Properties

Label 126.2.e.d.25.3
Level $126$
Weight $2$
Character 126.25
Analytic conductor $1.006$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(25,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 25.3
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 126.25
Dual form 126.2.e.d.121.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(1.09097 - 1.34528i) q^{3} +1.00000 q^{4} +(-0.880438 + 1.52496i) q^{5} +(1.09097 - 1.34528i) q^{6} +(-0.710533 + 2.54856i) q^{7} +1.00000 q^{8} +(-0.619562 - 2.93533i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(1.09097 - 1.34528i) q^{3} +1.00000 q^{4} +(-0.880438 + 1.52496i) q^{5} +(1.09097 - 1.34528i) q^{6} +(-0.710533 + 2.54856i) q^{7} +1.00000 q^{8} +(-0.619562 - 2.93533i) q^{9} +(-0.880438 + 1.52496i) q^{10} +(-3.06238 - 5.30420i) q^{11} +(1.09097 - 1.34528i) q^{12} +(-0.380438 - 0.658939i) q^{13} +(-0.710533 + 2.54856i) q^{14} +(1.09097 + 2.84813i) q^{15} +1.00000 q^{16} +(-3.42107 + 5.92546i) q^{17} +(-0.619562 - 2.93533i) q^{18} +(0.971410 + 1.68253i) q^{19} +(-0.880438 + 1.52496i) q^{20} +(2.65335 + 3.73627i) q^{21} +(-3.06238 - 5.30420i) q^{22} +(0.210533 - 0.364654i) q^{23} +(1.09097 - 1.34528i) q^{24} +(0.949657 + 1.64485i) q^{25} +(-0.380438 - 0.658939i) q^{26} +(-4.62476 - 2.36887i) q^{27} +(-0.710533 + 2.54856i) q^{28} +(0.732287 - 1.26836i) q^{29} +(1.09097 + 2.84813i) q^{30} +7.70370 q^{31} +1.00000 q^{32} +(-10.4766 - 1.66697i) q^{33} +(-3.42107 + 5.92546i) q^{34} +(-3.26088 - 3.32738i) q^{35} +(-0.619562 - 2.93533i) q^{36} +(1.44282 + 2.49904i) q^{37} +(0.971410 + 1.68253i) q^{38} +(-1.30150 - 0.207087i) q^{39} +(-0.880438 + 1.52496i) q^{40} +(-3.47141 - 6.01266i) q^{41} +(2.65335 + 3.73627i) q^{42} +(4.33009 - 7.49994i) q^{43} +(-3.06238 - 5.30420i) q^{44} +(5.02175 + 1.63957i) q^{45} +(0.210533 - 0.364654i) q^{46} +1.66019 q^{47} +(1.09097 - 1.34528i) q^{48} +(-5.99028 - 3.62167i) q^{49} +(0.949657 + 1.64485i) q^{50} +(4.23912 + 11.0668i) q^{51} +(-0.380438 - 0.658939i) q^{52} +(-0.112725 + 0.195246i) q^{53} +(-4.62476 - 2.36887i) q^{54} +10.7850 q^{55} +(-0.710533 + 2.54856i) q^{56} +(3.32326 + 0.528775i) q^{57} +(0.732287 - 1.26836i) q^{58} +1.98633 q^{59} +(1.09097 + 2.84813i) q^{60} -10.3502 q^{61} +7.70370 q^{62} +(7.92107 + 0.506659i) q^{63} +1.00000 q^{64} +1.33981 q^{65} +(-10.4766 - 1.66697i) q^{66} +6.78495 q^{67} +(-3.42107 + 5.92546i) q^{68} +(-0.260877 - 0.681054i) q^{69} +(-3.26088 - 3.32738i) q^{70} +10.7850 q^{71} +(-0.619562 - 2.93533i) q^{72} +(0.153353 - 0.265616i) q^{73} +(1.44282 + 2.49904i) q^{74} +(3.24884 + 0.516934i) q^{75} +(0.971410 + 1.68253i) q^{76} +(15.6940 - 4.03584i) q^{77} +(-1.30150 - 0.207087i) q^{78} -13.4451 q^{79} +(-0.880438 + 1.52496i) q^{80} +(-8.23229 + 3.63723i) q^{81} +(-3.47141 - 6.01266i) q^{82} +(-1.56238 + 2.70612i) q^{83} +(2.65335 + 3.73627i) q^{84} +(-6.02408 - 10.4340i) q^{85} +(4.33009 - 7.49994i) q^{86} +(-0.907394 - 2.36887i) q^{87} +(-3.06238 - 5.30420i) q^{88} +(1.30150 + 2.25427i) q^{89} +(5.02175 + 1.63957i) q^{90} +(1.94966 - 0.501371i) q^{91} +(0.210533 - 0.364654i) q^{92} +(8.40451 - 10.3636i) q^{93} +1.66019 q^{94} -3.42107 q^{95} +(1.09097 - 1.34528i) q^{96} +(-1.81806 + 3.14897i) q^{97} +(-5.99028 - 3.62167i) q^{98} +(-13.6722 + 12.2754i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} - 2 q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} + 4 q^{7} + 6 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 6 q^{2} - 2 q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} + 4 q^{7} + 6 q^{8} - 4 q^{9} - 5 q^{10} - q^{11} - 2 q^{12} - 2 q^{13} + 4 q^{14} - 2 q^{15} + 6 q^{16} - 4 q^{17} - 4 q^{18} - 3 q^{19} - 5 q^{20} - 10 q^{21} - q^{22} - 7 q^{23} - 2 q^{24} - 2 q^{25} - 2 q^{26} + 7 q^{27} + 4 q^{28} - 5 q^{29} - 2 q^{30} + 28 q^{31} + 6 q^{32} - 19 q^{33} - 4 q^{34} - 19 q^{35} - 4 q^{36} - 9 q^{37} - 3 q^{38} + 9 q^{39} - 5 q^{40} - 12 q^{41} - 10 q^{42} + 18 q^{43} - q^{44} + 29 q^{45} - 7 q^{46} - 6 q^{47} - 2 q^{48} - 12 q^{49} - 2 q^{50} + 26 q^{51} - 2 q^{52} + 9 q^{53} + 7 q^{54} + 14 q^{55} + 4 q^{56} + 2 q^{57} - 5 q^{58} - 8 q^{59} - 2 q^{60} - 8 q^{61} + 28 q^{62} + 31 q^{63} + 6 q^{64} + 24 q^{65} - 19 q^{66} - 10 q^{67} - 4 q^{68} - q^{69} - 19 q^{70} + 14 q^{71} - 4 q^{72} - 25 q^{73} - 9 q^{74} + 44 q^{75} - 3 q^{76} + 52 q^{77} + 9 q^{78} - 14 q^{79} - 5 q^{80} - 40 q^{81} - 12 q^{82} + 8 q^{83} - 10 q^{84} + 14 q^{85} + 18 q^{86} + 31 q^{87} - q^{88} - 9 q^{89} + 29 q^{90} + 4 q^{91} - 7 q^{92} - 6 q^{94} - 4 q^{95} - 2 q^{96} - 28 q^{97} - 12 q^{98} - 41 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.09097 1.34528i 0.629873 0.776698i
\(4\) 1.00000 0.500000
\(5\) −0.880438 + 1.52496i −0.393744 + 0.681985i −0.992940 0.118618i \(-0.962154\pi\)
0.599196 + 0.800602i \(0.295487\pi\)
\(6\) 1.09097 1.34528i 0.445387 0.549209i
\(7\) −0.710533 + 2.54856i −0.268556 + 0.963264i
\(8\) 1.00000 0.353553
\(9\) −0.619562 2.93533i −0.206521 0.978442i
\(10\) −0.880438 + 1.52496i −0.278419 + 0.482236i
\(11\) −3.06238 5.30420i −0.923343 1.59928i −0.794205 0.607650i \(-0.792112\pi\)
−0.129138 0.991627i \(-0.541221\pi\)
\(12\) 1.09097 1.34528i 0.314936 0.388349i
\(13\) −0.380438 0.658939i −0.105515 0.182757i 0.808434 0.588587i \(-0.200316\pi\)
−0.913948 + 0.405831i \(0.866982\pi\)
\(14\) −0.710533 + 2.54856i −0.189898 + 0.681130i
\(15\) 1.09097 + 2.84813i 0.281688 + 0.735384i
\(16\) 1.00000 0.250000
\(17\) −3.42107 + 5.92546i −0.829731 + 1.43714i 0.0685191 + 0.997650i \(0.478173\pi\)
−0.898250 + 0.439486i \(0.855161\pi\)
\(18\) −0.619562 2.93533i −0.146032 0.691863i
\(19\) 0.971410 + 1.68253i 0.222857 + 0.385999i 0.955674 0.294426i \(-0.0951285\pi\)
−0.732818 + 0.680425i \(0.761795\pi\)
\(20\) −0.880438 + 1.52496i −0.196872 + 0.340992i
\(21\) 2.65335 + 3.73627i 0.579009 + 0.815321i
\(22\) −3.06238 5.30420i −0.652902 1.13086i
\(23\) 0.210533 0.364654i 0.0438992 0.0760357i −0.843241 0.537536i \(-0.819355\pi\)
0.887140 + 0.461500i \(0.152689\pi\)
\(24\) 1.09097 1.34528i 0.222694 0.274604i
