.50000 16.4545i −0.573916 0.994052i
$$275$$ 0.500000 + 0.866025i 0.0301511 + 0.0522233i
$$276$$ −6.00000 + 3.46410i −0.361158 + 0.208514i
$$277$$ −1.00000 + 1.73205i −0.0600842 + 0.104069i −0.894503 0.447062i $$-0.852470\pi$$
0.834419 + 0.551131i $$0.185804\pi$$
$$278$$ 5.00000 0.299880
$$279$$ −9.00000 + 15.5885i −0.538816 + 0.933257i
$$280$$ 2.00000 0.119523
$$281$$ −11.0000 + 19.0526i −0.656205 + 1.13658i 0.325385 + 0.945582i $$0.394506\pi$$
−0.981590 + 0.190999i $$0.938827\pi$$
$$282$$ 0 0
$$283$$ −2.00000 3.46410i −0.118888 0.205919i 0.800439 0.599414i $$-0.204600\pi$$
−0.919327 + 0.393494i $$0.871266\pi$$
$$284$$ 4.00000 + 6.92820i 0.237356 + 0.411113i
$$285$$ 24.2487i 1.43637i
$$286$$ −3.00000 + 5.19615i −0.177394 + 0.307255i
$$287$$ −3.00000 −0.177084
$$288$$ −1.50000 + 2.59808i −0.0883883 + 0.153093i
$$289$$ 8.00000 0.470588
$$290$$ −4.00000 + 6.92820i −0.234888 + 0.406838i
$$291$$ 7.50000 4.33013i 0.439658 0.253837i
$$292$$ −0.500000 0.866025i −0.0292603 0.0506803i
$$293$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$294$$ −1.50000 0.866025i −0.0874818 0.0505076i
$$295$$ 7.00000 12.1244i 0.407556 0.705907i
$$296$$ −2.00000 −0.116248
$$297$$ −4.50000 2.59808i −0.261116 0.150756i
$$298$$ 24.0000 1.39028
$$299$$ 12.0000 20.7846i 0.693978 1.20201i
$$300$$ −1.50000 0.866025i −0.0866025 0.0500000i
$$301$$ −0.500000 0.866025i −0.0288195 0.0499169i
$$302$$ 5.00000 + 8.66025i 0.287718 + 0.498342i
$$303$$ 6.00000 3.46410i 0.344691 0.199007i
$$304$$ 3.50000 6.06218i 0.200739 0.347690i
$$305$$ −24.0000 −1.37424
$$306$$ −15.0000 −0.857493
$$307$$ 7.00000 0.399511 0.199756 0.979846i $$-0.435985\pi$$
0.199756 + 0.979846i $$0.435985\pi$$
$$308$$ 0.500000 0.866025i 0.0284901 0.0493464i
$$309$$ 24.2487i 1.37946i
$$310$$ −6.00000 10.3923i −0.340777 0.590243i
$$311$$ −1.00000 1.73205i −0.0567048 0.0982156i 0.836280 0.548303i $$-0.184726\pi$$
−0.892984 + 0.450088i $$0.851393\pi$$
$$312$$ 10.3923i 0.588348i
$$313$$ 8.50000 14.7224i 0.480448 0.832161i −0.519300 0.854592i $$-0.673807\pi$$
0.999748 + 0.0224310i $$0.00714060\pi$$
$$314$$ −2.00000 −0.112867
$$315$$ −3.00000 5.19615i −0.169031 0.292770i
$$316$$ −6.00000 −0.337526
$$317$$ 3.00000 5.19615i 0.168497 0.291845i −0.769395 0.638774i $$-0.779442\pi$$
0.937892 + 0.346929i $$0.112775\pi$$
$$318$$ 18.0000 10.3923i 1.00939 0.582772i
$$319$$ 2.00000 + 3.46410i 0.111979 + 0.193952i
$$320$$ −1.00000 1.73205i −0.0559017 0.0968246i
$$321$$ 4.50000 + 2.59808i 0.251166 + 0.145010i
$$322$$ −2.00000 + 3.46410i −0.111456 + 0.193047i
$$323$$ 35.0000 1.94745
$$324$$ 9.00000 0.500000
$$325$$ 6.00000 0.332820
$$326$$ −2.00000 + 3.46410i −0.110770 + 0.191859i
$$327$$ −3.00000 1.73205i −0.165900 0.0957826i
$$328$$ 1.50000 + 2.59808i 0.0828236 + 0.143455i
$$329$$ 0 0
$$330$$ 3.00000 1.73205i 0.165145 0.0953463i
$$331$$ −4.00000 + 6.92820i −0.219860 + 0.380808i −0.954765 0.297361i $$-0.903893\pi$$
0.734905 + 0.678170i $$0.237227\pi$$
$$332$$ 16.0000 0.878114
$$333$$ 3.00000 + 5.19615i 0.164399 + 0.284747i
$$334$$ −20.0000 −1.09435
$$335$$ −13.0000 + 22.5167i −0.710266 + 1.23022i
$$336$$ 1.73205i 0.0944911i
$$337$$ 4.50000 + 7.79423i 0.245131 + 0.424579i 0.962168 0.272456i $$-0.0878358\pi$$
−0.717038 + 0.697034i $$0.754502\pi$$
