Properties

Label 126.2.e.d.25.2
Level $126$
Weight $2$
Character 126.25
Analytic conductor $1.006$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(25,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 25.2
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 126.25
Dual form 126.2.e.d.121.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-0.796790 - 1.53790i) q^{3} +1.00000 q^{4} +(0.230252 - 0.398809i) q^{5} +(-0.796790 - 1.53790i) q^{6} +(0.0665372 - 2.64491i) q^{7} +1.00000 q^{8} +(-1.73025 + 2.45076i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(-0.796790 - 1.53790i) q^{3} +1.00000 q^{4} +(0.230252 - 0.398809i) q^{5} +(-0.796790 - 1.53790i) q^{6} +(0.0665372 - 2.64491i) q^{7} +1.00000 q^{8} +(-1.73025 + 2.45076i) q^{9} +(0.230252 - 0.398809i) q^{10} +(1.82383 + 3.15897i) q^{11} +(-0.796790 - 1.53790i) q^{12} +(0.730252 + 1.26483i) q^{13} +(0.0665372 - 2.64491i) q^{14} +(-0.796790 - 0.0363376i) q^{15} +1.00000 q^{16} +(-1.86693 + 3.23361i) q^{17} +(-1.73025 + 2.45076i) q^{18} +(-2.02704 - 3.51094i) q^{19} +(0.230252 - 0.398809i) q^{20} +(-4.12062 + 2.00511i) q^{21} +(1.82383 + 3.15897i) q^{22} +(-0.566537 + 0.981271i) q^{23} +(-0.796790 - 1.53790i) q^{24} +(2.39397 + 4.14647i) q^{25} +(0.730252 + 1.26483i) q^{26} +(5.14766 + 0.708209i) q^{27} +(0.0665372 - 2.64491i) q^{28} +(-4.48755 + 7.77266i) q^{29} +(-0.796790 - 0.0363376i) q^{30} -0.514589 q^{31} +1.00000 q^{32} +(3.40496 - 5.32190i) q^{33} +(-1.86693 + 3.23361i) q^{34} +(-1.03950 - 0.635534i) q^{35} +(-1.73025 + 2.45076i) q^{36} +(-4.55408 - 7.88791i) q^{37} +(-2.02704 - 3.51094i) q^{38} +(1.36333 - 2.13086i) q^{39} +(0.230252 - 0.398809i) q^{40} +(-0.472958 - 0.819187i) q^{41} +(-4.12062 + 2.00511i) q^{42} +(4.66372 - 8.07779i) q^{43} +(1.82383 + 3.15897i) q^{44} +(0.578990 + 1.25433i) q^{45} +(-0.566537 + 0.981271i) q^{46} +2.32743 q^{47} +(-0.796790 - 1.53790i) q^{48} +(-6.99115 - 0.351971i) q^{49} +(2.39397 + 4.14647i) q^{50} +(6.46050 + 0.294632i) q^{51} +(0.730252 + 1.26483i) q^{52} +(6.21780 - 10.7695i) q^{53} +(5.14766 + 0.708209i) q^{54} +1.67977 q^{55} +(0.0665372 - 2.64491i) q^{56} +(-3.78434 + 5.91486i) q^{57} +(-4.48755 + 7.77266i) q^{58} -12.8961 q^{59} +(-0.796790 - 0.0363376i) q^{60} +12.0833 q^{61} -0.514589 q^{62} +(6.36693 + 4.73944i) q^{63} +1.00000 q^{64} +0.672570 q^{65} +(3.40496 - 5.32190i) q^{66} -2.32023 q^{67} +(-1.86693 + 3.23361i) q^{68} +(1.96050 + 0.0894089i) q^{69} +(-1.03950 - 0.635534i) q^{70} +1.67977 q^{71} +(-1.73025 + 2.45076i) q^{72} +(-6.62062 + 11.4673i) q^{73} +(-4.55408 - 7.88791i) q^{74} +(4.46936 - 6.98554i) q^{75} +(-2.02704 - 3.51094i) q^{76} +(8.47656 - 4.61369i) q^{77} +(1.36333 - 2.13086i) q^{78} -5.00720 q^{79} +(0.230252 - 0.398809i) q^{80} +(-3.01245 - 8.48087i) q^{81} +(-0.472958 - 0.819187i) q^{82} +(3.32383 - 5.75705i) q^{83} +(-4.12062 + 2.00511i) q^{84} +(0.859728 + 1.48909i) q^{85} +(4.66372 - 8.07779i) q^{86} +(15.5292 + 0.708209i) q^{87} +(1.82383 + 3.15897i) q^{88} +(-1.36333 - 2.36135i) q^{89} +(0.578990 + 1.25433i) q^{90} +(3.39397 - 1.84730i) q^{91} +(-0.566537 + 0.981271i) q^{92} +(0.410019 + 0.791385i) q^{93} +2.32743 q^{94} -1.86693 q^{95} +(-0.796790 - 1.53790i) q^{96} +(-5.59358 + 9.68836i) q^{97} +(-6.99115 - 0.351971i) q^{98} +(-10.8976 - 0.996040i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} - 2 q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} + 4 q^{7} + 6 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 6 q^{2} - 2 q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} + 4 q^{7} + 6 q^{8} - 4 q^{9} - 5 q^{10} - q^{11} - 2 q^{12} - 2 q^{13} + 4 q^{14} - 2 q^{15} + 6 q^{16} - 4 q^{17} - 4 q^{18} - 3 q^{19} - 5 q^{20} - 10 q^{21} - q^{22} - 7 q^{23} - 2 q^{24} - 2 q^{25} - 2 q^{26} + 7 q^{27} + 4 q^{28} - 5 q^{29} - 2 q^{30} + 28 q^{31} + 6 q^{32} - 19 q^{33} - 4 q^{34} - 19 q^{35} - 4 q^{36} - 9 q^{37} - 3 q^{38} + 9 q^{39} - 5 q^{40} - 12 q^{41} - 10 q^{42} + 18 q^{43} - q^{44} + 29 q^{45} - 7 q^{46} - 6 q^{47} - 2 q^{48} - 12 q^{49} - 2 q^{50} + 26 q^{51} - 2 q^{52} + 9 q^{53} + 7 q^{54} + 14 q^{55} + 4 q^{56} + 2 q^{57} - 5 q^{58} - 8 q^{59} - 2 q^{60} - 8 q^{61} + 28 q^{62} + 31 q^{63} + 6 q^{64} + 24 q^{65} - 19 q^{66} - 10 q^{67} - 4 q^{68} - q^{69} - 19 q^{70} + 14 q^{71} - 4 q^{72} - 25 q^{73} - 9 q^{74} + 44 q^{75} - 3 q^{76} + 52 q^{77} + 9 q^{78} - 14 q^{79} - 5 q^{80} - 40 q^{81} - 12 q^{82} + 8 q^{83} - 10 q^{84} + 14 q^{85} + 18 q^{86} + 31 q^{87} - q^{88} - 9 q^{89} + 29 q^{90} + 4 q^{91} - 7 q^{92} - 6 q^{94} - 4 q^{95} - 2 q^{96} - 28 q^{97} - 12 q^{98} - 41 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.796790 1.53790i −0.460027 0.887905i
\(4\) 1.00000 0.500000
\(5\) 0.230252 0.398809i 0.102972 0.178353i −0.809936 0.586519i \(-0.800498\pi\)
0.912908 + 0.408166i \(0.133831\pi\)
\(6\) −0.796790 1.53790i −0.325288 0.627844i
\(7\) 0.0665372 2.64491i 0.0251487 0.999684i
\(8\) 1.00000 0.353553
\(9\) −1.73025 + 2.45076i −0.576751 + 0.816920i
\(10\) 0.230252 0.398809i 0.0728122 0.126114i
\(11\) 1.82383 + 3.15897i 0.549906 + 0.952465i 0.998280 + 0.0586193i \(0.0186698\pi\)
−0.448374 + 0.893846i \(0.647997\pi\)
\(12\) −0.796790 1.53790i −0.230013 0.443953i
\(13\) 0.730252 + 1.26483i 0.202536 + 0.350802i 0.949345 0.314236i \(-0.101748\pi\)
−0.746809 + 0.665038i \(0.768415\pi\)
\(14\) 0.0665372 2.64491i 0.0177828 0.706883i
\(15\) −0.796790 0.0363376i −0.205730 0.00938234i
\(16\) 1.00000 0.250000
\(17\) −1.86693 + 3.23361i −0.452796 + 0.784266i −0.998558 0.0536743i \(-0.982907\pi\)