\(25\) 0.949657 + 1.64485i 0.189931 + 0.328971i
\(26\) −0.380438 0.658939i −0.0746101 0.129228i
\(27\) −4.62476 2.36887i −0.890036 0.455890i
\(28\) −0.710533 + 2.54856i −0.134278 + 0.481632i
\(29\) 0.732287 1.26836i 0.135982 0.235528i −0.789990 0.613120i \(-0.789914\pi\)
0.925972 + 0.377592i \(0.123248\pi\)
\(30\) 1.09097 + 2.84813i 0.199183 + 0.519995i
\(31\) 7.70370 1.38362 0.691812 0.722077i \(-0.256813\pi\)
0.691812 + 0.722077i \(0.256813\pi\)
\(32\) 1.00000 0.176777
\(33\) −10.4766 1.66697i −1.82374 0.290182i
\(34\) −3.42107 + 5.92546i −0.586708 + 1.01621i
\(35\) −3.26088 3.32738i −0.551189 0.562431i
\(36\) −0.619562 2.93533i −0.103260 0.489221i
\(37\) 1.44282 + 2.49904i 0.237198 + 0.410839i 0.959909 0.280311i \(-0.0904376\pi\)
−0.722711 + 0.691150i \(0.757104\pi\)
\(38\) 0.971410 + 1.68253i 0.157584 + 0.272943i
\(39\) −1.30150 0.207087i −0.208408 0.0331604i
\(40\) −0.880438 + 1.52496i −0.139210 + 0.241118i
\(41\) −3.47141 6.01266i −0.542143 0.939020i −0.998781 0.0493667i \(-0.984280\pi\)
0.456638 0.889653i \(-0.349054\pi\)
\(42\) 2.65335 + 3.73627i 0.409421 + 0.576519i
\(43\) 4.33009 7.49994i 0.660333 1.14373i −0.320195 0.947352i \(-0.603748\pi\)
0.980528 0.196379i \(-0.0629183\pi\)
\(44\) −3.06238 5.30420i −0.461671 0.799638i
\(45\) 5.02175 + 1.63957i 0.748599 + 0.244412i
\(46\) 0.210533 0.364654i 0.0310414 0.0537654i
\(47\) 1.66019 0.242164 0.121082 0.992643i \(-0.461364\pi\)
0.121082 + 0.992643i \(0.461364\pi\)
\(48\) 1.09097 1.34528i 0.157468 0.194175i
\(49\) −5.99028 3.62167i −0.855755 0.517381i
\(50\) 0.949657 + 1.64485i 0.134302 + 0.232617i
\(51\) 4.23912 + 11.0668i 0.593596 + 1.54966i
\(52\) −0.380438 0.658939i −0.0527573 0.0913783i
\(53\) −0.112725 + 0.195246i −0.0154840 + 0.0268190i −0.873664 0.486531i \(-0.838262\pi\)
0.858180 + 0.513350i \(0.171596\pi\)
\(54\) −4.62476 2.36887i −0.629351 0.322363i
\(55\) 10.7850 1.45424
\(56\) −0.710533 + 2.54856i −0.0949490 + 0.340565i
\(57\) 3.32326 + 0.528775i 0.440176 + 0.0700379i
\(58\) 0.732287 1.26836i 0.0961540 0.166544i
\(59\) 1.98633 0.258598 0.129299 0.991606i \(-0.458727\pi\)
0.129299 + 0.991606i \(0.458727\pi\)
\(60\) 1.09097 + 2.84813i 0.140844 + 0.367692i
\(61\) −10.3502 −1.32521 −0.662605 0.748969i \(-0.730549\pi\)
−0.662605 + 0.748969i \(0.730549\pi\)
\(62\) 7.70370 0.978370
\(63\) 7.92107 + 0.506659i 0.997961 + 0.0638331i
\(64\) 1.00000 0.125000
\(65\) 1.33981 0.166183
\(66\) −10.4766 1.66697i −1.28958 0.205190i
\(67\) 6.78495 0.828914 0.414457 0.910069i \(-0.363972\pi\)
0.414457 + 0.910069i \(0.363972\pi\)
\(68\) −3.42107 + 5.92546i −0.414865 + 0.718568i
\(69\) −0.260877 0.681054i −0.0314059 0.0819893i
\(70\) −3.26088 3.32738i −0.389749 0.397699i
\(71\) 10.7850 1.27994 0.639969 0.768401i \(-0.278947\pi\)
0.639969 + 0.768401i \(0.278947\pi\)
\(72\) −0.619562 2.93533i −0.0730160 0.345932i
\(73\) 0.153353 0.265616i 0.0179487 0.0310880i −0.856912 0.515463i \(-0.827620\pi\)
0.874860 + 0.484375i \(0.160953\pi\)
\(74\) 1.44282 + 2.49904i 0.167724 + 0.290507i
\(75\) 3.24884 + 0.516934i 0.375144 + 0.0596904i
\(76\) 0.971410 + 1.68253i 0.111428 + 0.193000i
\(77\) 15.6940 4.03584i 1.78850 0.459927i
\(78\) −1.30150 0.207087i −0.147366 0.0234480i
\(79\) −13.4451 −1.51270 −0.756348 0.654169i \(-0.773018\pi\)
−0.756348 + 0.654169i \(0.773018\pi\)
\(80\) −0.880438 + 1.52496i −0.0984360 + 0.170496i
\(81\) −8.23229 + 3.63723i −0.914699 + 0.404137i
\(82\) −3.47141 6.01266i −0.383353 0.663987i
\(83\) −1.56238 + 2.70612i −0.171494 + 0.297036i −0.938942 0.344075i \(-0.888193\pi\)
0.767449 + 0.641110i \(0.221526\pi\)
\(84\) 2.65335 + 3.73627i 0.289505 + 0.407661i
\(85\) −6.02408 10.4340i −0.653403 1.13173i
\(86\) 4.33009 7.49994i 0.466926 0.808740i
\(87\) −0.907394 2.36887i −0.0972828 0.253970i
\(88\) −3.06238 5.30420i −0.326451 0.565430i
\(89\) 1.30150 + 2.25427i 0.137959 + 0.238952i 0.926724 0.375743i \(-0.122612\pi\)
−0.788765 + 0.614695i \(0.789279\pi\)
\(90\) 5.02175 + 1.63957i 0.529339 + 0.172825i
\(91\) 1.94966 0.501371i 0.204380 0.0525580i
\(92\) 0.210533 0.364654i 0.0219496 0.0380178i
\(93\) 8.40451 10.3636i 0.871508 1.07466i
\(94\) 1.66019 0.171236
\(95\) −3.42107 −0.350994
\(96\) 1.09097 1.34528i 0.111347 0.137302i
\(97\) −1.81806 + 3.14897i −0.184596 + 0.319729i −0.943440 0.331543i \(-0.892431\pi\)
0.758845 + 0.651272i \(0.225764\pi\)
\(98\) −5.99028 3.62167i −0.605110 0.365844i
\(99\) −13.6722 + 12.2754i −1.37411 + 1.23372i
\(100\) 0.949657 + 1.64485i 0.0949657 + 0.164485i
\(101\) 4.00520 + 6.93721i 0.398532 + 0.690278i 0.993545 0.113438i \(-0.0361863\pi\)
−0.595013 + 0.803716i \(0.702853\pi\)
\(102\) 4.23912 + 11.0668i 0.419736 + 1.09578i
\(103\) 3.41423 5.91362i 0.336414 0.582686i −0.647341 0.762200i \(-0.724119\pi\)
0.983755 + 0.179514i \(0.0574525\pi\)
\(104\) −0.380438 0.658939i −0.0373051 0.0646142i
\(105\) −8.03379 + 0.756713i −0.784018 + 0.0738476i
\(106\) −0.112725 + 0.195246i −0.0109488 + 0.0189639i
\(107\) 1.77292 + 3.07078i 0.171394 + 0.296863i 0.938908 0.344170i \(-0.111840\pi\)
−0.767513 + 0.641033i \(0.778506\pi\)
\(108\) −4.62476 2.36887i −0.445018 0.227945i
\(109\) 0.351848 0.609419i 0.0337010 0.0583718i −0.848683 0.528902i \(-0.822604\pi\)
0.882384 + 0.470530i \(0.155937\pi\)
\(110\) 10.7850 1.02830
\(111\) 4.93598 + 0.785381i 0.468503 + 0.0745451i
\(112\) −0.710533 + 2.54856i −0.0671391 + 0.240816i
\(113\) 4.25116 + 7.36323i 0.399916 + 0.692674i 0.993715 0.111939i \(-0.0357061\pi\)
−0.593799 + 0.804613i \(0.702373\pi\)
\(114\) 3.32326 + 0.528775i 0.311252 + 0.0495243i
\(115\) 0.370723 + 0.642111i 0.0345701 + 0.0598772i
\(116\) 0.732287 1.26836i 0.0679911 0.117764i
\(117\) −1.69850 + 1.52496i −0.157026 + 0.140983i
\(118\) 1.98633 0.182856
\(119\) −12.6706 12.9290i −1.16151 1.18520i
\(120\) 1.09097 + 2.84813i 0.0995916 + 0.259997i
\(121\) −13.2564 + 22.9607i −1.20512 + 2.08734i
\(122\) −10.3502 −0.937064
\(123\) −11.8759 1.88962i −1.07082 0.170381i
\(124\) 7.70370 0.691812
\(125\) −12.1488 −1.08663
\(126\) 7.92107 + 0.506659i 0.705665 + 0.0451368i