$$338$$ 11.5000 + 19.9186i 0.625518 + 1.08343i
$$339$$ 17.3205i 0.940721i
$$340$$ 5.00000 8.66025i 0.271163 0.469668i
$$341$$ −6.00000 −0.324918
$$342$$ −21.0000 −1.13555
$$343$$ −1.00000 −0.0539949
$$344$$ −0.500000 + 0.866025i −0.0269582 + 0.0466930i
$$345$$ −12.0000 + 6.92820i −0.646058 + 0.373002i
$$346$$ 1.00000 + 1.73205i 0.0537603 + 0.0931156i
$$347$$ 1.50000 + 2.59808i 0.0805242 + 0.139472i 0.903475 0.428640i $$-0.141007\pi$$
−0.822951 + 0.568112i $$0.807674\pi$$
$$348$$ −6.00000 3.46410i −0.321634 0.185695i
$$349$$ 7.00000 12.1244i 0.374701 0.649002i −0.615581 0.788074i $$-0.711079\pi$$
0.990282 + 0.139072i $$0.0444119\pi$$
$$350$$ −1.00000 −0.0534522
$$351$$ −27.0000 + 15.5885i −1.44115 + 0.832050i
$$352$$ −1.00000 −0.0533002
$$353$$ 7.50000 12.9904i 0.399185 0.691408i −0.594441 0.804139i $$-0.702627\pi$$
0.993626 + 0.112731i $$0.0359599\pi$$
$$354$$ 10.5000 + 6.06218i 0.558069 + 0.322201i
$$355$$ 8.00000 + 13.8564i 0.424596 + 0.735422i
$$356$$ 3.00000 + 5.19615i 0.159000 + 0.275396i
$$357$$ −7.50000 + 4.33013i −0.396942 + 0.229175i
$$358$$ 12.0000 20.7846i 0.634220 1.09850i
$$359$$ 2.00000 0.105556 0.0527780 0.998606i $$-0.483192\pi$$
0.0527780 + 0.998606i $$0.483192\pi$$
$$360$$ −3.00000 + 5.19615i −0.158114 + 0.273861i
$$361$$ 30.0000 1.57895
$$362$$ 0 0
$$363$$ 17.3205i 0.909091i
$$364$$ −3.00000 5.19615i −0.157243 0.272352i
$$365$$ −1.00000 1.73205i −0.0523424 0.0906597i
$$366$$ 20.7846i 1.08643i
$$367$$ 11.0000 19.0526i 0.574195 0.994535i −0.421933 0.906627i $$-0.638648\pi$$
0.996129 0.0879086i $$-0.0280183\pi$$
$$368$$ 4.00000 0.208514
$$369$$ 4.50000 7.79423i 0.234261 0.405751i
$$370$$ −4.00000 −0.207950
$$371$$ 6.00000 10.3923i 0.311504 0.539542i
$$372$$ 9.00000 5.19615i 0.466628 0.269408i
$$373$$ −11.0000 19.0526i −0.569558 0.986504i −0.996610 0.0822766i $$-0.973781\pi$$
0.427051 0.904227i $$-0.359552\pi$$
$$374$$ −2.50000 4.33013i −0.129272 0.223906i
$$375$$ −18.0000 10.3923i −0.929516 0.536656i
$$376$$ 0 0
$$377$$ 24.0000 1.23606
$$378$$ 4.50000 2.59808i 0.231455 0.133631i
$$379$$ −17.0000 −0.873231 −0.436616 0.899648i $$-0.643823\pi$$
−0.436616 + 0.899648i $$0.643823\pi$$
$$380$$ 7.00000 12.1244i 0.359092 0.621966i
$$381$$ −18.0000 10.3923i −0.922168 0.532414i
$$382$$ 6.00000 + 10.3923i 0.306987 + 0.531717i
$$383$$ −2.00000 3.46410i −0.102195 0.177007i 0.810394 0.585886i $$-0.199253\pi$$
−0.912589 + 0.408879i $$0.865920\pi$$
$$384$$ 1.50000 0.866025i 0.0765466 0.0441942i
$$385$$ 1.00000 1.73205i 0.0509647 0.0882735i
$$386$$ −17.0000 −0.865277
$$387$$ 3.00000 0.152499
$$388$$ −5.00000 −0.253837
$$389$$ −4.00000 + 6.92820i −0.202808 + 0.351274i −0.949432 0.313972i $$-0.898340\pi$$
0.746624 + 0.665246i $$0.231673\pi$$
$$390$$ 20.7846i 1.05247i
$$391$$ 10.0000 + 17.3205i 0.505722 + 0.875936i
$$392$$ 0.500000 + 0.866025i 0.0252538 + 0.0437409i
$$393$$ 6.92820i 0.349482i
$$394$$ 5.00000 8.66025i 0.251896 0.436297i
$$395$$ −12.0000 −0.603786
$$396$$ 1.50000 + 2.59808i 0.0753778 + 0.130558i
$$397$$ 18.0000 0.903394 0.451697 0.892171i $$-0.350819\pi$$
0.451697 + 0.892171i $$0.350819\pi$$
$$398$$ 7.00000 12.1244i 0.350878 0.607739i
$$399$$ −10.5000 + 6.06218i −0.525657 + 0.303488i
$$400$$ 0.500000 + 0.866025i 0.0250000 + 0.0433013i