0.545763 + 0.837940i \(0.316240\pi\)
\(18\) −1.73025 + 2.45076i −0.407824 + 0.577650i
\(19\) −2.02704 3.51094i −0.465035 0.805465i 0.534168 0.845378i \(-0.320625\pi\)
−0.999203 + 0.0399136i \(0.987292\pi\)
\(20\) 0.230252 0.398809i 0.0514860 0.0891764i
\(21\) −4.12062 + 2.00511i −0.899193 + 0.437552i
\(22\) 1.82383 + 3.15897i 0.388842 + 0.673495i
\(23\) −0.566537 + 0.981271i −0.118131 + 0.204609i −0.919027 0.394194i \(-0.871024\pi\)
0.800896 + 0.598804i \(0.204357\pi\)
\(24\) −0.796790 1.53790i −0.162644 0.313922i
\(25\) 2.39397 + 4.14647i 0.478794 + 0.829295i
\(26\) 0.730252 + 1.26483i 0.143214 + 0.248054i
\(27\) 5.14766 + 0.708209i 0.990668 + 0.136295i
\(28\) 0.0665372 2.64491i 0.0125744 0.499842i
\(29\) −4.48755 + 7.77266i −0.833317 + 1.44335i 0.0620772 + 0.998071i \(0.480228\pi\)
−0.895394 + 0.445275i \(0.853106\pi\)
\(30\) −0.796790 0.0363376i −0.145473 0.00663431i
\(31\) −0.514589 −0.0924229 −0.0462115 0.998932i \(-0.514715\pi\)
−0.0462115 + 0.998932i \(0.514715\pi\)
\(32\) 1.00000 0.176777
\(33\) 3.40496 5.32190i 0.592727 0.926424i
\(34\) −1.86693 + 3.23361i −0.320175 + 0.554560i
\(35\) −1.03950 0.635534i −0.175707 0.107425i
\(36\) −1.73025 + 2.45076i −0.288375 + 0.408460i
\(37\) −4.55408 7.88791i −0.748687 1.29676i −0.948452 0.316920i \(-0.897351\pi\)
0.199765 0.979844i \(-0.435982\pi\)
\(38\) −2.02704 3.51094i −0.328830 0.569550i
\(39\) 1.36333 2.13086i 0.218307 0.341211i
\(40\) 0.230252 0.398809i 0.0364061 0.0630572i
\(41\) −0.472958 0.819187i −0.0738636 0.127936i 0.826728 0.562602i \(-0.190200\pi\)
−0.900592 + 0.434666i \(0.856866\pi\)
\(42\) −4.12062 + 2.00511i −0.635826 + 0.309396i
\(43\) 4.66372 8.07779i 0.711210 1.23185i −0.253193 0.967416i \(-0.581481\pi\)
0.964403 0.264436i \(-0.0851858\pi\)
\(44\) 1.82383 + 3.15897i 0.274953 + 0.476233i
\(45\) 0.578990 + 1.25433i 0.0863108 + 0.186985i
\(46\) −0.566537 + 0.981271i −0.0835314 + 0.144681i
\(47\) 2.32743 0.339491 0.169745 0.985488i \(-0.445705\pi\)
0.169745 + 0.985488i \(0.445705\pi\)
\(48\) −0.796790 1.53790i −0.115007 0.221976i
\(49\) −6.99115 0.351971i −0.998735 0.0502815i
\(50\) 2.39397 + 4.14647i 0.338558 + 0.586400i
\(51\) 6.46050 + 0.294632i 0.904652 + 0.0412567i
\(52\) 0.730252 + 1.26483i 0.101268 + 0.175401i
\(53\) 6.21780 10.7695i 0.854080 1.47931i −0.0234151 0.999726i \(-0.507454\pi\)
0.877495 0.479585i \(-0.159213\pi\)
\(54\) 5.14766 + 0.708209i 0.700508 + 0.0963750i
\(55\) 1.67977 0.226500
\(56\) 0.0665372 2.64491i 0.00889141 0.353442i
\(57\) −3.78434 + 5.91486i −0.501248 + 0.783443i
\(58\) −4.48755 + 7.77266i −0.589244 + 1.02060i
\(59\) −12.8961 −1.67893 −0.839465 0.543414i \(-0.817131\pi\)
−0.839465 + 0.543414i \(0.817131\pi\)
\(60\) −0.796790 0.0363376i −0.102865 0.00469117i
\(61\) 12.0833 1.54710 0.773552 0.633733i \(-0.218478\pi\)
0.773552 + 0.633733i \(0.218478\pi\)
\(62\) −0.514589 −0.0653529
\(63\) 6.36693 + 4.73944i 0.802157 + 0.597113i
\(64\) 1.00000 0.125000
\(65\) 0.672570 0.0834220
\(66\) 3.40496 5.32190i 0.419121 0.655080i
\(67\) −2.32023 −0.283462 −0.141731 0.989905i \(-0.545267\pi\)
−0.141731 + 0.989905i \(0.545267\pi\)
\(68\) −1.86693 + 3.23361i −0.226398 + 0.392133i
\(69\) 1.96050 + 0.0894089i 0.236017 + 0.0107636i
\(70\) −1.03950 0.635534i −0.124243 0.0759608i
\(71\) 1.67977 0.199352 0.0996758 0.995020i \(-0.468219\pi\)
0.0996758 + 0.995020i \(0.468219\pi\)
\(72\) −1.73025 + 2.45076i −0.203912 + 0.288825i
\(73\) −6.62062 + 11.4673i −0.774885 + 1.34214i 0.159974 + 0.987121i \(0.448859\pi\)
−0.934859 + 0.355019i \(0.884474\pi\)
\(74\) −4.55408 7.88791i −0.529402 0.916950i
\(75\) 4.46936 6.98554i 0.516077 0.806621i
\(76\) −2.02704 3.51094i −0.232518 0.402732i
\(77\) 8.47656 4.61369i 0.965993 0.525779i
\(78\) 1.36333 2.13086i 0.154366 0.241272i
\(79\) −5.00720 −0.563354 −0.281677 0.959509i \(-0.590891\pi\)
−0.281677 + 0.959509i \(0.590891\pi\)
\(80\) 0.230252 0.398809i 0.0257430 0.0445882i
\(81\) −3.01245 8.48087i −0.334717 0.942319i
\(82\) −0.472958 0.819187i −0.0522295 0.0904641i
\(83\) 3.32383 5.75705i 0.364838 0.631918i −0.623912 0.781494i \(-0.714458\pi\)
0.988750 + 0.149577i \(0.0477911\pi\)
\(84\) −4.12062 + 2.00511i −0.449597 + 0.218776i
\(85\) 0.859728 + 1.48909i 0.0932506 + 0.161515i
\(86\) 4.66372 8.07779i 0.502901 0.871051i
\(87\) 15.5292 + 0.708209i 1.66490 + 0.0759280i
\(88\) 1.82383 + 3.15897i 0.194421 + 0.336747i
\(89\) −1.36333 2.36135i −0.144512 0.250303i 0.784679 0.619903i \(-0.212828\pi\)
−0.929191 + 0.369600i \(0.879495\pi\)
\(90\) 0.578990 + 1.25433i 0.0610309 + 0.132218i
\(91\) 3.39397 1.84730i 0.355784 0.193649i
\(92\) −0.566537 + 0.981271i −0.0590656 + 0.102305i
\(93\) 0.410019 + 0.791385i 0.0425170 + 0.0820628i
\(94\) 2.32743 0.240056
\(95\) −1.86693 −0.191543
\(96\) −0.796790 1.53790i −0.0813220 0.156961i
\(97\) −5.59358 + 9.68836i −0.567942 + 0.983704i 0.428827 + 0.903386i \(0.358927\pi\)
−0.996769 + 0.0803178i \(0.974406\pi\)
\(98\) −6.99115 0.351971i −0.706212 0.0355544i
\(99\) −10.8976 0.996040i −1.09525 0.100106i
\(100\) 2.39397 + 4.14647i 0.239397 + 0.414647i
\(101\) −6.87792 11.9129i −0.684378 1.18538i −0.973632 0.228125i \(-0.926740\pi\)
0.289254 0.957253i \(-0.406593\pi\)
\(102\) 6.46050 + 0.294632i 0.639685 + 0.0291729i
\(103\) −5.58113 + 9.66679i −0.549925 + 0.952498i 0.448354 + 0.893856i \(0.352010\pi\)
−0.998279 + 0.0586417i \(0.981323\pi\)
\(104\) 0.730252 + 1.26483i 0.0716071 + 0.124027i
\(105\) −0.149126 + 2.10502i −0.0145532 + 0.205429i
\(106\) 6.21780 10.7695i 0.603926 1.04603i