\(127\) −18.9532 −1.68183 −0.840913 0.541170i \(-0.817982\pi\)
−0.840913 + 0.541170i \(0.817982\pi\)
\(128\) 1.00000 0.0883883
\(129\) −5.36552 14.0074i −0.472408 1.23328i
\(130\) 1.33981 0.117509
\(131\) 3.64652 6.31595i 0.318598 0.551827i −0.661598 0.749859i \(-0.730121\pi\)
0.980196 + 0.198031i \(0.0634548\pi\)
\(132\) −10.4766 1.66697i −0.911872 0.145091i
\(133\) −4.97825 + 1.28020i −0.431669 + 0.111007i
\(134\) 6.78495 0.586131
\(135\) 7.68427 4.96695i 0.661356 0.427487i
\(136\) −3.42107 + 5.92546i −0.293354 + 0.508104i
\(137\) 4.09097 + 7.08577i 0.349515 + 0.605378i 0.986163 0.165776i \(-0.0530129\pi\)
−0.636648 + 0.771154i \(0.719680\pi\)
\(138\) −0.260877 0.681054i −0.0222073 0.0579752i
\(139\) −6.23229 10.7946i −0.528616 0.915589i −0.999443 0.0333640i \(-0.989378\pi\)
0.470828 0.882225i \(-0.343955\pi\)
\(140\) −3.26088 3.32738i −0.275594 0.281215i
\(141\) 1.81122 2.23342i 0.152532 0.188088i
\(142\) 10.7850 0.905053
\(143\) −2.33009 + 4.03584i −0.194852 + 0.337494i
\(144\) −0.619562 2.93533i −0.0516301 0.244611i
\(145\) 1.28947 + 2.23342i 0.107084 + 0.185476i
\(146\) 0.153353 0.265616i 0.0126916 0.0219825i
\(147\) −11.4074 + 4.10748i −0.940866 + 0.338779i
\(148\) 1.44282 + 2.49904i 0.118599 + 0.205420i
\(149\) −4.41423 + 7.64567i −0.361628 + 0.626358i −0.988229 0.152982i \(-0.951112\pi\)
0.626601 + 0.779340i \(0.284446\pi\)
\(150\) 3.24884 + 0.516934i 0.265267 + 0.0422075i
\(151\) 7.49316 + 12.9785i 0.609785 + 1.05618i 0.991276 + 0.131806i \(0.0420775\pi\)
−0.381491 + 0.924373i \(0.624589\pi\)
\(152\) 0.971410 + 1.68253i 0.0787918 + 0.136471i
\(153\) 19.5127 + 6.37076i 1.57751 + 0.515045i
\(154\) 15.6940 4.03584i 1.26466 0.325217i
\(155\) −6.78263 + 11.7479i −0.544794 + 0.943611i
\(156\) −1.30150 0.207087i −0.104204 0.0165802i
\(157\) 18.9806 1.51481 0.757407 0.652943i \(-0.226466\pi\)
0.757407 + 0.652943i \(0.226466\pi\)
\(158\) −13.4451 −1.06964
\(159\) 0.139680 + 0.364654i 0.0110774 + 0.0289190i
\(160\) −0.880438 + 1.52496i −0.0696048 + 0.120559i
\(161\) 0.779752 + 0.795655i 0.0614530 + 0.0627064i
\(162\) −8.23229 + 3.63723i −0.646790 + 0.285768i
\(163\) −7.51887 13.0231i −0.588924 1.02005i −0.994374 0.105929i \(-0.966219\pi\)
0.405450 0.914117i \(-0.367115\pi\)
\(164\) −3.47141 6.01266i −0.271072 0.469510i
\(165\) 11.7661 14.5088i 0.915988 1.12951i
\(166\) −1.56238 + 2.70612i −0.121264 + 0.210036i
\(167\) 0.572097 + 0.990901i 0.0442702 + 0.0766782i 0.887311 0.461171i \(-0.152570\pi\)
−0.843041 + 0.537849i \(0.819237\pi\)
\(168\) 2.65335 + 3.73627i 0.204711 + 0.288260i
\(169\) 6.21053 10.7570i 0.477733 0.827458i
\(170\) −6.02408 10.4340i −0.462026 0.800252i
\(171\) 4.33693 3.89384i 0.331653 0.297769i
\(172\) 4.33009 7.49994i 0.330167 0.571865i
\(173\) 0.497677 0.0378377 0.0189188 0.999821i \(-0.493978\pi\)
0.0189188 + 0.999821i \(0.493978\pi\)
\(174\) −0.907394 2.36887i −0.0687893 0.179584i
\(175\) −4.86677 + 1.25153i −0.367893 + 0.0946068i
\(176\) −3.06238 5.30420i −0.230836 0.399819i
\(177\) 2.16703 2.67217i 0.162884 0.200852i
\(178\) 1.30150 + 2.25427i 0.0975519 + 0.168965i
\(179\) 4.41423 7.64567i 0.329935 0.571464i −0.652564 0.757734i \(-0.726306\pi\)
0.982499 + 0.186270i \(0.0596398\pi\)
\(180\) 5.02175 + 1.63957i 0.374299 + 0.122206i
\(181\) 1.32941 0.0988140 0.0494070 0.998779i \(-0.484267\pi\)
0.0494070 + 0.998779i \(0.484267\pi\)
\(182\) 1.94966 0.501371i 0.144518 0.0371641i
\(183\) −11.2918 + 13.9239i −0.834713 + 1.02929i
\(184\) 0.210533 0.364654i 0.0155207 0.0268827i
\(185\) −5.08126 −0.373581
\(186\) 8.40451 10.3636i 0.616249 0.759899i
\(187\) 41.9064 3.06450
\(188\) 1.66019 0.121082
\(189\) 9.32326 10.1033i 0.678167 0.734908i
\(190\) −3.42107 −0.248190
\(191\) −16.1683 −1.16989 −0.584947 0.811071i \(-0.698885\pi\)
−0.584947 + 0.811071i \(0.698885\pi\)
\(192\) 1.09097 1.34528i 0.0787341 0.0970873i
\(193\) −14.1683 −1.01985 −0.509927 0.860218i \(-0.670328\pi\)
−0.509927 + 0.860218i \(0.670328\pi\)
\(194\) −1.81806 + 3.14897i −0.130529 + 0.226083i
\(195\) 1.46169 1.80242i 0.104674 0.129074i
\(196\) −5.99028 3.62167i −0.427877 0.258691i
\(197\) 15.8421 1.12871 0.564353 0.825534i \(-0.309126\pi\)
0.564353 + 0.825534i \(0.309126\pi\)
\(198\) −13.6722 + 12.2754i −0.971643 + 0.872373i
\(199\) −4.47141 + 7.74471i −0.316970 + 0.549008i −0.979854 0.199714i \(-0.935999\pi\)
0.662884 + 0.748722i \(0.269332\pi\)
\(200\) 0.949657 + 1.64485i 0.0671509 + 0.116309i
\(201\) 7.40219 9.12767i 0.522110 0.643816i
\(202\) 4.00520 + 6.93721i 0.281805 + 0.488101i
\(203\) 2.71217 + 2.76748i 0.190357 + 0.194239i
\(204\) 4.23912 + 11.0668i 0.296798 + 0.774831i
\(205\) 12.2255 0.853862
\(206\) 3.41423 5.91362i 0.237881 0.412021i
\(207\) −1.20082 0.392058i −0.0834626 0.0272499i
\(208\) −0.380438 0.658939i −0.0263787 0.0456892i
\(209\) 5.94966 10.3051i 0.411546 0.712819i
\(210\) −8.03379 + 0.756713i −0.554384 + 0.0522181i
\(211\) 11.3856 + 19.7205i 0.783820 + 1.35762i 0.929702 + 0.368314i \(0.120065\pi\)
−0.145882 + 0.989302i \(0.546602\pi\)
\(212\) −0.112725 + 0.195246i −0.00774199 + 0.0134095i
\(213\) 11.7661 14.5088i 0.806198 0.994126i
\(214\) 1.77292 + 3.07078i 0.121194 + 0.209914i
\(215\) 7.62476 + 13.2065i 0.520005 + 0.900674i
\(216\) −4.62476 2.36887i −0.314675 0.161181i
\(217\) −5.47373 + 19.6333i −0.371581 + 1.33280i
\(218\) 0.351848 0.609419i 0.0238302 0.0412751i
\(219\) −0.190024 0.496083i −0.0128406 0.0335222i
\(220\) 10.7850 0.727121
\(221\) 5.20602 0.350195
\(222\) 4.93598 + 0.785381i 0.331282 + 0.0527113i
\(223\) −6.44282 + 11.1593i −0.431443 + 0.747281i −0.996998 0.0774293i \(-0.975329\pi\)
0.565555 + 0.824711i \(0.308662\pi\)
\(224\) −0.710533 + 2.54856i −0.0474745 + 0.170283i
\(225\) 4.23981 3.80664i 0.282654 0.253776i
\(226\) 4.25116 + 7.36323i 0.282783 + 0.489795i
\(227\) −10.9984 19.0497i −0.729987 1.26437i −0.956888 0.290457i \(-0.906193\pi\)
0.226901 0.973918i \(-0.427141\pi\)
\(228\) 3.32326 + 0.528775i 0.220088 + 0.0350190i
\(229\) 1.89931 3.28971i 0.125510 0.217390i −0.796422 0.604741i \(-0.793277\pi\)