$$401$$ −4.50000 7.79423i −0.224719 0.389225i 0.731516 0.681824i $$-0.238813\pi$$
−0.956235 + 0.292599i $$0.905480\pi$$
$$402$$ −19.5000 11.2583i −0.972572 0.561514i
$$403$$ −18.0000 + 31.1769i −0.896644 + 1.55303i
$$404$$ −4.00000 −0.199007
$$405$$ 18.0000 0.894427
$$406$$ −4.00000 −0.198517
$$407$$ −1.00000 + 1.73205i −0.0495682 + 0.0858546i
$$408$$ 7.50000 + 4.33013i 0.371305 + 0.214373i
$$409$$ −5.50000 9.52628i −0.271957 0.471044i 0.697406 0.716677i $$-0.254338\pi$$
−0.969363 + 0.245633i $$0.921004\pi$$
$$410$$ 3.00000 + 5.19615i 0.148159 + 0.256620i
$$411$$ 28.5000 16.4545i 1.40580 0.811640i
$$412$$ −7.00000 + 12.1244i −0.344865 + 0.597324i
$$413$$ 7.00000 0.344447
$$414$$ −6.00000 10.3923i −0.294884 0.510754i
$$415$$ 32.0000 1.57082
$$416$$ −3.00000 + 5.19615i −0.147087 + 0.254762i
$$417$$ 8.66025i 0.424094i
$$418$$ −3.50000 6.06218i −0.171191 0.296511i
$$419$$ 6.00000 + 10.3923i 0.293119 + 0.507697i 0.974546 0.224189i $$-0.0719734\pi$$
−0.681426 + 0.731887i $$0.738640\pi$$
$$420$$ 3.46410i 0.169031i
$$421$$ 6.00000 10.3923i 0.292422 0.506490i −0.681960 0.731390i $$-0.738872\pi$$
0.974382 + 0.224900i $$0.0722054\pi$$
$$422$$ 16.0000 0.778868
$$423$$ 0 0
$$424$$ −12.0000 −0.582772
$$425$$ −2.50000 + 4.33013i −0.121268 + 0.210042i
$$426$$ −12.0000 + 6.92820i −0.581402 + 0.335673i
$$427$$ −6.00000 10.3923i −0.290360 0.502919i
$$428$$ −1.50000 2.59808i −0.0725052 0.125583i
$$429$$ −9.00000 5.19615i −0.434524 0.250873i
$$430$$ −1.00000 + 1.73205i −0.0482243 + 0.0835269i
$$431$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$432$$ −4.50000 2.59808i −0.216506 0.125000i
$$433$$ −25.0000 −1.20142 −0.600712 0.799466i $$-0.705116\pi$$
−0.600712 + 0.799466i $$0.705116\pi$$
$$434$$ 3.00000 5.19615i 0.144005 0.249423i
$$435$$ −12.0000 6.92820i −0.575356 0.332182i
$$436$$ 1.00000 + 1.73205i 0.0478913 + 0.0829502i
$$437$$ 14.0000 + 24.2487i 0.669711 + 1.15997i
$$438$$ 1.50000 0.866025i 0.0716728 0.0413803i
$$439$$ 12.0000 20.7846i 0.572729 0.991995i −0.423556 0.905870i $$-0.639218\pi$$
0.996284 0.0861252i $$-0.0274485\pi$$
$$440$$ −2.00000 −0.0953463
$$441$$ 1.50000 2.59808i 0.0714286 0.123718i
$$442$$ −30.0000 −1.42695
$$443$$ −3.50000 + 6.06218i −0.166290 + 0.288023i −0.937113 0.349027i $$-0.886512\pi$$
0.770823 + 0.637050i $$0.219845\pi$$
$$444$$ 3.46410i 0.164399i
$$445$$ 6.00000 + 10.3923i 0.284427 + 0.492642i
$$446$$ −2.00000 3.46410i −0.0947027 0.164030i
$$447$$ 41.5692i 1.96616i
$$448$$ 0.500000 0.866025i 0.0236228 0.0409159i
$$449$$ 17.0000 0.802280 0.401140 0.916017i $$-0.368614\pi$$
0.401140 + 0.916017i $$0.368614\pi$$
$$450$$ 1.50000 2.59808i 0.0707107 0.122474i
$$451$$ 3.00000 0.141264
$$452$$ 5.00000 8.66025i 0.235180 0.407344i
$$453$$ −15.0000 + 8.66025i −0.704761 + 0.406894i
$$454$$ 1.50000 + 2.59808i 0.0703985 + 0.121934i
$$455$$ −6.00000 10.3923i −0.281284 0.487199i
$$456$$ 10.5000 + 6.06218i 0.491708 + 0.283887i
$$457$$ −0.500000 + 0.866025i −0.0233890 + 0.0405110i −0.877483 0.479608i $$-0.840779\pi$$
0.854094 + 0.520119i $$0.174112\pi$$
$$458$$ 26.0000 1.21490
$$459$$ 25.9808i 1.21268i
$$460$$ 8.00000 0.373002
$$461$$ −7.00000 + 12.1244i −0.326023 + 0.564688i −0.981719 0.190337i $$-0.939042\pi$$