\(107\) −3.89037 6.73832i −0.376096 0.651418i 0.614394 0.788999i \(-0.289400\pi\)
−0.990490 + 0.137581i \(0.956067\pi\)
\(108\) 5.14766 + 0.708209i 0.495334 + 0.0681474i
\(109\) −3.75729 + 6.50783i −0.359884 + 0.623337i −0.987941 0.154830i \(-0.950517\pi\)
0.628058 + 0.778167i \(0.283850\pi\)
\(110\) 1.67977 0.160159
\(111\) −8.50214 + 13.2887i −0.806987 + 1.26131i
\(112\) 0.0665372 2.64491i 0.00628718 0.249921i
\(113\) 3.03064 + 5.24922i 0.285099 + 0.493805i 0.972633 0.232346i \(-0.0746403\pi\)
−0.687534 + 0.726152i \(0.741307\pi\)
\(114\) −3.78434 + 5.91486i −0.354436 + 0.553978i
\(115\) 0.260893 + 0.451880i 0.0243284 + 0.0421380i
\(116\) −4.48755 + 7.77266i −0.416658 + 0.721673i
\(117\) −4.36333 0.398809i −0.403390 0.0368699i
\(118\) −12.8961 −1.18718
\(119\) 8.42840 + 5.15301i 0.772630 + 0.472376i
\(120\) −0.796790 0.0363376i −0.0727366 0.00331716i
\(121\) −1.15272 + 1.99658i −0.104793 + 0.181507i
\(122\) 12.0833 1.09397
\(123\) −0.882977 + 1.38008i −0.0796154 + 0.124438i
\(124\) −0.514589 −0.0462115
\(125\) 4.50739 0.403153
\(126\) 6.36693 + 4.73944i 0.567211 + 0.422223i
\(127\) 8.80992 0.781754 0.390877 0.920443i \(-0.372172\pi\)
0.390877 + 0.920443i \(0.372172\pi\)
\(128\) 1.00000 0.0883883
\(129\) −16.1388 0.736011i −1.42094 0.0648022i
\(130\) 0.672570 0.0589883
\(131\) −10.5687 + 18.3055i −0.923389 + 1.59936i −0.129258 + 0.991611i \(0.541260\pi\)
−0.794131 + 0.607746i \(0.792074\pi\)
\(132\) 3.40496 5.32190i 0.296364 0.463212i
\(133\) −9.42101 + 5.12774i −0.816905 + 0.444632i
\(134\) −2.32023 −0.200438
\(135\) 1.46770 1.88987i 0.126320 0.162654i
\(136\) −1.86693 + 3.23361i −0.160088 + 0.277280i
\(137\) 2.20321 + 3.81607i 0.188233 + 0.326029i 0.944661 0.328048i \(-0.106391\pi\)
−0.756428 + 0.654077i \(0.773057\pi\)
\(138\) 1.96050 + 0.0894089i 0.166889 + 0.00761099i
\(139\) −1.01245 1.75362i −0.0858751 0.148740i 0.819889 0.572523i \(-0.194035\pi\)
−0.905764 + 0.423783i \(0.860702\pi\)
\(140\) −1.03950 0.635534i −0.0878534 0.0537124i
\(141\) −1.85447 3.57935i −0.156175 0.301435i
\(142\) 1.67977 0.140963
\(143\) −2.66372 + 4.61369i −0.222751 + 0.385816i
\(144\) −1.73025 + 2.45076i −0.144188 + 0.204230i
\(145\) 2.06654 + 3.57935i 0.171617 + 0.297249i
\(146\) −6.62062 + 11.4673i −0.547927 + 0.949037i
\(147\) 5.02918 + 11.0321i 0.414800 + 0.909913i
\(148\) −4.55408 7.88791i −0.374343 0.648382i
\(149\) 4.58113 7.93474i 0.375300 0.650040i −0.615071 0.788471i \(-0.710873\pi\)
0.990372 + 0.138432i \(0.0442062\pi\)
\(150\) 4.46936 6.98554i 0.364922 0.570367i
\(151\) 0.0519482 + 0.0899768i 0.00422748 + 0.00732221i 0.868131 0.496334i \(-0.165321\pi\)
−0.863904 + 0.503657i \(0.831988\pi\)
\(152\) −2.02704 3.51094i −0.164415 0.284775i
\(153\) −4.69455 10.1703i −0.379532 0.822224i
\(154\) 8.47656 4.61369i 0.683060 0.371782i
\(155\) −0.118485 + 0.205223i −0.00951698 + 0.0164839i
\(156\) 1.36333 2.13086i 0.109154 0.170605i
\(157\) 20.9823 1.67457 0.837285 0.546767i \(-0.184142\pi\)
0.837285 + 0.546767i \(0.184142\pi\)
\(158\) −5.00720 −0.398351
\(159\) −21.5167 0.981271i −1.70639 0.0778199i
\(160\) 0.230252 0.398809i 0.0182031 0.0315286i
\(161\) 2.55768 + 1.56373i 0.201574 + 0.123239i
\(162\) −3.01245 8.48087i −0.236681 0.666320i
\(163\) −11.5182 19.9501i −0.902174 1.56261i −0.824666 0.565620i \(-0.808637\pi\)
−0.0775078 0.996992i \(-0.524696\pi\)
\(164\) −0.472958 0.819187i −0.0369318 0.0639678i
\(165\) −1.33842 2.58331i −0.104196 0.201110i
\(166\) 3.32383 5.75705i 0.257979 0.446833i
\(167\) −5.31498 9.20581i −0.411285 0.712367i 0.583745 0.811937i \(-0.301587\pi\)
−0.995031 + 0.0995698i \(0.968253\pi\)
\(168\) −4.12062 + 2.00511i −0.317913 + 0.154698i
\(169\) 5.43346 9.41103i 0.417959 0.723926i
\(170\) 0.859728 + 1.48909i 0.0659382 + 0.114208i
\(171\) 12.1118 + 1.10702i 0.926210 + 0.0846558i
\(172\) 4.66372 8.07779i 0.355605 0.615926i
\(173\) 2.93872 0.223427 0.111713 0.993740i \(-0.464366\pi\)
0.111713 + 0.993740i \(0.464366\pi\)
\(174\) 15.5292 + 0.708209i 1.17726 + 0.0536892i
\(175\) 11.1264 6.05594i 0.841073 0.457786i
\(176\) 1.82383 + 3.15897i 0.137476 + 0.238116i
\(177\) 10.2755 + 19.8329i 0.772353 + 1.49073i
\(178\) −1.36333 2.36135i −0.102186 0.176991i
\(179\) −4.58113 + 7.93474i −0.342409 + 0.593071i −0.984880 0.173240i \(-0.944576\pi\)
0.642470 + 0.766311i \(0.277910\pi\)
\(180\) 0.578990 + 1.25433i 0.0431554 + 0.0934925i
\(181\) 22.4284 1.66709 0.833545 0.552452i \(-0.186308\pi\)
0.833545 + 0.552452i \(0.186308\pi\)
\(182\) 3.39397 1.84730i 0.251578 0.136931i
\(183\) −9.62782 18.5828i −0.711709 1.37368i
\(184\) −0.566537 + 0.981271i −0.0417657 + 0.0723403i
\(185\) −4.19436 −0.308375
\(186\) 0.410019 + 0.791385i 0.0300641 + 0.0580272i
\(187\) −13.6198 −0.995981
\(188\) 2.32743 0.169745
\(189\) 2.21566 13.5680i 0.161166 0.986927i
\(190\) −1.86693 −0.135441
\(191\) 2.48968 0.180147 0.0900736 0.995935i \(-0.471290\pi\)
0.0900736 + 0.995935i \(0.471290\pi\)
\(192\) −0.796790 1.53790i −0.0575033 0.110988i
\(193\) 4.48968 0.323174 0.161587 0.986858i \(-0.448339\pi\)
0.161587 + 0.986858i \(0.448339\pi\)
\(194\) −5.59358 + 9.68836i −0.401596 + 0.695584i
\(195\) −0.535897 1.03434i −0.0383763 0.0740708i
\(196\) −6.99115 0.351971i −0.499368 0.0251408i
\(197\) 12.7339 0.907249 0.453625 0.891193i \(-0.350131\pi\)
0.453625 + 0.891193i \(0.350131\pi\)
\(198\) −10.8976 0.996040i −0.774456 0.0707855i
\(199\) −1.47296 + 2.55124i −0.104415 + 0.180852i −0.913499 0.406841i \(-0.866630\pi\)
0.809084 + 0.587693i \(0.199964\pi\)