0.921932 + 0.387351i \(0.126610\pi\)
\(230\) 0.370723 + 0.642111i 0.0244448 + 0.0423396i
\(231\) 11.6923 25.5158i 0.769300 1.67882i
\(232\) 0.732287 1.26836i 0.0480770 0.0832718i
\(233\) −3.33530 5.77690i −0.218503 0.378458i 0.735848 0.677147i \(-0.236784\pi\)
−0.954350 + 0.298689i \(0.903451\pi\)
\(234\) −1.69850 + 1.52496i −0.111034 + 0.0996900i
\(235\) −1.46169 + 2.53173i −0.0953505 + 0.165152i
\(236\) 1.98633 0.129299
\(237\) −14.6683 + 18.0875i −0.952807 + 1.17491i
\(238\) −12.6706 12.9290i −0.821313 0.838064i
\(239\) −7.82038 13.5453i −0.505858 0.876172i −0.999977 0.00677786i \(-0.997843\pi\)
0.494119 0.869394i \(-0.335491\pi\)
\(240\) 1.09097 + 2.84813i 0.0704219 + 0.183846i
\(241\) −10.7060 18.5434i −0.689635 1.19448i −0.971956 0.235163i \(-0.924437\pi\)
0.282320 0.959320i \(-0.408896\pi\)
\(242\) −13.2564 + 22.9607i −0.852151 + 1.47597i
\(243\) −4.08809 + 15.0429i −0.262251 + 0.965000i
\(244\) −10.3502 −0.662605
\(245\) 10.7970 5.94631i 0.689794 0.379896i
\(246\) −11.8759 1.88962i −0.757181 0.120478i
\(247\) 0.739123 1.28020i 0.0470293 0.0814571i
\(248\) 7.70370 0.489185
\(249\) 1.93598 + 5.05415i 0.122688 + 0.320294i
\(250\) −12.1488 −0.768360
\(251\) −23.6030 −1.48981 −0.744904 0.667171i \(-0.767505\pi\)
−0.744904 + 0.667171i \(0.767505\pi\)
\(252\) 7.92107 + 0.506659i 0.498980 + 0.0319165i
\(253\) −2.57893 −0.162136
\(254\) −18.9532 −1.18923
\(255\) −20.6088 3.27913i −1.29057 0.205347i
\(256\) 1.00000 0.0625000
\(257\) −10.1300 + 17.5456i −0.631890 + 1.09447i 0.355275 + 0.934762i \(0.384387\pi\)
−0.987165 + 0.159704i \(0.948946\pi\)
\(258\) −5.36552 14.0074i −0.334043 0.872064i
\(259\) −7.39411 + 1.90146i −0.459448 + 0.118151i
\(260\) 1.33981 0.0830915
\(261\) −4.17674 1.36368i −0.258534 0.0844094i
\(262\) 3.64652 6.31595i 0.225283 0.390201i
\(263\) 11.2443 + 19.4757i 0.693355 + 1.20093i 0.970732 + 0.240165i \(0.0772014\pi\)
−0.277377 + 0.960761i \(0.589465\pi\)
\(264\) −10.4766 1.66697i −0.644791 0.102595i
\(265\) −0.198495 0.343803i −0.0121935 0.0211197i
\(266\) −4.97825 + 1.28020i −0.305236 + 0.0784940i
\(267\) 4.45254 + 0.708458i 0.272491 + 0.0433569i
\(268\) 6.78495 0.414457
\(269\) −12.6706 + 21.9461i −0.772540 + 1.33808i 0.163627 + 0.986522i \(0.447681\pi\)
−0.936167 + 0.351556i \(0.885653\pi\)
\(270\) 7.68427 4.96695i 0.467650 0.302279i
\(271\) −6.87880 11.9144i −0.417858 0.723751i 0.577866 0.816132i \(-0.303886\pi\)
−0.995724 + 0.0923810i \(0.970552\pi\)
\(272\) −3.42107 + 5.92546i −0.207433 + 0.359284i
\(273\) 1.45254 3.16982i 0.0879114 0.191846i
\(274\) 4.09097 + 7.08577i 0.247145 + 0.428067i
\(275\) 5.81642 10.0743i 0.350743 0.607505i
\(276\) −0.260877 0.681054i −0.0157029 0.0409946i
\(277\) 1.64132 + 2.84284i 0.0986171 + 0.170810i 0.911112 0.412158i \(-0.135225\pi\)
−0.812495 + 0.582968i \(0.801891\pi\)
\(278\) −6.23229 10.7946i −0.373788 0.647419i
\(279\) −4.77292 22.6129i −0.285747 1.35380i
\(280\) −3.26088 3.32738i −0.194875 0.198849i
\(281\) 0.634479 1.09895i 0.0378498 0.0655578i −0.846480 0.532421i \(-0.821282\pi\)
0.884330 + 0.466863i \(0.154616\pi\)
\(282\) 1.81122 2.23342i 0.107857 0.132998i
\(283\) −8.19235 −0.486984 −0.243492 0.969903i \(-0.578293\pi\)
−0.243492 + 0.969903i \(0.578293\pi\)
\(284\) 10.7850 0.639969
\(285\) −3.73229 + 4.60230i −0.221082 + 0.272616i
\(286\) −2.33009 + 4.03584i −0.137781 + 0.238644i
\(287\) 17.7902 4.57489i 1.05012 0.270047i
\(288\) −0.619562 2.93533i −0.0365080 0.172966i
\(289\) −14.9074 25.8204i −0.876906 1.51884i
\(290\) 1.28947 + 2.23342i 0.0757201 + 0.131151i
\(291\) 2.25280 + 5.88123i 0.132061 + 0.344764i
\(292\) 0.153353 0.265616i 0.00897433 0.0155440i
\(293\) 7.72545 + 13.3809i 0.451326 + 0.781719i 0.998469 0.0553202i \(-0.0176180\pi\)
−0.547143 + 0.837039i \(0.684285\pi\)
\(294\) −11.4074 + 4.10748i −0.665293 + 0.239553i
\(295\) −1.74884 + 3.02908i −0.101821 + 0.176360i
\(296\) 1.44282 + 2.49904i 0.0838622 + 0.145254i
\(297\) 1.59781 + 31.7851i 0.0927142 + 1.84436i
\(298\) −4.41423 + 7.64567i −0.255709 + 0.442902i
\(299\) −0.320380 −0.0185280
\(300\) 3.24884 + 0.516934i 0.187572 + 0.0298452i
\(301\) 16.0374 + 16.3645i 0.924378 + 0.943231i
\(302\) 7.49316 + 12.9785i 0.431183 + 0.746831i
\(303\) 13.7021 + 2.18018i 0.787163 + 0.125248i
\(304\) 0.971410 + 1.68253i 0.0557142 + 0.0964998i
\(305\) 9.11273 15.7837i 0.521793 0.903772i
\(306\) 19.5127 + 6.37076i 1.11547 + 0.364192i
\(307\) 4.89931 0.279619 0.139809 0.990178i \(-0.455351\pi\)
0.139809 + 0.990178i \(0.455351\pi\)
\(308\) 15.6940 4.03584i 0.894248 0.229963i
\(309\) −4.23065 11.0447i −0.240673 0.628310i
\(310\) −6.78263 + 11.7479i −0.385228 + 0.667234i
\(311\) −7.69002 −0.436061 −0.218031 0.975942i \(-0.569963\pi\)
−0.218031 + 0.975942i \(0.569963\pi\)
\(312\) −1.30150 0.207087i −0.0736832 0.0117240i
\(313\) −1.72313 −0.0973969 −0.0486985 0.998814i \(-0.515507\pi\)
−0.0486985 + 0.998814i \(0.515507\pi\)
\(314\) 18.9806 1.07114
\(315\) −7.74665 + 11.6333i −0.436474 + 0.655460i
\(316\) −13.4451 −0.756348
\(317\) 33.2028 1.86485 0.932426 0.361361i \(-0.117688\pi\)
0.932426 + 0.361361i \(0.117688\pi\)
\(318\) 0.139680 + 0.364654i 0.00783288 + 0.0204488i
\(319\) −8.97017 −0.502233
\(320\) −0.880438 + 1.52496i −0.0492180 + 0.0852481i
\(321\) 6.06526 + 0.965064i 0.338530 + 0.0538646i
\(322\) 0.779752 + 0.795655i 0.0434539 + 0.0443401i
\(323\) −13.2930 −0.739644
\(324\) −8.23229 + 3.63723i −0.457349 + 0.202068i
\(325\) 0.722572 1.25153i 0.0400811 0.0694224i
\(326\) −7.51887 13.0231i −0.416432 0.721281i
\(327\) −0.435984 1.13819i −0.0241099 0.0629423i
\(328\) −3.47141 6.01266i −0.191677 0.331994i
\(329\) −1.17962 + 4.23109i −0.0650346 + 0.233267i
\(330\) 11.7661 14.5088i 0.647701 0.798683i
\(331\) 2.88891 0.158789 0.0793944 0.996843i \(-0.474701\pi\)
0.0793944 + 0.996843i \(0.474701\pi\)
\(332\) −1.56238 + 2.70612i −0.0857468 + 0.148518i
\(333\) 6.44158 5.78346i 0.352996 0.316931i
\(334\) 0.572097 + 0.990901i 0.0313037 + 0.0542197i
\(335\) −5.97373 + 10.3468i −0.326380 + 0.565307i
\(336\) 2.65335 + 3.73627i 0.144752 + 0.203830i