0.655696 + 0.755025i $$0.272375\pi$$
$$462$$ 1.50000 + 0.866025i 0.0697863 + 0.0402911i
$$463$$ 4.00000 + 6.92820i 0.185896 + 0.321981i 0.943878 0.330294i $$-0.107148\pi$$
−0.757982 + 0.652275i $$0.773815\pi$$
$$464$$ 2.00000 + 3.46410i 0.0928477 + 0.160817i
$$465$$ 18.0000 10.3923i 0.834730 0.481932i
$$466$$ −14.5000 + 25.1147i −0.671700 + 1.16342i
$$467$$ −13.0000 −0.601568 −0.300784 0.953692i $$-0.597248\pi$$
−0.300784 + 0.953692i $$0.597248\pi$$
$$468$$ 18.0000 0.832050
$$469$$ −13.0000 −0.600284
$$470$$ 0 0
$$471$$ 3.46410i 0.159617i
$$472$$ −3.50000 6.06218i −0.161101 0.279034i
$$473$$ 0.500000 + 0.866025i 0.0229900 + 0.0398199i
$$474$$ 10.3923i 0.477334i
$$475$$ −3.50000 + 6.06218i −0.160591 + 0.278152i
$$476$$ 5.00000 0.229175
$$477$$ 18.0000 + 31.1769i 0.824163 + 1.42749i
$$478$$ −6.00000 −0.274434
$$479$$ 10.0000 17.3205i 0.456912 0.791394i −0.541884 0.840453i $$-0.682289\pi$$
0.998796 + 0.0490589i $$0.0156222\pi$$
$$480$$ 3.00000 1.73205i 0.136931 0.0790569i
$$481$$ 6.00000 + 10.3923i 0.273576 + 0.473848i
$$482$$ 11.5000 + 19.9186i 0.523811 + 0.907267i
$$483$$ −6.00000 3.46410i −0.273009 0.157622i
$$484$$ 5.00000 8.66025i 0.227273 0.393648i
$$485$$ −10.0000 −0.454077
$$486$$ 15.5885i 0.707107i
$$487$$ −10.0000 −0.453143 −0.226572 0.973995i $$-0.572752\pi$$
−0.226572 + 0.973995i $$0.572752\pi$$
$$488$$ −6.00000 + 10.3923i −0.271607 + 0.470438i
$$489$$ −6.00000 3.46410i −0.271329 0.156652i
$$490$$ 1.00000 + 1.73205i 0.0451754 + 0.0782461i
$$491$$ −16.5000 28.5788i −0.744635 1.28974i −0.950365 0.311136i $$-0.899290\pi$$
0.205731 0.978609i $$-0.434043\pi$$
$$492$$ −4.50000 + 2.59808i −0.202876 + 0.117130i
$$493$$ −10.0000 + 17.3205i −0.450377 + 0.780076i
$$494$$ −42.0000 −1.88967
$$495$$ 3.00000 + 5.19615i 0.134840 + 0.233550i
$$496$$ −6.00000 −0.269408
$$497$$ −4.00000 + 6.92820i −0.179425 + 0.310772i
$$498$$ 27.7128i 1.24184i
$$499$$ 14.5000 + 25.1147i 0.649109 + 1.12429i 0.983336 + 0.181797i $$0.0581915\pi$$
−0.334227 + 0.942493i $$0.608475\pi$$
$$500$$ 6.00000 + 10.3923i 0.268328 + 0.464758i
$$501$$ 34.6410i 1.54765i
$$502$$ 1.50000 2.59808i 0.0669483 0.115958i
$$503$$ 6.00000 0.267527 0.133763 0.991013i $$-0.457294\pi$$
0.133763 + 0.991013i $$0.457294\pi$$
$$504$$ −3.00000 −0.133631
$$505$$ −8.00000 −0.355995
$$506$$ 2.00000 3.46410i 0.0889108 0.153998i
$$507$$ −34.5000 + 19.9186i −1.53220 + 0.884615i
$$508$$ 6.00000 + 10.3923i 0.266207 + 0.461084i
$$509$$ −15.0000 25.9808i −0.664863 1.15158i −0.979322 0.202306i $$-0.935156\pi$$
0.314459 0.949271i $$-0.398177\pi$$
$$510$$ 15.0000 + 8.66025i 0.664211 + 0.383482i
$$511$$ 0.500000 0.866025i 0.0221187 0.0383107i
$$512$$ −1.00000 −0.0441942
$$513$$ 36.3731i 1.60591i
$$514$$ 15.0000 0.661622
$$515$$ −14.0000 + 24.2487i −0.616914 + 1.06853i
$$516$$ −1.50000 0.866025i −0.0660338 0.0381246i
$$517$$ 0 0
$$518$$ −1.00000 1.73205i −0.0439375 0.0761019i
$$519$$ −3.00000 + 1.73205i −0.131685 + 0.0760286i
$$520$$ −6.00000 + 10.3923i −0.263117 + 0.455733i
$$521$$ −9.00000 −0.394297 −0.197149 0.980374i $$-0.563168\pi$$
−0.197149 + 0.980374i $$0.563168\pi$$
$$522$$ 6.00000 10.3923i 0.262613 0.454859i
$$523$$ −28.0000 −1.22435 −0.612177 0.790721i $$-0.709706\pi$$
−0.612177 + 0.790721i $$0.709706\pi$$