\(200\) 2.39397 + 4.14647i 0.169279 + 0.293200i
\(201\) 1.84874 + 3.56828i 0.130400 + 0.251687i
\(202\) −6.87792 11.9129i −0.483928 0.838189i
\(203\) 20.2594 + 12.3863i 1.42193 + 0.869351i
\(204\) 6.46050 + 0.294632i 0.452326 + 0.0206283i
\(205\) −0.435599 −0.0304235
\(206\) −5.58113 + 9.66679i −0.388855 + 0.673517i
\(207\) −1.42461 3.08629i −0.0990171 0.214512i
\(208\) 0.730252 + 1.26483i 0.0506339 + 0.0877005i
\(209\) 7.39397 12.8067i 0.511451 0.885860i
\(210\) −0.149126 + 2.10502i −0.0102907 + 0.145260i
\(211\) −0.608168 1.05338i −0.0418680 0.0725176i 0.844332 0.535820i \(-0.179998\pi\)
−0.886200 + 0.463303i \(0.846664\pi\)
\(212\) 6.21780 10.7695i 0.427040 0.739655i
\(213\) −1.33842 2.58331i −0.0917071 0.177005i
\(214\) −3.89037 6.73832i −0.265940 0.460622i
\(215\) −2.14766 3.71986i −0.146469 0.253693i
\(216\) 5.14766 + 0.708209i 0.350254 + 0.0481875i
\(217\) −0.0342393 + 1.36104i −0.00232432 + 0.0923937i
\(218\) −3.75729 + 6.50783i −0.254476 + 0.440766i
\(219\) 22.9107 + 1.04484i 1.54816 + 0.0706040i
\(220\) 1.67977 0.113250
\(221\) −5.45331 −0.366829
\(222\) −8.50214 + 13.2887i −0.570626 + 0.891880i
\(223\) −0.445916 + 0.772349i −0.0298607 + 0.0517203i −0.880570 0.473917i \(-0.842840\pi\)
0.850709 + 0.525637i \(0.176173\pi\)
\(224\) 0.0665372 2.64491i 0.00444571 0.176721i
\(225\) −14.3042 1.30740i −0.953612 0.0871603i
\(226\) 3.03064 + 5.24922i 0.201595 + 0.349173i
\(227\) 7.32597 + 12.6889i 0.486242 + 0.842195i 0.999875 0.0158147i \(-0.00503418\pi\)
−0.513633 + 0.858010i \(0.671701\pi\)
\(228\) −3.78434 + 5.91486i −0.250624 + 0.391721i
\(229\) 4.78794 8.29295i 0.316396 0.548013i −0.663338 0.748320i \(-0.730861\pi\)
0.979733 + 0.200307i \(0.0641939\pi\)
\(230\) 0.260893 + 0.451880i 0.0172028 + 0.0297961i
\(231\) −13.8494 9.35993i −0.911224 0.615838i
\(232\) −4.48755 + 7.77266i −0.294622 + 0.510300i
\(233\) 7.21420 + 12.4954i 0.472618 + 0.818598i 0.999509 0.0313345i \(-0.00997571\pi\)
−0.526891 + 0.849933i \(0.676642\pi\)
\(234\) −4.36333 0.398809i −0.285240 0.0260710i
\(235\) 0.535897 0.928200i 0.0349580 0.0605491i
\(236\) −12.8961 −0.839465
\(237\) 3.98968 + 7.70055i 0.259158 + 0.500205i
\(238\) 8.42840 + 5.15301i 0.546332 + 0.334020i
\(239\) −9.15486 15.8567i −0.592179 1.02568i −0.993938 0.109938i \(-0.964935\pi\)
0.401760 0.915745i \(-0.368399\pi\)
\(240\) −0.796790 0.0363376i −0.0514326 0.00234558i
\(241\) −0.0466924 0.0808735i −0.00300772 0.00520952i 0.864518 0.502602i \(-0.167624\pi\)
−0.867525 + 0.497393i \(0.834291\pi\)
\(242\) −1.15272 + 1.99658i −0.0741000 + 0.128345i
\(243\) −10.6424 + 11.3903i −0.682711 + 0.730689i
\(244\) 12.0833 0.773552
\(245\) −1.75010 + 2.70709i −0.111810 + 0.172950i
\(246\) −0.882977 + 1.38008i −0.0562966 + 0.0879907i
\(247\) 2.96050 5.12774i 0.188372 0.326271i
\(248\) −0.514589 −0.0326764
\(249\) −11.5021 0.524555i −0.728918 0.0332424i
\(250\) 4.50739 0.285072
\(251\) −18.2733 −1.15340 −0.576702 0.816955i \(-0.695661\pi\)
−0.576702 + 0.816955i \(0.695661\pi\)
\(252\) 6.36693 + 4.73944i 0.401079 + 0.298556i
\(253\) −4.13307 −0.259844
\(254\) 8.80992 0.552783
\(255\) 1.60505 2.50867i 0.100512 0.157099i
\(256\) 1.00000 0.0625000
\(257\) 10.5256 18.2308i 0.656568 1.13721i −0.324931 0.945738i \(-0.605341\pi\)
0.981498 0.191471i \(-0.0613257\pi\)
\(258\) −16.1388 0.736011i −1.00476 0.0458221i
\(259\) −21.1659 + 11.5203i −1.31518 + 0.715838i
\(260\) 0.672570 0.0417110
\(261\) −11.2843 24.4466i −0.698483 1.51320i
\(262\) −10.5687 + 18.3055i −0.652935 + 1.13092i
\(263\) 2.58259 + 4.47318i 0.159249 + 0.275828i 0.934598 0.355705i \(-0.115759\pi\)
−0.775349 + 0.631533i \(0.782426\pi\)
\(264\) 3.40496 5.32190i 0.209561 0.327540i
\(265\) −2.86333 4.95943i −0.175893 0.304655i
\(266\) −9.42101 + 5.12774i −0.577639 + 0.314402i
\(267\) −2.54523 + 3.97816i −0.155766 + 0.243459i
\(268\) −2.32023 −0.141731
\(269\) 8.42840 14.5984i 0.513889 0.890081i −0.485981 0.873969i \(-0.661538\pi\)
0.999870 0.0161123i \(-0.00512891\pi\)
\(270\) 1.46770 1.88987i 0.0893215 0.115014i
\(271\) 12.5562 + 21.7480i 0.762736 + 1.32110i 0.941435 + 0.337194i \(0.109478\pi\)
−0.178699 + 0.983904i \(0.557189\pi\)
\(272\) −1.86693 + 3.23361i −0.113199 + 0.196066i
\(273\) −5.54523 3.74766i −0.335613 0.226819i
\(274\) 2.20321 + 3.81607i 0.133101 + 0.230537i
\(275\) −8.73239 + 15.1249i −0.526583 + 0.912068i
\(276\) 1.96050 + 0.0894089i 0.118009 + 0.00538178i
\(277\) −1.69076 2.92848i −0.101588 0.175955i 0.810751 0.585391i \(-0.199059\pi\)
−0.912339 + 0.409436i \(0.865726\pi\)
\(278\) −1.01245 1.75362i −0.0607229 0.105175i
\(279\) 0.890369 1.26113i 0.0533050 0.0755022i
\(280\) −1.03950 0.635534i −0.0621217 0.0379804i
\(281\) −10.1388 + 17.5609i −0.604831 + 1.04760i 0.387248 + 0.921976i \(0.373426\pi\)
−0.992078 + 0.125622i \(0.959907\pi\)
\(282\) −1.85447 3.57935i −0.110432 0.213147i
\(283\) 17.3494 1.03132 0.515658 0.856795i \(-0.327548\pi\)
0.515658 + 0.856795i \(0.327548\pi\)
\(284\) 1.67977 0.0996758
\(285\) 1.48755 + 2.87114i 0.0881147 + 0.170072i
\(286\) −2.66372 + 4.61369i −0.157509 + 0.272813i
\(287\) −2.19815 + 1.19643i −0.129753 + 0.0706228i
\(288\) −1.73025 + 2.45076i −0.101956 + 0.144412i
\(289\) 1.52918 + 2.64861i 0.0899517 + 0.155801i
\(290\) 2.06654 + 3.57935i 0.121351 + 0.210187i
\(291\) 19.3566 + 0.882759i 1.13470 + 0.0517483i
\(292\) −6.62062 + 11.4673i −0.387443 + 0.671070i
\(293\) −4.93560 8.54871i −0.288341 0.499421i 0.685073 0.728474i \(-0.259770\pi\)
−0.973414 + 0.229054i \(0.926437\pi\)
\(294\) 5.02918 + 11.0321i 0.293308 + 0.643405i