\(337\) −4.36156 7.55445i −0.237590 0.411517i 0.722433 0.691441i \(-0.243024\pi\)
−0.960022 + 0.279924i \(0.909691\pi\)
\(338\) 6.21053 10.7570i 0.337808 0.585101i
\(339\) 14.5435 + 2.31407i 0.789895 + 0.125683i
\(340\) −6.02408 10.4340i −0.326701 0.565863i
\(341\) −23.5917 40.8620i −1.27756 2.21280i
\(342\) 4.33693 3.89384i 0.234514 0.210555i
\(343\) 13.4863 12.6933i 0.728193 0.685372i
\(344\) 4.33009 7.49994i 0.233463 0.404370i
\(345\) 1.26827 + 0.201799i 0.0682813 + 0.0108645i
\(346\) 0.497677 0.0267553
\(347\) 9.69467 0.520437 0.260219 0.965550i \(-0.416205\pi\)
0.260219 + 0.965550i \(0.416205\pi\)
\(348\) −0.907394 2.36887i −0.0486414 0.126985i
\(349\) 14.1992 24.5937i 0.760065 1.31647i −0.182752 0.983159i \(-0.558500\pi\)
0.942817 0.333312i \(-0.108166\pi\)
\(350\) −4.86677 + 1.25153i −0.260140 + 0.0668971i
\(351\) 0.198495 + 3.94865i 0.0105949 + 0.210763i
\(352\) −3.06238 5.30420i −0.163225 0.282715i
\(353\) 2.19686 + 3.80507i 0.116927 + 0.202524i 0.918548 0.395308i \(-0.129362\pi\)
−0.801621 + 0.597832i \(0.796029\pi\)
\(354\) 2.16703 2.67217i 0.115176 0.142024i
\(355\) −9.49549 + 16.4467i −0.503968 + 0.872898i
\(356\) 1.30150 + 2.25427i 0.0689796 + 0.119476i
\(357\) −31.2164 + 2.94031i −1.65215 + 0.155618i
\(358\) 4.41423 7.64567i 0.233299 0.404086i
\(359\) 16.0796 + 27.8507i 0.848650 + 1.46990i 0.882413 + 0.470475i \(0.155917\pi\)
−0.0337633 + 0.999430i \(0.510749\pi\)
\(360\) 5.02175 + 1.63957i 0.264670 + 0.0864127i
\(361\) 7.61273 13.1856i 0.400670 0.693980i
\(362\) 1.32941 0.0698721
\(363\) 16.4263 + 42.8830i 0.862155 + 2.25077i
\(364\) 1.94966 0.501371i 0.102190 0.0262790i
\(365\) 0.270036 + 0.467717i 0.0141343 + 0.0244814i
\(366\) −11.2918 + 13.9239i −0.590231 + 0.727816i
\(367\) −17.3015 29.9671i −0.903131 1.56427i −0.823406 0.567452i \(-0.807929\pi\)
−0.0797249 0.996817i \(-0.525404\pi\)
\(368\) 0.210533 0.364654i 0.0109748 0.0190089i
\(369\) −15.4984 + 13.9149i −0.806813 + 0.724383i
\(370\) −5.08126 −0.264162
\(371\) −0.417500 0.426015i −0.0216755 0.0221176i
\(372\) 8.40451 10.3636i 0.435754 0.537330i
\(373\) −5.48796 + 9.50543i −0.284156 + 0.492172i −0.972404 0.233303i \(-0.925047\pi\)
0.688248 + 0.725475i \(0.258380\pi\)
\(374\) 41.9064 2.16693
\(375\) −13.2540 + 16.3436i −0.684436 + 0.843980i
\(376\) 1.66019 0.0856178
\(377\) −1.11436 −0.0573925
\(378\) 9.32326 10.1033i 0.479537 0.519658i
\(379\) 33.9877 1.74583 0.872916 0.487871i \(-0.162226\pi\)
0.872916 + 0.487871i \(0.162226\pi\)
\(380\) −3.42107 −0.175497
\(381\) −20.6774 + 25.4974i −1.05934 + 1.30627i
\(382\) −16.1683 −0.827241
\(383\) 10.5120 18.2074i 0.537140 0.930354i −0.461916 0.886923i \(-0.652838\pi\)
0.999056 0.0434304i \(-0.0138287\pi\)
\(384\) 1.09097 1.34528i 0.0556734 0.0686511i
\(385\) −7.66307 + 27.4861i −0.390546 + 1.40082i
\(386\) −14.1683 −0.721146
\(387\) −24.6975 8.06357i −1.25545 0.409894i
\(388\) −1.81806 + 3.14897i −0.0922978 + 0.159865i
\(389\) −6.86909 11.8976i −0.348277 0.603233i 0.637667 0.770312i \(-0.279900\pi\)
−0.985943 + 0.167080i \(0.946566\pi\)
\(390\) 1.46169 1.80242i 0.0740158 0.0912691i
\(391\) 1.44050 + 2.49501i 0.0728491 + 0.126178i
\(392\) −5.99028 3.62167i −0.302555 0.182922i
\(393\) −4.51848 11.7961i −0.227927 0.595035i
\(394\) 15.8421 0.798115
\(395\) 11.8376 20.5034i 0.595615 1.03164i
\(396\) −13.6722 + 12.2754i −0.687055 + 0.616861i
\(397\) −3.57893 6.19889i −0.179622 0.311114i 0.762129 0.647425i \(-0.224154\pi\)
−0.941751 + 0.336311i \(0.890821\pi\)
\(398\) −4.47141 + 7.74471i −0.224132 + 0.388207i
\(399\) −3.70890 + 8.09380i −0.185677 + 0.405197i
\(400\) 0.949657 + 1.64485i 0.0474828 + 0.0822427i
\(401\) 4.63968 8.03616i 0.231695 0.401307i −0.726612 0.687048i \(-0.758906\pi\)
0.958307 + 0.285741i \(0.0922397\pi\)
\(402\) 7.40219 9.12767i 0.369188 0.455247i
\(403\) −2.93078 5.07626i −0.145993 0.252867i
\(404\) 4.00520 + 6.93721i 0.199266 + 0.345139i
\(405\) 1.70137 15.7563i 0.0845419 0.782937i
\(406\) 2.71217 + 2.76748i 0.134603 + 0.137348i
\(407\) 8.83693 15.3060i 0.438030 0.758691i
\(408\) 4.23912 + 11.0668i 0.209868 + 0.547889i
\(409\) 15.1683 0.750023 0.375011 0.927020i \(-0.377639\pi\)
0.375011 + 0.927020i \(0.377639\pi\)
\(410\) 12.2255 0.603772
\(411\) 13.9955 + 2.22687i 0.690346 + 0.109843i
\(412\) 3.41423 5.91362i 0.168207 0.291343i
\(413\) −1.41135 + 5.06227i −0.0694481 + 0.249098i
\(414\) −1.20082 0.392058i −0.0590170 0.0192686i
\(415\) −2.75116 4.76515i −0.135049 0.233912i
\(416\) −0.380438 0.658939i −0.0186525 0.0323071i
\(417\) −21.3211 3.39247i −1.04410 0.166130i
\(418\) 5.94966 10.3051i 0.291007 0.504039i
\(419\) −4.16827 7.21966i −0.203633 0.352703i 0.746063 0.665875i \(-0.231942\pi\)
−0.949696 + 0.313172i \(0.898608\pi\)
\(420\) −8.03379 + 0.756713i −0.392009 + 0.0369238i
\(421\) −3.50232 + 6.06620i −0.170693 + 0.295649i −0.938662 0.344838i \(-0.887934\pi\)
0.767969 + 0.640486i \(0.221267\pi\)
\(422\) 11.3856 + 19.7205i 0.554244 + 0.959979i
\(423\) −1.02859 4.87320i −0.0500118 0.236943i
\(424\) −0.112725 + 0.195246i −0.00547442 + 0.00948197i
\(425\) −12.9954 −0.630367
\(426\) 11.7661 14.5088i 0.570068 0.702953i
\(427\) 7.35417 26.3781i 0.355893 1.27653i
\(428\) 1.77292 + 3.07078i 0.0856971 + 0.148432i
\(429\) 2.88727 + 7.53762i 0.139399 + 0.363920i
\(430\) 7.62476 + 13.2065i 0.367699 + 0.636873i
\(431\) −1.72545 + 2.98857i −0.0831120 + 0.143954i −0.904585 0.426293i \(-0.859819\pi\)
0.821473 + 0.570247i \(0.193153\pi\)
\(432\) −4.62476 2.36887i −0.222509 0.113972i
\(433\) 28.2599 1.35809 0.679043 0.734099i \(-0.262395\pi\)
0.679043 + 0.734099i \(0.262395\pi\)
\(434\) −5.47373 + 19.6333i −0.262748 + 0.942429i
\(435\) 4.41135 + 0.701905i 0.211508 + 0.0336538i
\(436\) 0.351848 0.609419i 0.0168505 0.0291859i
\(437\) 0.818057 0.0391330
\(438\) −0.190024 0.496083i −0.00907968 0.0237037i
\(439\) −28.8960 −1.37913 −0.689566 0.724222i \(-0.742199\pi\)
−0.689566 + 0.724222i \(0.742199\pi\)
\(440\) 10.7850 0.514152
\(441\) −6.91943 + 19.8273i −0.329497 + 0.944157i
\(442\) 5.20602 0.247625