$$524$$ 2.00000 3.46410i 0.0873704 0.151330i
$$525$$ 1.73205i 0.0755929i
$$526$$ 9.00000 + 15.5885i 0.392419 + 0.679689i
$$527$$ −15.0000 25.9808i −0.653410 1.13174i
$$528$$ 1.73205i 0.0753778i
$$529$$ 3.50000 6.06218i 0.152174 0.263573i
$$530$$ −24.0000 −1.04249
$$531$$ −10.5000 + 18.1865i −0.455661 + 0.789228i
$$532$$ 7.00000 0.303488
$$533$$ 9.00000 15.5885i 0.389833 0.675211i
$$534$$ −9.00000 + 5.19615i −0.389468 + 0.224860i
$$535$$ −3.00000 5.19615i −0.129701 0.224649i
$$536$$ 6.50000 + 11.2583i 0.280757 + 0.486286i
$$537$$ 36.0000 + 20.7846i 1.55351 + 0.896922i
$$538$$ 10.0000 17.3205i 0.431131 0.746740i
$$539$$ 1.00000 0.0430730
$$540$$ −9.00000 5.19615i −0.387298 0.223607i
$$541$$ −24.0000 −1.03184 −0.515920 0.856637i $$-0.672550\pi$$
−0.515920 + 0.856637i $$0.672550\pi$$
$$542$$ −3.00000 + 5.19615i −0.128861 + 0.223194i
$$543$$ 0 0
$$544$$ −2.50000 4.33013i −0.107187 0.185653i
$$545$$ 2.00000 + 3.46410i 0.0856706 + 0.148386i
$$546$$ 9.00000 5.19615i 0.385164 0.222375i
$$547$$ 10.5000 18.1865i 0.448948 0.777600i −0.549370 0.835579i $$-0.685132\pi$$
0.998318 + 0.0579790i $$0.0184657\pi$$
$$548$$ −19.0000 −0.811640
$$549$$ 36.0000 1.53644
$$550$$ 1.00000 0.0426401
$$551$$ −14.0000 + 24.2487i −0.596420 + 1.03303i
$$552$$ 6.92820i 0.294884i
$$553$$ −3.00000 5.19615i −0.127573 0.220963i
$$554$$ 1.00000 + 1.73205i 0.0424859 + 0.0735878i
$$555$$ 6.92820i 0.294086i
$$556$$ 2.50000 4.33013i 0.106024 0.183638i
$$557$$ −28.0000 −1.18640 −0.593199 0.805056i $$-0.702135\pi$$
−0.593199 + 0.805056i $$0.702135\pi$$
$$558$$ 9.00000 + 15.5885i 0.381000 + 0.659912i
$$559$$ 6.00000 0.253773
$$560$$ 1.00000 1.73205i 0.0422577 0.0731925i
$$561$$ 7.50000 4.33013i 0.316650 0.182818i
$$562$$ 11.0000 + 19.0526i 0.464007 + 0.803684i
$$563$$ −15.5000 26.8468i −0.653247 1.13146i −0.982330 0.187156i $$-0.940073\pi$$
0.329083 0.944301i $$-0.393260\pi$$
$$564$$ 0 0
$$565$$ 10.0000 17.3205i 0.420703 0.728679i
$$566$$ −4.00000 −0.168133
$$567$$ 4.50000 + 7.79423i 0.188982 + 0.327327i
$$568$$ 8.00000 0.335673
$$569$$ 7.50000 12.9904i 0.314416 0.544585i −0.664897 0.746935i $$-0.731525\pi$$
0.979313 + 0.202350i $$0.0648579\pi$$
$$570$$ 21.0000 + 12.1244i 0.879593 + 0.507833i
$$571$$ 16.5000 + 28.5788i 0.690504 + 1.19599i 0.971673 + 0.236329i $$0.0759443\pi$$
−0.281170 + 0.959658i $$0.590722\pi$$
$$572$$ 3.00000 + 5.19615i 0.125436 + 0.217262i
$$573$$ −18.0000 + 10.3923i −0.751961 + 0.434145i
$$574$$ −1.50000 + 2.59808i −0.0626088 + 0.108442i
$$575$$ −4.00000 −0.166812
$$576$$ 1.50000 + 2.59808i 0.0625000 + 0.108253i
$$577$$ −35.0000 −1.45707 −0.728535 0.685009i $$-0.759798\pi$$
−0.728535 + 0.685009i $$0.759798\pi$$
$$578$$ 4.00000 6.92820i 0.166378 0.288175i
$$579$$ 29.4449i 1.22369i
$$580$$ 4.00000 + 6.92820i 0.166091 + 0.287678i
$$581$$ 8.00000 + 13.8564i 0.331896 + 0.574861i
$$582$$ 8.66025i 0.358979i
$$583$$ −6.00000 + 10.3923i −0.248495 + 0.430405i
$$584$$ −1.00000 −0.0413803
$$585$$ 36.0000 1.48842
$$586$$ 0 0
$$587$$ 23.5000 40.7032i 0.969949 1.68000i 0.274263 0.961655i $$-0.411566\pi$$
0.695686 0.718346i $$-0.255100\pi$$
$$588$$ −1.50000 + 0.866025i −0.0618590 + 0.0357143i
$$589$$ −21.0000 36.3731i −0.865290 1.49873i
$$590$$ −7.00000 12.1244i −0.288185 0.499152i