\(295\) −2.96936 + 5.14308i −0.172883 + 0.299442i
\(296\) −4.55408 7.88791i −0.264701 0.458475i
\(297\) 7.15126 + 17.5530i 0.414958 + 1.01853i
\(298\) 4.58113 7.93474i 0.265378 0.459647i
\(299\) −1.65486 −0.0957031
\(300\) 4.46936 6.98554i 0.258039 0.403310i
\(301\) −21.0548 12.8726i −1.21358 0.741964i
\(302\) 0.0519482 + 0.0899768i 0.00298928 + 0.00517759i
\(303\) −12.8406 + 20.0696i −0.737671 + 1.15297i
\(304\) −2.02704 3.51094i −0.116259 0.201366i
\(305\) 2.78220 4.81891i 0.159308 0.275930i
\(306\) −4.69455 10.1703i −0.268370 0.581400i
\(307\) 7.78794 0.444481 0.222240 0.974992i \(-0.428663\pi\)
0.222240 + 0.974992i \(0.428663\pi\)
\(308\) 8.47656 4.61369i 0.482997 0.262889i
\(309\) 19.3135 + 0.880794i 1.09871 + 0.0501066i
\(310\) −0.118485 + 0.205223i −0.00672952 + 0.0116559i
\(311\) 15.4107 0.873860 0.436930 0.899495i \(-0.356066\pi\)
0.436930 + 0.899495i \(0.356066\pi\)
\(312\) 1.36333 2.13086i 0.0771832 0.120636i
\(313\) 8.49688 0.480272 0.240136 0.970739i \(-0.422808\pi\)
0.240136 + 0.970739i \(0.422808\pi\)
\(314\) 20.9823 1.18410
\(315\) 3.35613 1.44792i 0.189096 0.0815810i
\(316\) −5.00720 −0.281677
\(317\) −14.1052 −0.792229 −0.396115 0.918201i \(-0.629642\pi\)
−0.396115 + 0.918201i \(0.629642\pi\)
\(318\) −21.5167 0.981271i −1.20660 0.0550270i
\(319\) −32.7381 −1.83298
\(320\) 0.230252 0.398809i 0.0128715 0.0222941i
\(321\) −7.26303 + 11.3520i −0.405383 + 0.633607i
\(322\) 2.55768 + 1.56373i 0.142534 + 0.0871435i
\(323\) 15.1373 0.842264
\(324\) −3.01245 8.48087i −0.167359 0.471159i
\(325\) −3.49640 + 6.05594i −0.193945 + 0.335923i
\(326\) −11.5182 19.9501i −0.637933 1.10493i
\(327\) 13.0021 + 0.592963i 0.719020 + 0.0327909i
\(328\) −0.472958 0.819187i −0.0261147 0.0452320i
\(329\) 0.154861 6.15585i 0.00853775 0.339383i
\(330\) −1.33842 2.58331i −0.0736776 0.142206i
\(331\) 27.5438 1.51394 0.756971 0.653448i \(-0.226678\pi\)
0.756971 + 0.653448i \(0.226678\pi\)
\(332\) 3.32383 5.75705i 0.182419 0.315959i
\(333\) 27.2111 + 2.48710i 1.49116 + 0.136292i
\(334\) −5.31498 9.20581i −0.290823 0.503720i
\(335\) −0.534239 + 0.925330i −0.0291886 + 0.0505562i
\(336\) −4.12062 + 2.00511i −0.224798 + 0.109388i
\(337\) 0.748440 + 1.29634i 0.0407701 + 0.0706159i 0.885690 0.464276i \(-0.153686\pi\)
−0.844920 + 0.534892i \(0.820352\pi\)
\(338\) 5.43346 9.41103i 0.295541 0.511893i
\(339\) 5.65798 8.84334i 0.307299 0.480304i
\(340\) 0.859728 + 1.48909i 0.0466253 + 0.0807574i
\(341\) −0.938524 1.62557i −0.0508239 0.0880296i
\(342\) 12.1118 + 1.10702i 0.654929 + 0.0598607i
\(343\) −1.39610 + 18.4676i −0.0753825 + 0.997155i
\(344\) 4.66372 8.07779i 0.251451 0.435525i
\(345\) 0.487068 0.761280i 0.0262229 0.0409859i
\(346\) 2.93872 0.157986
\(347\) −18.2881 −0.981758 −0.490879 0.871228i \(-0.663324\pi\)
−0.490879 + 0.871228i \(0.663324\pi\)
\(348\) 15.5292 + 0.708209i 0.832451 + 0.0379640i
\(349\) −3.90136 + 6.75735i −0.208835 + 0.361713i −0.951348 0.308119i \(-0.900300\pi\)
0.742513 + 0.669832i \(0.233634\pi\)
\(350\) 11.1264 6.05594i 0.594729 0.323704i
\(351\) 2.86333 + 7.02811i 0.152833 + 0.375133i
\(352\) 1.82383 + 3.15897i 0.0972106 + 0.168374i
\(353\) −13.4626 23.3180i −0.716544 1.24109i −0.962361 0.271774i \(-0.912390\pi\)
0.245817 0.969316i \(-0.420944\pi\)
\(354\) 10.2755 + 19.8329i 0.546136 + 1.05411i
\(355\) 0.386770 0.669906i 0.0205276 0.0355549i
\(356\) −1.36333 2.36135i −0.0722562 0.125151i
\(357\) 1.20914 17.0679i 0.0639945 0.903328i
\(358\) −4.58113 + 7.93474i −0.242120 + 0.419364i
\(359\) −3.13161 5.42411i −0.165280 0.286274i 0.771475 0.636260i \(-0.219519\pi\)
−0.936755 + 0.349987i \(0.886186\pi\)
\(360\) 0.578990 + 1.25433i 0.0305155 + 0.0661092i
\(361\) 1.28220 2.22084i 0.0674842 0.116886i
\(362\) 22.4284 1.17881
\(363\) 3.98901 + 0.181919i 0.209369 + 0.00954827i
\(364\) 3.39397 1.84730i 0.177892 0.0968247i
\(365\) 3.04883 + 5.28073i 0.159583 + 0.276406i
\(366\) −9.62782 18.5828i −0.503254 0.971339i
\(367\) −14.6367 25.3515i −0.764028 1.32334i −0.940759 0.339076i \(-0.889886\pi\)
0.176731 0.984259i \(-0.443448\pi\)
\(368\) −0.566537 + 0.981271i −0.0295328 + 0.0511523i
\(369\) 2.82597 + 0.258294i 0.147114 + 0.0134462i
\(370\) −4.19436 −0.218054
\(371\) −28.0708 17.1621i −1.45736 0.891013i
\(372\) 0.410019 + 0.791385i 0.0212585 + 0.0410314i
\(373\) −8.92986 + 15.4670i −0.462371 + 0.800850i −0.999079 0.0429184i \(-0.986334\pi\)
0.536708 + 0.843768i \(0.319668\pi\)
\(374\) −13.6198 −0.704265
\(375\) −3.59144 6.93190i −0.185461 0.357962i
\(376\) 2.32743 0.120028
\(377\) −13.1082 −0.675105
\(378\) 2.21566 13.5680i 0.113961 0.697863i
\(379\) −22.4255 −1.15192 −0.575960 0.817478i \(-0.695371\pi\)
−0.575960 + 0.817478i \(0.695371\pi\)
\(380\) −1.86693 −0.0957713
\(381\) −7.01965 13.5487i −0.359628 0.694123i
\(382\) 2.48968 0.127383
\(383\) 7.07014 12.2458i 0.361267 0.625733i −0.626903 0.779098i \(-0.715678\pi\)
0.988170 + 0.153365i \(0.0490109\pi\)
\(384\) −0.796790 1.53790i −0.0406610 0.0784805i
\(385\) 0.111767 4.44284i 0.00569618 0.226428i
\(386\) 4.48968 0.228519
\(387\) 11.7273 + 25.4063i 0.596134 + 1.29147i
\(388\) −5.59358 + 9.68836i −0.283971 + 0.491852i
\(389\) 11.5651 + 20.0313i 0.586373 + 1.01563i 0.994703 + 0.102793i \(0.0327779\pi\)
−0.408330 + 0.912834i \(0.633889\pi\)
\(390\) −0.535897 1.03434i −0.0271362 0.0523760i
\(391\) −2.11537 3.66392i −0.106979 0.185292i
\(392\) −6.99115 0.351971i −0.353106 0.0177772i
\(393\) 36.5729 + 1.66791i 1.84486 + 0.0841350i
\(394\) 12.7339 0.641522