\(443\) −13.7609 −0.653799 −0.326899 0.945059i \(-0.606004\pi\)
−0.326899 + 0.945059i \(0.606004\pi\)
\(444\) 4.93598 + 0.785381i 0.234251 + 0.0372725i
\(445\) −4.58358 −0.217283
\(446\) −6.44282 + 11.1593i −0.305076 + 0.528408i
\(447\) 5.46978 + 14.2796i 0.258711 + 0.675401i
\(448\) −0.710533 + 2.54856i −0.0335695 + 0.120408i
\(449\) −20.2003 −0.953309 −0.476655 0.879091i \(-0.658151\pi\)
−0.476655 + 0.879091i \(0.658151\pi\)
\(450\) 4.23981 3.80664i 0.199867 0.179447i
\(451\) −21.2616 + 36.8261i −1.00117 + 1.73407i
\(452\) 4.25116 + 7.36323i 0.199958 + 0.346337i
\(453\) 25.6346 + 4.07881i 1.20442 + 0.191639i
\(454\) −10.9984 19.0497i −0.516179 0.894048i
\(455\) −0.951980 + 3.41458i −0.0446295 + 0.160078i
\(456\) 3.32326 + 0.528775i 0.155626 + 0.0247621i
\(457\) 20.0298 0.936956 0.468478 0.883475i \(-0.344803\pi\)
0.468478 + 0.883475i \(0.344803\pi\)
\(458\) 1.89931 3.28971i 0.0887491 0.153718i
\(459\) 29.8583 19.2998i 1.39367 0.900837i
\(460\) 0.370723 + 0.642111i 0.0172851 + 0.0299386i
\(461\) 5.97661 10.3518i 0.278359 0.482131i −0.692618 0.721304i \(-0.743543\pi\)
0.970977 + 0.239173i \(0.0768763\pi\)
\(462\) 11.6923 25.5158i 0.543977 1.18710i
\(463\) 6.64527 + 11.5100i 0.308832 + 0.534913i 0.978107 0.208102i \(-0.0667286\pi\)
−0.669275 + 0.743015i \(0.733395\pi\)
\(464\) 0.732287 1.26836i 0.0339956 0.0588820i
\(465\) 8.40451 + 21.9411i 0.389750 + 1.01750i
\(466\) −3.33530 5.77690i −0.154505 0.267610i
\(467\) −5.61505 9.72555i −0.259833 0.450045i 0.706364 0.707849i \(-0.250334\pi\)
−0.966197 + 0.257804i \(0.917001\pi\)
\(468\) −1.69850 + 1.52496i −0.0785130 + 0.0704915i
\(469\) −4.82094 + 17.2918i −0.222610 + 0.798463i
\(470\) −1.46169 + 2.53173i −0.0674230 + 0.116780i
\(471\) 20.7073 25.5342i 0.954140 1.17655i
\(472\) 1.98633 0.0914281
\(473\) −53.0416 −2.43886
\(474\) −14.6683 + 18.0875i −0.673736 + 0.830786i
\(475\) −1.84501 + 3.19565i −0.0846550 + 0.146627i
\(476\) −12.6706 12.9290i −0.580756 0.592601i
\(477\) 0.642950 + 0.209918i 0.0294387 + 0.00961150i
\(478\) −7.82038 13.5453i −0.357696 0.619547i
\(479\) 16.3135 + 28.2559i 0.745385 + 1.29104i 0.950015 + 0.312205i \(0.101068\pi\)
−0.204630 + 0.978839i \(0.565599\pi\)
\(480\) 1.09097 + 2.84813i 0.0497958 + 0.129999i
\(481\) 1.09781 1.90146i 0.0500557 0.0866991i
\(482\) −10.7060 18.5434i −0.487646 0.844627i
\(483\) 1.92107 0.180948i 0.0874116 0.00823340i
\(484\) −13.2564 + 22.9607i −0.602562 + 1.04367i
\(485\) −3.20137 5.54494i −0.145367 0.251783i
\(486\) −4.08809 + 15.0429i −0.185440 + 0.682358i
\(487\) 1.84897 3.20251i 0.0837848 0.145120i −0.821088 0.570802i \(-0.806632\pi\)
0.904873 + 0.425682i \(0.139966\pi\)
\(488\) −10.3502 −0.468532
\(489\) −25.7226 4.09280i −1.16321 0.185083i
\(490\) 10.7970 5.94631i 0.487758 0.268627i
\(491\) −18.7804 32.5287i −0.847549 1.46800i −0.883389 0.468641i \(-0.844744\pi\)
0.0358393 0.999358i \(-0.488590\pi\)
\(492\) −11.8759 1.88962i −0.535408 0.0851906i
\(493\) 5.01040 + 8.67827i 0.225657 + 0.390850i
\(494\) 0.739123 1.28020i 0.0332547 0.0575989i
\(495\) −6.68194 31.6574i −0.300331 1.42289i
\(496\) 7.70370 0.345906
\(497\) −7.66307 + 27.4861i −0.343736 + 1.23292i
\(498\) 1.93598 + 5.05415i 0.0867535 + 0.226482i
\(499\) 15.8977 27.5356i 0.711678 1.23266i −0.252549 0.967584i \(-0.581269\pi\)
0.964227 0.265078i \(-0.0853977\pi\)
\(500\) −12.1488 −0.543313
\(501\) 1.95718 + 0.311414i 0.0874404 + 0.0139129i
\(502\) −23.6030 −1.05345
\(503\) 30.8252 1.37443 0.687214 0.726455i \(-0.258834\pi\)
0.687214 + 0.726455i \(0.258834\pi\)
\(504\) 7.92107 + 0.506659i 0.352832 + 0.0225684i
\(505\) −14.1053 −0.627679
\(506\) −2.57893 −0.114648
\(507\) −7.69562 20.0904i −0.341774 0.892248i
\(508\) −18.9532 −0.840913
\(509\) −4.00808 + 6.94220i −0.177655 + 0.307708i −0.941077 0.338193i \(-0.890184\pi\)
0.763422 + 0.645900i \(0.223518\pi\)
\(510\) −20.6088 3.27913i −0.912572 0.145202i
\(511\) 0.567974 + 0.579559i 0.0251257 + 0.0256382i
\(512\) 1.00000 0.0441942
\(513\) −0.506837 10.0825i −0.0223774 0.445151i
\(514\) −10.1300 + 17.5456i −0.446814 + 0.773904i
\(515\) 6.01204 + 10.4132i 0.264922 + 0.458858i
\(516\) −5.36552 14.0074i −0.236204 0.616642i
\(517\) −5.08414 8.80598i −0.223600 0.387287i
\(518\) −7.39411 + 1.90146i −0.324879 + 0.0835453i
\(519\) 0.542951 0.669515i 0.0238329 0.0293885i
\(520\) 1.33981 0.0587546
\(521\) 14.8646 25.7462i 0.651229 1.12796i −0.331596 0.943421i \(-0.607587\pi\)
0.982825 0.184540i \(-0.0590795\pi\)
\(522\) −4.17674 1.36368i −0.182811 0.0596864i
\(523\) 13.4698 + 23.3303i 0.588992 + 1.02016i 0.994365 + 0.106013i \(0.0338084\pi\)
−0.405373 + 0.914152i \(0.632858\pi\)
\(524\) 3.64652 6.31595i 0.159299 0.275914i
\(525\) −3.62584 + 7.91255i −0.158245 + 0.345332i
\(526\) 11.2443 + 19.4757i 0.490276 + 0.849183i
\(527\) −26.3549 + 45.6480i −1.14804 + 1.98846i
\(528\) −10.4766 1.66697i −0.455936 0.0725455i
\(529\) 11.4114 + 19.7650i 0.496146 + 0.859350i
\(530\) −0.198495 0.343803i −0.00862207 0.0149339i
\(531\) −1.23065 5.83052i −0.0534057 0.253023i
\(532\) −4.97825 + 1.28020i −0.215834 + 0.0555037i
\(533\) −2.64132 + 4.57489i −0.114408 + 0.198161i
\(534\) 4.45254 + 0.708458i 0.192680 + 0.0306580i
\(535\) −6.24377 −0.269942
\(536\) 6.78495 0.293065
\(537\) −5.46978 14.2796i −0.236038 0.616210i
\(538\) −12.6706 + 21.9461i −0.546268 + 0.946164i
\(539\) −0.865521 + 42.8646i −0.0372806 + 1.84631i
\(540\) 7.68427 4.96695i 0.330678 0.213744i
\(541\) 7.15568 + 12.3940i 0.307647 + 0.532859i 0.977847 0.209321i \(-0.0671252\pi\)
−0.670201 + 0.742180i \(0.733792\pi\)
\(542\) −6.87880 11.9144i −0.295470 0.511769i
\(543\) 1.45034 1.78843i 0.0622403 0.0767487i
\(544\) −3.42107 + 5.92546i −0.146677 + 0.254052i
\(545\) 0.619562 + 1.07311i 0.0265391 + 0.0459671i
\(546\) 1.45254 3.16982i 0.0621628 0.135656i
\(547\) 1.02463 1.77471i 0.0438101 0.0758813i −0.843289 0.537461i \(-0.819384\pi\)
0.887099 + 0.461579i \(0.152717\pi\)
\(548\) 4.09097 + 7.08577i 0.174758 + 0.302689i
\(549\) 6.41260 + 30.3813i 0.273683 + 1.29664i
\(550\) 5.81642 10.0743i 0.248013 0.429571i
\(551\) 2.84540 0.121218