$$591$$ 15.0000 + 8.66025i 0.617018 + 0.356235i
$$592$$ −1.00000 + 1.73205i −0.0410997 + 0.0711868i
$$593$$ −6.00000 −0.246390 −0.123195 0.992382i $$-0.539314\pi$$
−0.123195 + 0.992382i $$0.539314\pi$$
$$594$$ −4.50000 + 2.59808i −0.184637 + 0.106600i
$$595$$ 10.0000 0.409960
$$596$$ 12.0000 20.7846i 0.491539 0.851371i
$$597$$ 21.0000 + 12.1244i 0.859473 + 0.496217i
$$598$$ −12.0000 20.7846i −0.490716 0.849946i
$$599$$ −12.0000 20.7846i −0.490307 0.849236i 0.509631 0.860393i $$-0.329782\pi$$
−0.999938 + 0.0111569i $$0.996449\pi$$
$$600$$ −1.50000 + 0.866025i −0.0612372 + 0.0353553i
$$601$$ 9.50000 16.4545i 0.387513 0.671192i −0.604601 0.796528i $$-0.706668\pi$$
0.992114 + 0.125336i $$0.0400009\pi$$
$$602$$ −1.00000 −0.0407570
$$603$$ 19.5000 33.7750i 0.794101 1.37542i
$$604$$ 10.0000 0.406894
$$605$$ 10.0000 17.3205i 0.406558 0.704179i
$$606$$ 6.92820i 0.281439i
$$607$$ 12.0000 + 20.7846i 0.487065 + 0.843621i 0.999889 0.0148722i $$-0.00473415\pi$$
−0.512824 + 0.858494i $$0.671401\pi$$
$$608$$ −3.50000 6.06218i −0.141944 0.245854i
$$609$$ 6.92820i 0.280745i
$$610$$ −12.0000 + 20.7846i −0.485866 + 0.841544i
$$611$$ 0 0
$$612$$ −7.50000 + 12.9904i −0.303170 + 0.525105i
$$613$$ 42.0000 1.69636 0.848182 0.529705i $$-0.177697\pi$$
0.848182 + 0.529705i $$0.177697\pi$$
$$614$$ 3.50000 6.06218i 0.141249 0.244650i
$$615$$ −9.00000 + 5.19615i −0.362915 + 0.209529i
$$616$$ −0.500000 0.866025i −0.0201456 0.0348932i
$$617$$ 8.50000 + 14.7224i 0.342197 + 0.592703i 0.984840 0.173463i $$-0.0554956\pi$$
−0.642643 + 0.766165i $$0.722162\pi$$
$$618$$ −21.0000 12.1244i −0.844744 0.487713i
$$619$$ −18.5000 + 32.0429i −0.743578 + 1.28791i 0.207279 + 0.978282i $$0.433539\pi$$
−0.950856 + 0.309633i $$0.899794\pi$$
$$620$$ −12.0000 −0.481932
$$621$$ 18.0000 10.3923i 0.722315 0.417029i
$$622$$ −2.00000 −0.0801927
$$623$$ −3.00000 + 5.19615i −0.120192 + 0.208179i
$$624$$ −9.00000 5.19615i −0.360288 0.208013i
$$625$$ 9.50000 + 16.4545i 0.380000 + 0.658179i
$$626$$ −8.50000 14.7224i −0.339728 0.588427i
$$627$$ 10.5000 6.06218i 0.419330 0.242100i
$$628$$ −1.00000 + 1.73205i −0.0399043 + 0.0691164i
$$629$$ −10.0000 −0.398726
$$630$$ −6.00000 −0.239046
$$631$$ 8.00000 0.318475 0.159237 0.987240i $$-0.449096\pi$$
0.159237 + 0.987240i $$0.449096\pi$$
$$632$$ −3.00000 + 5.19615i −0.119334 + 0.206692i
$$633$$ 27.7128i 1.10149i
$$634$$ −3.00000 5.19615i −0.119145 0.206366i
$$635$$ 12.0000 + 20.7846i 0.476205 + 0.824812i
$$636$$ 20.7846i 0.824163i
$$637$$ 3.00000 5.19615i 0.118864 0.205879i
$$638$$ 4.00000 0.158362
$$639$$ −12.0000 20.7846i −0.474713 0.822226i
$$640$$ −2.00000 −0.0790569
$$641$$ −0.500000 + 0.866025i −0.0197488 + 0.0342059i −0.875731 0.482800i $$-0.839620\pi$$
0.855982 + 0.517005i $$0.172953\pi$$
$$642$$ 4.50000 2.59808i 0.177601 0.102538i
$$643$$ 3.50000 + 6.06218i 0.138027 + 0.239069i 0.926750 0.375680i $$-0.122591\pi$$
−0.788723 + 0.614749i $$0.789257\pi$$
$$644$$ 2.00000 + 3.46410i 0.0788110 + 0.136505i
$$645$$ −3.00000 1.73205i −0.118125 0.0681994i
$$646$$ 17.5000 30.3109i 0.688528 1.19257i
$$647$$ 12.0000 0.471769 0.235884 0.971781i $$-0.424201\pi$$
0.235884 + 0.971781i $$0.424201\pi$$
$$648$$ 4.50000 7.79423i 0.176777 0.306186i
$$649$$ −7.00000 −0.274774