\(395\) −1.15292 + 1.99691i −0.0580097 + 0.100476i
\(396\) −10.8976 0.996040i −0.547623 0.0500529i
\(397\) −5.13307 8.89075i −0.257622 0.446214i 0.707983 0.706230i \(-0.249605\pi\)
−0.965604 + 0.260016i \(0.916272\pi\)
\(398\) −1.47296 + 2.55124i −0.0738327 + 0.127882i
\(399\) 15.3925 + 10.4028i 0.770589 + 0.520792i
\(400\) 2.39397 + 4.14647i 0.119698 + 0.207324i
\(401\) −17.0167 + 29.4738i −0.849775 + 1.47185i 0.0316345 + 0.999500i \(0.489929\pi\)
−0.881409 + 0.472353i \(0.843405\pi\)
\(402\) 1.84874 + 3.56828i 0.0922067 + 0.177970i
\(403\) −0.375780 0.650870i −0.0187189 0.0324221i
\(404\) −6.87792 11.9129i −0.342189 0.592689i
\(405\) −4.07587 0.751347i −0.202532 0.0373348i
\(406\) 20.2594 + 12.3863i 1.00546 + 0.614724i
\(407\) 16.6118 28.7724i 0.823415 1.42620i
\(408\) 6.46050 + 0.294632i 0.319843 + 0.0145864i
\(409\) −3.48968 −0.172554 −0.0862769 0.996271i \(-0.527497\pi\)
−0.0862769 + 0.996271i \(0.527497\pi\)
\(410\) −0.435599 −0.0215127
\(411\) 4.11323 6.42892i 0.202891 0.317115i
\(412\) −5.58113 + 9.66679i −0.274962 + 0.476249i
\(413\) −0.858071 + 34.1091i −0.0422229 + 1.67840i
\(414\) −1.42461 3.08629i −0.0700157 0.151683i
\(415\) −1.53064 2.65115i −0.0751362 0.130140i
\(416\) 0.730252 + 1.26483i 0.0358036 + 0.0620136i
\(417\) −1.89017 + 2.95431i −0.0925622 + 0.144673i
\(418\) 7.39397 12.8067i 0.361651 0.626398i
\(419\) 14.4897 + 25.0969i 0.707867 + 1.22606i 0.965647 + 0.259858i \(0.0836759\pi\)
−0.257779 + 0.966204i \(0.582991\pi\)
\(420\) −0.149126 + 2.10502i −0.00727661 + 0.102715i
\(421\) −1.06128 + 1.83819i −0.0517237 + 0.0895881i −0.890728 0.454537i \(-0.849805\pi\)
0.839004 + 0.544125i \(0.183138\pi\)
\(422\) −0.608168 1.05338i −0.0296052 0.0512777i
\(423\) −4.02704 + 5.70397i −0.195801 + 0.277337i
\(424\) 6.21780 10.7695i 0.301963 0.523015i
\(425\) −17.8774 −0.867183
\(426\) −1.33842 2.58331i −0.0648467 0.125162i
\(427\) 0.803987 31.9592i 0.0389077 1.54661i
\(428\) −3.89037 6.73832i −0.188048 0.325709i
\(429\) 9.21780 + 0.420378i 0.445040 + 0.0202960i
\(430\) −2.14766 3.71986i −0.103570 0.179388i
\(431\) 10.9356 18.9410i 0.526749 0.912356i −0.472765 0.881189i \(-0.656744\pi\)
0.999514 0.0311679i \(-0.00992265\pi\)
\(432\) 5.14766 + 0.708209i 0.247667 + 0.0340737i
\(433\) −13.0512 −0.627199 −0.313599 0.949555i \(-0.601535\pi\)
−0.313599 + 0.949555i \(0.601535\pi\)
\(434\) −0.0342393 + 1.36104i −0.00164354 + 0.0653322i
\(435\) 3.85807 6.03011i 0.184980 0.289122i
\(436\) −3.75729 + 6.50783i −0.179942 + 0.311668i
\(437\) 4.59358 0.219741
\(438\) 22.9107 + 1.04484i 1.09472 + 0.0499245i
\(439\) 4.86400 0.232146 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(440\) 1.67977 0.0800797
\(441\) 12.9590 16.5246i 0.617097 0.786887i
\(442\) −5.45331 −0.259387
\(443\) −11.5395 −0.548258 −0.274129 0.961693i \(-0.588390\pi\)
−0.274129 + 0.961693i \(0.588390\pi\)
\(444\) −8.50214 + 13.2887i −0.403494 + 0.630654i
\(445\) −1.25564 −0.0595229
\(446\) −0.445916 + 0.772349i −0.0211147 + 0.0365718i
\(447\) −15.8530 0.722977i −0.749822 0.0341957i
\(448\) 0.0665372 2.64491i 0.00314359 0.124960i
\(449\) −26.4251 −1.24708 −0.623538 0.781793i \(-0.714306\pi\)
−0.623538 + 0.781793i \(0.714306\pi\)
\(450\) −14.3042 1.30740i −0.674306 0.0616317i
\(451\) 1.72519 2.98812i 0.0812361 0.140705i
\(452\) 3.03064 + 5.24922i 0.142549 + 0.246903i
\(453\) 0.0969833 0.151584i 0.00455667 0.00712201i
\(454\) 7.32597 + 12.6889i 0.343825 + 0.595522i
\(455\) 0.0447509 1.77889i 0.00209796 0.0833956i
\(456\) −3.78434 + 5.91486i −0.177218 + 0.276989i
\(457\) −3.73812 −0.174862 −0.0874310 0.996171i \(-0.527866\pi\)
−0.0874310 + 0.996171i \(0.527866\pi\)
\(458\) 4.78794 8.29295i 0.223726 0.387504i
\(459\) −11.9004 + 15.3234i −0.555462 + 0.715233i
\(460\) 0.260893 + 0.451880i 0.0121642 + 0.0210690i
\(461\) −7.90496 + 13.6918i −0.368171 + 0.637690i −0.989280 0.146034i \(-0.953349\pi\)
0.621109 + 0.783724i \(0.286682\pi\)
\(462\) −13.8494 9.35993i −0.644333 0.435463i
\(463\) 19.1965 + 33.2493i 0.892137 + 1.54523i 0.837309 + 0.546730i \(0.184128\pi\)
0.0548278 + 0.998496i \(0.482539\pi\)
\(464\) −4.48755 + 7.77266i −0.208329 + 0.360837i
\(465\) 0.410019 + 0.0186989i 0.0190142 + 0.000867143i
\(466\) 7.21420 + 12.4954i 0.334191 + 0.578836i
\(467\) 3.15652 + 5.46725i 0.146066 + 0.252994i 0.929770 0.368140i \(-0.120005\pi\)
−0.783704 + 0.621134i \(0.786672\pi\)
\(468\) −4.36333 0.398809i −0.201695 0.0184349i
\(469\) −0.154382 + 6.13682i −0.00712869 + 0.283372i
\(470\) 0.535897 0.928200i 0.0247191 0.0428147i
\(471\) −16.7185 32.2686i −0.770347 1.48686i
\(472\) −12.8961 −0.593591
\(473\) 34.0233 1.56439
\(474\) 3.98968 + 7.70055i 0.183252 + 0.353698i
\(475\) 9.70535 16.8102i 0.445312 0.771303i
\(476\) 8.42840 + 5.15301i 0.386315 + 0.236188i
\(477\) 15.6352 + 33.8724i 0.715887 + 1.55091i
\(478\) −9.15486 15.8567i −0.418734 0.725268i
\(479\) 10.2068 + 17.6787i 0.466361 + 0.807761i 0.999262 0.0384168i \(-0.0122314\pi\)
−0.532901 + 0.846178i \(0.678898\pi\)
\(480\) −0.796790 0.0363376i −0.0363683 0.00165858i
\(481\) 6.65126 11.5203i 0.303271 0.525282i
\(482\) −0.0466924 0.0808735i −0.00212678 0.00368369i
\(483\) 0.366926 5.17942i 0.0166957 0.235672i
\(484\) −1.15272 + 1.99658i −0.0523966 + 0.0907535i
\(485\) 2.57587 + 4.46154i 0.116964 + 0.202588i
\(486\) −10.6424 + 11.3903i −0.482749 + 0.516675i
\(487\) 6.18190 10.7074i 0.280129 0.485197i −0.691287 0.722580i \(-0.742956\pi\)
0.971416 + 0.237383i \(0.0762895\pi\)
\(488\) 12.0833 0.546984
\(489\) −21.5036 + 33.6098i −0.972426 + 1.51989i