\(552\) −0.260877 0.681054i −0.0111037 0.0289876i
\(553\) 9.55322 34.2657i 0.406244 1.45713i
\(554\) 1.64132 + 2.84284i 0.0697328 + 0.120781i
\(555\) −5.54351 + 6.83572i −0.235309 + 0.290160i
\(556\) −6.23229 10.7946i −0.264308 0.457795i
\(557\) 8.84338 15.3172i 0.374706 0.649010i −0.615577 0.788077i \(-0.711077\pi\)
0.990283 + 0.139067i \(0.0444103\pi\)
\(558\) −4.77292 22.6129i −0.202054 0.957279i
\(559\) −6.58934 −0.278699
\(560\) −3.26088 3.32738i −0.137797 0.140608i
\(561\) 45.7187 56.3759i 1.93025 2.38019i
\(562\) 0.634479 1.09895i 0.0267639 0.0463564i
\(563\) 0.937063 0.0394925 0.0197462 0.999805i \(-0.493714\pi\)
0.0197462 + 0.999805i \(0.493714\pi\)
\(564\) 1.81122 2.23342i 0.0762661 0.0940440i
\(565\) −14.9715 −0.629858
\(566\) −8.19235 −0.344350
\(567\) −3.42038 23.5648i −0.143642 0.989630i
\(568\) 10.7850 0.452527
\(569\) 23.5264 0.986278 0.493139 0.869951i \(-0.335849\pi\)
0.493139 + 0.869951i \(0.335849\pi\)
\(570\) −3.73229 + 4.60230i −0.156328 + 0.192769i
\(571\) −0.484004 −0.0202549 −0.0101275 0.999949i \(-0.503224\pi\)
−0.0101275 + 0.999949i \(0.503224\pi\)
\(572\) −2.33009 + 4.03584i −0.0974262 + 0.168747i
\(573\) −17.6391 + 21.7509i −0.736885 + 0.908655i
\(574\) 17.7902 4.57489i 0.742547 0.190952i
\(575\) 0.799737 0.0333514
\(576\) −0.619562 2.93533i −0.0258151 0.122305i
\(577\) −2.23065 + 3.86360i −0.0928633 + 0.160844i −0.908715 0.417417i \(-0.862935\pi\)
0.815852 + 0.578261i \(0.196269\pi\)
\(578\) −14.9074 25.8204i −0.620066 1.07399i
\(579\) −15.4572 + 19.0603i −0.642379 + 0.792119i
\(580\) 1.28947 + 2.23342i 0.0535422 + 0.0927378i
\(581\) −5.78659 5.90461i −0.240068 0.244965i
\(582\) 2.25280 + 5.88123i 0.0933814 + 0.243785i
\(583\) 1.38083 0.0571881
\(584\) 0.153353 0.265616i 0.00634581 0.0109913i
\(585\) −0.830095 3.93278i −0.0343202 0.162600i
\(586\) 7.72545 + 13.3809i 0.319135 + 0.552759i
\(587\) 8.31518 14.4023i 0.343204 0.594447i −0.641822 0.766854i \(-0.721821\pi\)
0.985026 + 0.172407i \(0.0551544\pi\)
\(588\) −11.4074 + 4.10748i −0.470433 + 0.169390i
\(589\) 7.48345 + 12.9617i 0.308350 + 0.534078i
\(590\) −1.74884 + 3.02908i −0.0719985 + 0.124705i
\(591\) 17.2833 21.3121i 0.710941 0.876663i
\(592\) 1.44282 + 2.49904i 0.0592995 + 0.102710i
\(593\) 20.7632 + 35.9629i 0.852642 + 1.47682i 0.878815 + 0.477163i \(0.158335\pi\)
−0.0261726 + 0.999657i \(0.508332\pi\)
\(594\) 1.59781 + 31.7851i 0.0655589 + 1.30416i
\(595\) 30.8720 7.93899i 1.26563 0.325467i
\(596\) −4.41423 + 7.64567i −0.180814 + 0.313179i
\(597\) 5.54063 + 14.4646i 0.226763 + 0.591995i
\(598\) −0.320380 −0.0131013
\(599\) 15.0766 0.616014 0.308007 0.951384i \(-0.400338\pi\)
0.308007 + 0.951384i \(0.400338\pi\)
\(600\) 3.24884 + 0.516934i 0.132633 + 0.0211037i
\(601\) −8.05555 + 13.9526i −0.328593 + 0.569139i −0.982233 0.187666i \(-0.939908\pi\)
0.653640 + 0.756805i \(0.273241\pi\)
\(602\) 16.0374 + 16.3645i 0.653634 + 0.666965i
\(603\) −4.20370 19.9161i −0.171188 0.811044i
\(604\) 7.49316 + 12.9785i 0.304892 + 0.528089i
\(605\) −23.3428 40.4310i −0.949021 1.64375i
\(606\) 13.7021 + 2.18018i 0.556608 + 0.0885638i
\(607\) −9.78659 + 16.9509i −0.397225 + 0.688014i −0.993382 0.114853i \(-0.963360\pi\)
0.596157 + 0.802868i \(0.296694\pi\)
\(608\) 0.971410 + 1.68253i 0.0393959 + 0.0682357i
\(609\) 6.68194 0.629380i 0.270766 0.0255038i
\(610\) 9.11273 15.7837i 0.368963 0.639063i
\(611\) −0.631600 1.09396i −0.0255518 0.0442570i
\(612\) 19.5127 + 6.37076i 0.788755 + 0.257523i
\(613\) −2.77579 + 4.80782i −0.112113 + 0.194186i −0.916622 0.399755i \(-0.869095\pi\)
0.804509 + 0.593941i \(0.202429\pi\)
\(614\) 4.89931 0.197720
\(615\) 13.3376 16.4467i 0.537825 0.663194i
\(616\) 15.6940 4.03584i 0.632329 0.162609i
\(617\) 0.634479 + 1.09895i 0.0255431 + 0.0442420i 0.878514 0.477716i \(-0.158535\pi\)
−0.852971 + 0.521958i \(0.825202\pi\)
\(618\) −4.23065 11.0447i −0.170182 0.444283i
\(619\) −2.25116 3.89913i −0.0904818 0.156719i 0.817232 0.576309i \(-0.195507\pi\)
−0.907714 + 0.419589i \(0.862174\pi\)
\(620\) −6.78263 + 11.7479i −0.272397 + 0.471805i
\(621\) −1.83749 + 1.18771i −0.0737358 + 0.0476613i
\(622\) −7.69002 −0.308342
\(623\) −6.66991 + 1.71522i −0.267224 + 0.0687190i
\(624\) −1.30150 0.207087i −0.0521019 0.00829011i
\(625\) 5.94802 10.3023i 0.237921 0.412091i
\(626\) −1.72313 −0.0688700
\(627\) −7.37236 19.2465i −0.294424 0.768633i
\(628\) 18.9806 0.757407
\(629\) −19.7439 −0.787242
\(630\) −7.74665 + 11.6333i −0.308634 + 0.463480i
\(631\) −1.69905 −0.0676381 −0.0338191 0.999428i \(-0.510767\pi\)
−0.0338191 + 0.999428i \(0.510767\pi\)
\(632\) −13.4451 −0.534819
\(633\) 38.9510 + 6.19763i 1.54816 + 0.246334i
\(634\) 33.2028 1.31865
\(635\) 16.6871 28.9030i 0.662209 1.14698i
\(636\) 0.139680 + 0.364654i 0.00553868 + 0.0144595i
\(637\) −0.107523 + 5.32505i −0.00426023 + 0.210986i
\(638\) −8.97017 −0.355132
\(639\) −6.68194 31.6574i −0.264334 1.25235i
\(640\) −0.880438 + 1.52496i −0.0348024 + 0.0602795i
\(641\) 0.474289 + 0.821492i 0.0187333 + 0.0324470i 0.875240 0.483689i \(-0.160703\pi\)
−0.856507 + 0.516136i \(0.827370\pi\)
\(642\) 6.06526 + 0.965064i 0.239377 + 0.0380880i
\(643\) −9.84897 17.0589i −0.388405 0.672738i 0.603830 0.797113i \(-0.293641\pi\)
−0.992235 + 0.124375i \(0.960307\pi\)
\(644\) 0.779752 + 0.795655i 0.0307265 + 0.0313532i
\(645\) 26.0848 + 4.15044i 1.02709 + 0.163424i
\(646\) −13.2930 −0.523007
\(647\) 11.7271 20.3119i 0.461039 0.798543i −0.537974 0.842962i \(-0.680810\pi\)
0.999013 + 0.0444181i \(0.0141434\pi\)
\(648\) −8.23229 + 3.63723i −0.323395 + 0.142884i
\(649\) −6.08289 10.5359i −0.238774 0.413569i
\(650\) 0.722572 1.25153i 0.0283416 0.0490891i
\(651\) 20.4406 + 28.7831i 0.801131 + 1.12810i
\(652\) −7.51887 13.0231i −0.294462 0.510023i
\(653\) −11.3954 + 19.7373i −0.445935 + 0.772382i −0.998117 0.0613420i \(-0.980462\pi\)
0.552182 + 0.833724i \(0.313795\pi\)
\(654\) −0.435984 1.13819i −0.0170483 0.0445069i
\(655\) 6.42107 + 11.1216i 0.250892 + 0.434557i
\(656\) −3.47141 6.01266i −0.135536 0.234755i
\(657\) −0.874681 0.285577i −0.0341246 0.0111414i