$$650$$ 3.00000 5.19615i 0.117670 0.203810i
$$651$$ 9.00000 + 5.19615i 0.352738 + 0.203653i
$$652$$ 2.00000 + 3.46410i 0.0783260 + 0.135665i
$$653$$ 3.00000 + 5.19615i 0.117399 + 0.203341i 0.918736 0.394872i $$-0.129211\pi$$
−0.801337 + 0.598213i $$0.795878\pi$$
$$654$$ −3.00000 + 1.73205i −0.117309 + 0.0677285i
$$655$$ 4.00000 6.92820i 0.156293 0.270707i
$$656$$ 3.00000 0.117130
$$657$$ 1.50000 + 2.59808i 0.0585206 + 0.101361i
$$658$$ 0 0
$$659$$ −8.00000 + 13.8564i −0.311636 + 0.539769i −0.978717 0.205216i $$-0.934210\pi$$
0.667081 + 0.744985i $$0.267544\pi$$
$$660$$ 3.46410i 0.134840i
$$661$$ −14.0000 24.2487i −0.544537 0.943166i −0.998636 0.0522143i $$-0.983372\pi$$
0.454099 0.890951i $$-0.349961\pi$$
$$662$$ 4.00000 + 6.92820i 0.155464 + 0.269272i
$$663$$ 51.9615i 2.01802i
$$664$$ 8.00000 13.8564i 0.310460 0.537733i
$$665$$ 14.0000 0.542897
$$666$$ 6.00000 0.232495
$$667$$ −16.0000 −0.619522
$$668$$ −10.0000 + 17.3205i −0.386912 + 0.670151i
$$669$$ 6.00000 3.46410i 0.231973 0.133930i
$$670$$ 13.0000 + 22.5167i 0.502234 + 0.869894i
$$671$$ 6.00000 + 10.3923i 0.231627 + 0.401190i
$$672$$ 1.50000 + 0.866025i 0.0578638 + 0.0334077i
$$673$$ −7.00000 + 12.1244i −0.269830 + 0.467360i −0.968818 0.247774i $$-0.920301\pi$$
0.698988 + 0.715134i $$0.253634\pi$$
$$674$$ 9.00000 0.346667
$$675$$ 4.50000 + 2.59808i 0.173205 + 0.100000i
$$676$$ 23.0000 0.884615
$$677$$ −15.0000 + 25.9808i −0.576497 + 0.998522i 0.419380 + 0.907811i $$0.362247\pi$$
−0.995877 + 0.0907112i $$0.971086\pi$$
$$678$$ 15.0000 + 8.66025i 0.576072 + 0.332595i
$$679$$ −2.50000 4.33013i −0.0959412 0.166175i
$$680$$ −5.00000 8.66025i −0.191741 0.332106i
$$681$$ −4.50000 + 2.59808i −0.172440 + 0.0995585i
$$682$$ −3.00000 + 5.19615i −0.114876 + 0.198971i
$$683$$ 39.0000 1.49229 0.746147 0.665782i $$-0.231902\pi$$
0.746147 + 0.665782i $$0.231902\pi$$
$$684$$ −10.5000 + 18.1865i −0.401478 + 0.695379i
$$685$$ −38.0000 −1.45191
$$686$$ −0.500000 + 0.866025i −0.0190901 + 0.0330650i
$$687$$ 45.0333i 1.71813i
$$688$$ 0.500000 + 0.866025i 0.0190623 + 0.0330169i
$$689$$ 36.0000 + 62.3538i 1.37149 + 2.37549i
$$690$$ 13.8564i 0.527504i
$$691$$ −16.0000 + 27.7128i −0.608669 + 1.05425i 0.382791 + 0.923835i $$0.374963\pi$$
−0.991460 + 0.130410i $$0.958371\pi$$
$$692$$ 2.00000 0.0760286
$$693$$ −1.50000 + 2.59808i −0.0569803 + 0.0986928i
$$694$$ 3.00000 0.113878
$$695$$ 5.00000 8.66025i 0.189661 0.328502i
$$696$$ −6.00000 + 3.46410i −0.227429 + 0.131306i
$$697$$ 7.50000 + 12.9904i 0.284083 + 0.492046i
$$698$$ −7.00000 12.1244i −0.264954 0.458914i
$$699$$ −43.5000 25.1147i −1.64532 0.949927i
$$700$$ −0.500000 + 0.866025i −0.0188982 + 0.0327327i
$$701$$ 8.00000 0.302156 0.151078 0.988522i $$-0.451726\pi$$
0.151078 + 0.988522i $$0.451726\pi$$
$$702$$ 31.1769i 1.17670i
$$703$$ −14.0000 −0.528020
$$704$$ −0.500000 + 0.866025i −0.0188445 + 0.0326396i
$$705$$ 0 0
$$706$$ −7.50000 12.9904i −0.282266 0.488899i
$$707$$ −2.00000 3.46410i −0.0752177 0.130281i
$$708$$ 10.5000 6.06218i 0.394614 0.227831i
$$709$$ 2.00000 3.46410i 0.0751116 0.130097i −0.826023 0.563636i $$-0.809402\pi$$
0.901135 + 0.433539i $$0.142735\pi$$
$$710$$ 16.0000 0.600469
$$711$$ 18.0000 0.675053
$$712$$ 6.00000 0.224860