\(490\) −1.75010 + 2.70709i −0.0790613 + 0.122294i
\(491\) 0.207004 + 0.358541i 0.00934194 + 0.0161807i 0.870659 0.491888i \(-0.163693\pi\)
−0.861317 + 0.508069i \(0.830360\pi\)
\(492\) −0.882977 + 1.38008i −0.0398077 + 0.0622188i
\(493\) −16.7558 29.0220i −0.754645 1.30708i
\(494\) 2.96050 5.12774i 0.133199 0.230708i
\(495\) −2.90642 + 4.11671i −0.130634 + 0.185032i
\(496\) −0.514589 −0.0231057
\(497\) 0.111767 4.44284i 0.00501344 0.199289i
\(498\) −11.5021 0.524555i −0.515423 0.0235059i
\(499\) 0.461967 0.800151i 0.0206805 0.0358197i −0.855500 0.517803i \(-0.826750\pi\)
0.876180 + 0.481983i \(0.160083\pi\)
\(500\) 4.50739 0.201577
\(501\) −9.92267 + 15.5090i −0.443312 + 0.692890i
\(502\) −18.2733 −0.815579
\(503\) −23.8142 −1.06182 −0.530911 0.847428i \(-0.678150\pi\)
−0.530911 + 0.847428i \(0.678150\pi\)
\(504\) 6.36693 + 4.73944i 0.283605 + 0.211111i
\(505\) −6.33463 −0.281887
\(506\) −4.13307 −0.183738
\(507\) −18.8025 0.857490i −0.835049 0.0380825i
\(508\) 8.80992 0.390877
\(509\) 15.3171 26.5300i 0.678919 1.17592i −0.296388 0.955068i \(-0.595782\pi\)
0.975307 0.220855i \(-0.0708846\pi\)
\(510\) 1.60505 2.50867i 0.0710728 0.111086i
\(511\) 29.8894 + 18.2740i 1.32223 + 0.808393i
\(512\) 1.00000 0.0441942
\(513\) −7.94805 19.5087i −0.350915 0.861330i
\(514\) 10.5256 18.2308i 0.464263 0.804128i
\(515\) 2.57014 + 4.45161i 0.113254 + 0.196161i
\(516\) −16.1388 0.736011i −0.710471 0.0324011i
\(517\) 4.24484 + 7.35228i 0.186688 + 0.323353i
\(518\) −21.1659 + 11.5203i −0.929974 + 0.506174i
\(519\) −2.34154 4.51945i −0.102782 0.198382i
\(520\) 0.672570 0.0294941
\(521\) −13.4518 + 23.2993i −0.589336 + 1.02076i 0.404984 + 0.914324i \(0.367277\pi\)
−0.994320 + 0.106436i \(0.966056\pi\)
\(522\) −11.2843 24.4466i −0.493902 1.07000i
\(523\) −7.85301 13.6018i −0.343388 0.594766i 0.641671 0.766980i \(-0.278241\pi\)
−0.985060 + 0.172214i \(0.944908\pi\)
\(524\) −10.5687 + 18.3055i −0.461695 + 0.799679i
\(525\) −18.1788 12.2859i −0.793387 0.536199i
\(526\) 2.58259 + 4.47318i 0.112606 + 0.195040i
\(527\) 0.960699 1.66398i 0.0418487 0.0724841i
\(528\) 3.40496 5.32190i 0.148182 0.231606i
\(529\) 10.8581 + 18.8067i 0.472090 + 0.817684i
\(530\) −2.86333 4.95943i −0.124375 0.215424i
\(531\) 22.3135 31.6053i 0.968324 1.37155i
\(532\) −9.42101 + 5.12774i −0.408453 + 0.222316i
\(533\) 0.690757 1.19643i 0.0299200 0.0518230i
\(534\) −2.54523 + 3.97816i −0.110143 + 0.172152i
\(535\) −3.58307 −0.154910
\(536\) −2.32023 −0.100219
\(537\) 15.8530 + 0.722977i 0.684108 + 0.0311988i
\(538\) 8.42840 14.5984i 0.363374 0.629383i
\(539\) −11.6388 22.7267i −0.501319 0.978910i
\(540\) 1.46770 1.88987i 0.0631598 0.0813269i
\(541\) −2.05934 3.56688i −0.0885379 0.153352i 0.818355 0.574713i \(-0.194886\pi\)
−0.906893 + 0.421360i \(0.861553\pi\)
\(542\) 12.5562 + 21.7480i 0.539336 + 0.934157i
\(543\) −17.8707 34.4926i −0.766906 1.48022i
\(544\) −1.86693 + 3.23361i −0.0800438 + 0.138640i
\(545\) 1.73025 + 2.99689i 0.0741159 + 0.128372i
\(546\) −5.54523 3.74766i −0.237314 0.160385i
\(547\) −11.8602 + 20.5425i −0.507106 + 0.878333i 0.492860 + 0.870108i \(0.335951\pi\)
−0.999966 + 0.00822465i \(0.997382\pi\)
\(548\) 2.20321 + 3.81607i 0.0941165 + 0.163015i
\(549\) −20.9071 + 29.6132i −0.892293 + 1.26386i
\(550\) −8.73239 + 15.1249i −0.372350 + 0.644930i
\(551\) 36.3858 1.55009
\(552\) 1.96050 + 0.0894089i 0.0834446 + 0.00380550i
\(553\) −0.333165 + 13.2436i −0.0141676 + 0.563176i
\(554\) −1.69076 2.92848i −0.0718334 0.124419i
\(555\) 3.34202 + 6.45049i 0.141861 + 0.273808i
\(556\) −1.01245 1.75362i −0.0429376 0.0743701i
\(557\) −21.0313 + 36.4273i −0.891125 + 1.54347i −0.0525975 + 0.998616i \(0.516750\pi\)
−0.838528 + 0.544859i \(0.816583\pi\)
\(558\) 0.890369 1.26113i 0.0376923 0.0533881i
\(559\) 13.6228 0.576181
\(560\) −1.03950 0.635534i −0.0439267 0.0268562i
\(561\) 10.8521 + 20.9459i 0.458178 + 0.884336i
\(562\) −10.1388 + 17.5609i −0.427680 + 0.740763i
\(563\) 11.8243 0.498335 0.249168 0.968460i \(-0.419843\pi\)
0.249168 + 0.968460i \(0.419843\pi\)
\(564\) −1.85447 3.57935i −0.0780874 0.150718i
\(565\) 2.79125 0.117429
\(566\) 17.3494 0.729250
\(567\) −22.6316 + 7.40339i −0.950438 + 0.310913i
\(568\) 1.67977 0.0704815
\(569\) 14.2016 0.595360 0.297680 0.954666i \(-0.403787\pi\)
0.297680 + 0.954666i \(0.403787\pi\)
\(570\) 1.48755 + 2.87114i 0.0623065 + 0.120259i
\(571\) 11.9574 0.500401 0.250200 0.968194i \(-0.419503\pi\)
0.250200 + 0.968194i \(0.419503\pi\)
\(572\) −2.66372 + 4.61369i −0.111376 + 0.192908i
\(573\) −1.98375 3.82888i −0.0828725 0.159954i
\(574\) −2.19815 + 1.19643i −0.0917490 + 0.0499379i
\(575\) −5.42509 −0.226242
\(576\) −1.73025 + 2.45076i −0.0720939 + 0.102115i
\(577\) 21.3135 36.9161i 0.887293 1.53684i 0.0442307 0.999021i \(-0.485916\pi\)
0.843062 0.537816i \(-0.180750\pi\)
\(578\) 1.52918 + 2.64861i 0.0636054 + 0.110168i
\(579\) −3.57733 6.90467i −0.148669 0.286948i
\(580\) 2.06654 + 3.57935i 0.0858083 + 0.148624i
\(581\) −15.0057 9.17431i −0.622543 0.380614i
\(582\) 19.3566 + 0.882759i 0.802357 + 0.0365915i
\(583\) 45.3609 1.87866
\(584\) −6.62062 + 11.4673i −0.273963 + 0.474518i
\(585\) −1.16372 + 1.64831i −0.0481137 + 0.0681491i
\(586\) −4.93560 8.54871i −0.203888 0.353144i
\(587\) 20.5328 35.5638i 0.847478 1.46788i −0.0359730 0.999353i \(-0.511453\pi\)
0.883451 0.468523i \(-0.155214\pi\)
\(588\) 5.02918 + 11.0321i 0.207400 + 0.454956i
\(589\) 1.04309 + 1.80669i 0.0429799 + 0.0744434i
\(590\) −2.96936 + 5.14308i −0.122247 + 0.211737i