\(658\) −1.17962 + 4.23109i −0.0459864 + 0.164945i
\(659\) −13.2398 + 22.9320i −0.515750 + 0.893305i 0.484083 + 0.875022i \(0.339153\pi\)
−0.999833 + 0.0182828i \(0.994180\pi\)
\(660\) 11.7661 14.5088i 0.457994 0.564754i
\(661\) −26.7382 −1.03999 −0.519997 0.854168i \(-0.674067\pi\)
−0.519997 + 0.854168i \(0.674067\pi\)
\(662\) 2.88891 0.112281
\(663\) 5.67962 7.00356i 0.220578 0.271996i
\(664\) −1.56238 + 2.70612i −0.0606322 + 0.105018i
\(665\) 2.43078 8.71878i 0.0942617 0.338100i
\(666\) 6.44158 5.78346i 0.249606 0.224104i
\(667\) −0.308342 0.534063i −0.0119390 0.0206790i
\(668\) 0.572097 + 0.990901i 0.0221351 + 0.0383391i
\(669\) 7.98345 + 20.8419i 0.308658 + 0.805793i
\(670\) −5.97373 + 10.3468i −0.230785 + 0.399732i
\(671\) 31.6963 + 54.8996i 1.22362 + 2.11938i
\(672\) 2.65335 + 3.73627i 0.102355 + 0.144130i
\(673\) −10.3856 + 17.9885i −0.400337 + 0.693404i −0.993766 0.111482i \(-0.964440\pi\)
0.593429 + 0.804886i \(0.297774\pi\)
\(674\) −4.36156 7.55445i −0.168001 0.290987i
\(675\) −0.495487 9.85667i −0.0190713 0.379384i
\(676\) 6.21053 10.7570i 0.238867 0.413729i
\(677\) −20.6979 −0.795486 −0.397743 0.917497i \(-0.630207\pi\)
−0.397743 + 0.917497i \(0.630207\pi\)
\(678\) 14.5435 + 2.31407i 0.558540 + 0.0888712i
\(679\) −6.73353 6.87087i −0.258409 0.263680i
\(680\) −6.02408 10.4340i −0.231013 0.400126i
\(681\) −37.6261 5.98682i −1.44184 0.229416i
\(682\) −23.5917 40.8620i −0.903371 1.56469i
\(683\) 14.2918 24.7541i 0.546860 0.947190i −0.451627 0.892207i \(-0.649156\pi\)
0.998487 0.0549828i \(-0.0175104\pi\)
\(684\) 4.33693 3.89384i 0.165827 0.148885i
\(685\) −14.4074 −0.550478
\(686\) 13.4863 12.6933i 0.514910 0.484631i
\(687\) −2.35348 6.14409i −0.0897910 0.234412i
\(688\) 4.33009 7.49994i 0.165083 0.285933i
\(689\) 0.171540 0.00653515
\(690\) 1.26827 + 0.201799i 0.0482822 + 0.00768234i
\(691\) −6.69794 −0.254802 −0.127401 0.991851i \(-0.540663\pi\)
−0.127401 + 0.991851i \(0.540663\pi\)
\(692\) 0.497677 0.0189188
\(693\) −21.5699 43.5665i −0.819373 1.65495i
\(694\) 9.69467 0.368005
\(695\) 21.9486 0.832557
\(696\) −0.907394 2.36887i −0.0343947 0.0897919i
\(697\) 47.5037 1.79933
\(698\) 14.1992 24.5937i 0.537447 0.930886i
\(699\) −11.4103 1.81553i −0.431576 0.0686695i
\(700\) −4.86677 + 1.25153i −0.183946 + 0.0473034i
\(701\) −25.1442 −0.949683 −0.474842 0.880071i \(-0.657495\pi\)
−0.474842 + 0.880071i \(0.657495\pi\)
\(702\) 0.198495 + 3.94865i 0.00749171 + 0.149032i
\(703\) −2.80314 + 4.85518i −0.105722 + 0.183117i
\(704\) −3.06238 5.30420i −0.115418 0.199910i
\(705\) 1.81122 + 4.72844i 0.0682145 + 0.178083i
\(706\) 2.19686 + 3.80507i 0.0826799 + 0.143206i
\(707\) −20.5257 + 5.27836i −0.771949 + 0.198513i
\(708\) 2.16703 2.67217i 0.0814418 0.100426i
\(709\) 8.86621 0.332977 0.166489 0.986043i \(-0.446757\pi\)
0.166489 + 0.986043i \(0.446757\pi\)
\(710\) −9.49549 + 16.4467i −0.356359 + 0.617232i
\(711\) 8.33009 + 39.4659i 0.312403 + 1.48009i
\(712\) 1.30150 + 2.25427i 0.0487760 + 0.0844824i
\(713\) 1.62188 2.80919i 0.0607401 0.105205i
\(714\) −31.2164 + 2.94031i −1.16825 + 0.110038i
\(715\) −4.10301 7.10662i −0.153444 0.265773i
\(716\) 4.41423 7.64567i 0.164968 0.285732i
\(717\) −26.7540 4.25693i −0.999148 0.158978i
\(718\) 16.0796 + 27.8507i 0.600086 + 1.03938i
\(719\) 11.8015 + 20.4408i 0.440122 + 0.762313i 0.997698 0.0678123i \(-0.0216019\pi\)
−0.557576 + 0.830126i \(0.688269\pi\)
\(720\) 5.02175 + 1.63957i 0.187150 + 0.0611030i
\(721\) 12.6453 + 12.9032i 0.470935 + 0.480540i
\(722\) 7.61273 13.1856i 0.283316 0.490718i
\(723\) −36.6260 5.82769i −1.36214 0.216734i
\(724\) 1.32941 0.0494070
\(725\) 2.78168 0.103309
\(726\) 16.4263 + 42.8830i 0.609636 + 1.59154i
\(727\) 3.25692 5.64115i 0.120792 0.209219i −0.799288 0.600948i \(-0.794790\pi\)
0.920080 + 0.391730i \(0.128123\pi\)
\(728\) 1.94966 0.501371i 0.0722591 0.0185820i
\(729\) 15.7769 + 21.9110i 0.584329 + 0.811517i
\(730\) 0.270036 + 0.467717i 0.00999449 + 0.0173110i
\(731\) 29.6271 + 51.3156i 1.09580 + 1.89798i
\(732\) −11.2918 + 13.9239i −0.417357 + 0.514644i
\(733\) 11.5991 20.0901i 0.428421 0.742047i −0.568312 0.822813i \(-0.692403\pi\)
0.996733 + 0.0807664i \(0.0257368\pi\)
\(734\) −17.3015 29.9671i −0.638610 1.10611i
\(735\) 3.77975 21.0122i 0.139418 0.775048i
\(736\) 0.210533 0.364654i 0.00776036 0.0134413i
\(737\) −20.7781 35.9888i −0.765372 1.32566i
\(738\) −15.4984 + 13.9149i −0.570503 + 0.512216i
\(739\) −7.57838 + 13.1261i −0.278775 + 0.482853i −0.971081 0.238752i \(-0.923262\pi\)
0.692305 + 0.721605i \(0.256595\pi\)
\(740\) −5.08126 −0.186791
\(741\) −0.915865 2.39099i −0.0336451 0.0878352i
\(742\) −0.417500 0.426015i −0.0153269 0.0156395i
\(743\) −5.21737 9.03675i −0.191407 0.331526i 0.754310 0.656518i \(-0.227972\pi\)
−0.945717 + 0.324992i \(0.894638\pi\)
\(744\) 8.40451 10.3636i 0.308124 0.379949i
\(745\) −7.77292 13.4631i −0.284778 0.493249i
\(746\) −5.48796 + 9.50543i −0.200929 + 0.348018i
\(747\) 8.91135 + 2.90949i 0.326049 + 0.106453i
\(748\) 41.9064 1.53225
\(749\) −9.08577 + 2.33648i −0.331987 + 0.0853733i
\(750\) −13.2540 + 16.3436i −0.483969 + 0.596784i
\(751\) −20.1059 + 34.8244i −0.733674 + 1.27076i 0.221628 + 0.975131i \(0.428863\pi\)
−0.955303 + 0.295630i \(0.904470\pi\)
\(752\) 1.66019 0.0605409
\(753\) −25.7502 + 31.7527i −0.938390 + 1.15713i
\(754\) −1.11436 −0.0405826
\(755\) −26.3891 −0.960397
\(756\) 9.32326 10.1033i 0.339084 0.367454i
\(757\) −21.5206 −0.782181 −0.391091 0.920352i \(-0.627902\pi\)
−0.391091 + 0.920352i \(0.627902\pi\)
\(758\) 33.9877 1.23449
\(759\) −2.81354 + 3.46939i −0.102125 + 0.125931i
\(760\) −3.42107 −0.124095
\(761\) 11.8313 20.4925i 0.428886 0.742852i −0.567889 0.823105i \(-0.692240\pi\)
0.996774 + 0.0802535i \(0.0255730\pi\)
\(762\) −20.6774 + 25.4974i −0.749064 + 0.923674i
\(763\) 1.30314 + 1.32972i 0.0471768 + 0.0481390i
\(764\) −16.1683 −0.584947
\(765\) −26.8949 + 24.1471i −0.972388 + 0.873042i
\(766\) 10.5120 18.2074i 0.379815 0.657860i
\(767\) −0.755675 1.30887i −0.0272858 0.0472605i