$$713$$ 12.0000 20.7846i 0.449404 0.778390i
$$714$$ 8.66025i 0.324102i
$$715$$ 6.00000 + 10.3923i 0.224387 + 0.388650i
$$716$$ −12.0000 20.7846i −0.448461 0.776757i
$$717$$ 10.3923i 0.388108i
$$718$$ 1.00000 1.73205i 0.0373197 0.0646396i
$$719$$ 6.00000 0.223762 0.111881 0.993722i $$-0.464312\pi$$
0.111881 + 0.993722i $$0.464312\pi$$
$$720$$ 3.00000 + 5.19615i 0.111803 + 0.193649i
$$721$$ −14.0000 −0.521387
$$722$$ 15.0000 25.9808i 0.558242 0.966904i
$$723$$ −34.5000 + 19.9186i −1.28307 + 0.740780i
$$724$$ 0 0
$$725$$ −2.00000 3.46410i −0.0742781 0.128654i
$$726$$ 15.0000 + 8.66025i 0.556702 + 0.321412i
$$727$$ 7.00000 12.1244i 0.259616 0.449667i −0.706523 0.707690i $$-0.749737\pi$$
0.966139 + 0.258022i $$0.0830708\pi$$
$$728$$ −6.00000 −0.222375
$$729$$ −27.0000 −1.00000
$$730$$ −2.00000 −0.0740233
$$731$$ −2.50000 + 4.33013i −0.0924658 + 0.160156i
$$732$$ −18.0000 10.3923i −0.665299 0.384111i
$$733$$ 9.00000 + 15.5885i 0.332423 + 0.575773i 0.982986 0.183679i $$-0.0588007\pi$$
−0.650564 + 0.759452i $$0.725467\pi$$
$$734$$ −11.0000 19.0526i −0.406017 0.703243i
$$735$$ −3.00000 + 1.73205i −0.110657 + 0.0638877i
$$736$$ 2.00000 3.46410i 0.0737210 0.127688i
$$737$$ 13.0000 0.478861
$$738$$ −4.50000 7.79423i −0.165647 0.286910i
$$739$$ −33.0000 −1.21392 −0.606962 0.794731i $$-0.707612\pi$$
−0.606962 + 0.794731i $$0.707612\pi$$
$$740$$ −2.00000 + 3.46410i −0.0735215 + 0.127343i
$$741$$ 72.7461i 2.67240i
$$742$$ −6.00000 10.3923i −0.220267 0.381514i
$$743$$ 3.00000 + 5.19615i 0.110059 + 0.190628i 0.915794 0.401648i $$-0.131563\pi$$
−0.805735 + 0.592277i $$0.798229\pi$$
$$744$$ 10.3923i 0.381000i
$$745$$ 24.0000 41.5692i 0.879292 1.52298i
$$746$$ −22.0000 −0.805477
$$747$$ −48.0000 −1.75623
$$748$$ −5.00000 −0.182818
$$749$$ 1.50000 2.59808i 0.0548088 0.0949316i
$$750$$ −18.0000 + 10.3923i −0.657267 + 0.379473i
$$751$$ 9.00000 + 15.5885i 0.328415 + 0.568831i 0.982197 0.187851i $$-0.0601523\pi$$
−0.653783 + 0.756682i $$0.726819\pi$$
$$752$$ 0 0
$$753$$ 4.50000 + 2.59808i 0.163989 + 0.0946792i
$$754$$ 12.0000 20.7846i 0.437014 0.756931i
$$755$$ 20.0000 0.727875
$$756$$ 5.19615i 0.188982i
$$757$$ −48.0000 −1.74459 −0.872295 0.488980i $$-0.837369\pi$$
−0.872295 + 0.488980i $$0.837369\pi$$
$$758$$ −8.50000 + 14.7224i −0.308734 + 0.534743i
$$759$$ 6.00000 + 3.46410i 0.217786 + 0.125739i
$$760$$ −7.00000 12.1244i −0.253917 0.439797i
$$761$$ −5.00000 8.66025i −0.181250 0.313934i 0.761057 0.648686i $$-0.224681\pi$$
−0.942306 + 0.334752i $$0.891348\pi$$
$$762$$ −18.0000 + 10.3923i −0.652071 + 0.376473i
$$763$$ −1.00000 + 1.73205i −0.0362024 + 0.0627044i
$$764$$ 12.0000 0.434145
$$765$$ −15.0000 + 25.9808i −0.542326 + 0.939336i
$$766$$ −4.00000 −0.144526
$$767$$ −21.0000 + 36.3731i −0.758266 + 1.31336i
$$768$$ 1.73205i 0.0625000i
$$769$$ −11.0000 19.0526i −0.396670 0.687053i 0.596643 0.802507i $$-0.296501\pi$$
−0.993313 + 0.115454i $$0.963168\pi$$
$$770$$ −1.00000 1.73205i −0.0360375 0.0624188i
$$771$$ 25.9808i 0.935674i
$$772$$ −8.50000 + 14.7224i −0.305922 + 0.529872i
$$773$$ −52.0000 −1.87031 −0.935155 0.354239i $$-0.884740\pi$$
−0.935155 + 0.354239i $$0.884740\pi$$
$$774$$ 1.50000 2.59808i 0.0539164 0.0933859i
$$775$$ 6.00000 0.215526
$$776$$ −2.50000 +