\(591\) −10.1462 19.5833i −0.417359 0.805551i
\(592\) −4.55408 7.88791i −0.187172 0.324191i
\(593\) 16.1008 + 27.8874i 0.661180 + 1.14520i 0.980306 + 0.197485i \(0.0632772\pi\)
−0.319126 + 0.947712i \(0.603389\pi\)
\(594\) 7.15126 + 17.5530i 0.293420 + 0.720207i
\(595\) 3.99573 2.17483i 0.163809 0.0891592i
\(596\) 4.58113 7.93474i 0.187650 0.325020i
\(597\) 5.09718 + 0.232457i 0.208614 + 0.00951383i
\(598\) −1.65486 −0.0676723
\(599\) 19.0718 0.779252 0.389626 0.920973i \(-0.372604\pi\)
0.389626 + 0.920973i \(0.372604\pi\)
\(600\) 4.46936 6.98554i 0.182461 0.285184i
\(601\) 4.27188 7.39912i 0.174254 0.301816i −0.765649 0.643259i \(-0.777582\pi\)
0.939903 + 0.341442i \(0.110915\pi\)
\(602\) −21.0548 12.8726i −0.858128 0.524648i
\(603\) 4.01459 5.68634i 0.163487 0.231565i
\(604\) 0.0519482 + 0.0899768i 0.00211374 + 0.00366111i
\(605\) 0.530835 + 0.919434i 0.0215815 + 0.0373803i
\(606\) −12.8406 + 20.0696i −0.521612 + 0.815272i
\(607\) −19.0057 + 32.9189i −0.771419 + 1.33614i 0.165366 + 0.986232i \(0.447119\pi\)
−0.936785 + 0.349905i \(0.886214\pi\)
\(608\) −2.02704 3.51094i −0.0822074 0.142387i
\(609\) 2.90642 41.0262i 0.117774 1.66247i
\(610\) 2.78220 4.81891i 0.112648 0.195112i
\(611\) 1.69961 + 2.94381i 0.0687589 + 0.119094i
\(612\) −4.69455 10.1703i −0.189766 0.411112i
\(613\) 11.3296 19.6234i 0.457597 0.792581i −0.541237 0.840870i \(-0.682044\pi\)
0.998833 + 0.0482894i \(0.0153770\pi\)
\(614\) 7.78794 0.314295
\(615\) 0.347081 + 0.669906i 0.0139956 + 0.0270132i
\(616\) 8.47656 4.61369i 0.341530 0.185891i
\(617\) −10.1388 17.5609i −0.408173 0.706977i 0.586512 0.809941i \(-0.300501\pi\)
−0.994685 + 0.102964i \(0.967167\pi\)
\(618\) 19.3135 + 0.880794i 0.776904 + 0.0354307i
\(619\) −1.03064 1.78512i −0.0414249 0.0717501i 0.844570 0.535446i \(-0.179856\pi\)
−0.885994 + 0.463696i \(0.846523\pi\)
\(620\) −0.118485 + 0.205223i −0.00475849 + 0.00824194i
\(621\) −3.61129 + 4.65003i −0.144916 + 0.186599i
\(622\) 15.4107 0.617912
\(623\) −6.33628 + 3.44877i −0.253858 + 0.138172i
\(624\) 1.36333 2.13086i 0.0545768 0.0853027i
\(625\) −10.9320 + 18.9348i −0.437280 + 0.757391i
\(626\) 8.49688 0.339604
\(627\) −25.5869 1.16689i −1.02184 0.0466011i
\(628\) 20.9823 0.837285
\(629\) 34.0085 1.35601
\(630\) 3.35613 1.44792i 0.133711 0.0576865i
\(631\) 1.63715 0.0651740 0.0325870 0.999469i \(-0.489625\pi\)
0.0325870 + 0.999469i \(0.489625\pi\)
\(632\) −5.00720 −0.199176
\(633\) −1.13541 + 1.77462i −0.0451283 + 0.0705349i
\(634\) −14.1052 −0.560191
\(635\) 2.02850 3.51347i 0.0804988 0.139428i
\(636\) −21.5167 0.981271i −0.853194 0.0389099i
\(637\) −4.66012 9.09967i −0.184641 0.360542i
\(638\) −32.7381 −1.29611
\(639\) −2.90642 + 4.11671i −0.114976 + 0.162854i
\(640\) 0.230252 0.398809i 0.00910153 0.0157643i
\(641\) −10.9662 18.9941i −0.433140 0.750221i 0.564001 0.825774i \(-0.309261\pi\)
−0.997142 + 0.0755526i \(0.975928\pi\)
\(642\) −7.26303 + 11.3520i −0.286649 + 0.448028i
\(643\) −14.1819 24.5638i −0.559280 0.968701i −0.997557 0.0698609i \(-0.977744\pi\)
0.438277 0.898840i \(-0.355589\pi\)
\(644\) 2.55768 + 1.56373i 0.100787 + 0.0616197i
\(645\) −4.00953 + 6.26683i −0.157875 + 0.246756i
\(646\) 15.1373 0.595571
\(647\) 17.3904 30.1210i 0.683686 1.18418i −0.290162 0.956978i \(-0.593709\pi\)
0.973848 0.227201i \(-0.0729575\pi\)
\(648\) −3.01245 8.48087i −0.118340 0.333160i
\(649\) −23.5203 40.7384i −0.923253 1.59912i
\(650\) −3.49640 + 6.05594i −0.137140 + 0.237534i
\(651\) 2.12043 1.03181i 0.0831061 0.0404398i
\(652\) −11.5182 19.9501i −0.451087 0.781306i
\(653\) 1.59931 2.77009i 0.0625860 0.108402i −0.833035 0.553221i \(-0.813399\pi\)
0.895621 + 0.444819i \(0.146732\pi\)
\(654\) 13.0021 + 0.592963i 0.508424 + 0.0231867i
\(655\) 4.86693 + 8.42976i 0.190167 + 0.329378i
\(656\) −0.472958 0.819187i −0.0184659 0.0319839i
\(657\) −16.6481 36.0668i −0.649506 1.40710i
\(658\) 0.154861 6.15585i 0.00603710 0.239980i
\(659\) 5.30418 9.18711i 0.206622 0.357879i −0.744027 0.668150i \(-0.767086\pi\)
0.950648 + 0.310271i \(0.100420\pi\)
\(660\) −1.33842 2.58331i −0.0520980 0.100555i
\(661\) 10.1301 0.394017 0.197009 0.980402i \(-0.436877\pi\)
0.197009 + 0.980402i \(0.436877\pi\)
\(662\) 27.5438 1.07052
\(663\) 4.34514 + 8.38662i 0.168751 + 0.325709i
\(664\) 3.32383 5.75705i 0.128990 0.223417i
\(665\) −0.124220 + 4.93786i −0.00481705 + 0.191482i
\(666\) 27.2111 + 2.48710i 1.05441 + 0.0963731i
\(667\) −5.08472 8.80700i −0.196881 0.341008i
\(668\) −5.31498 9.20581i −0.205643 0.356184i
\(669\) 1.54309 + 0.0703729i 0.0596595 + 0.00272077i
\(670\) −0.534239 + 0.925330i −0.0206395 + 0.0357486i
\(671\) 22.0378 + 38.1707i 0.850761 + 1.47356i
\(672\) −4.12062 + 2.00511i −0.158956 + 0.0773489i
\(673\) 1.60817 2.78543i 0.0619903 0.107370i −0.833365 0.552724i \(-0.813589\pi\)
0.895355 + 0.445353i \(0.146922\pi\)
\(674\) 0.748440 + 1.29634i 0.0288288 + 0.0499330i
\(675\) 9.38677 + 23.0401i 0.361297 + 0.886813i
\(676\) 5.43346 9.41103i 0.208979 0.361963i
\(677\) −29.3638 −1.12854 −0.564271 0.825589i \(-0.690843\pi\)
−0.564271 + 0.825589i \(0.690843\pi\)
\(678\) 5.65798 8.84334i 0.217293 0.339626i
\(679\) 25.2527 + 15.4392i 0.969110 + 0.592501i
\(680\) 0.859728 + 1.48909i 0.0329691 + 0.0571041i
\(681\) 13.6770 21.3770i 0.524105 0.819169i
\(682\) −0.938524 1.62557i −0.0359379 0.0622463i
\(683\) 12.6278 21.8720i 0.483190 0.836910i −0.516624 0.856213i \(-0.672811\pi\)
0.999814 + 0.0193029i \(0.00614468\pi\)
\(684\) 12.1118 + 1.10702i 0.463105 + 0.0423279i
\(685\) 2.02918 0.0775309
\(686\) −1.39610 + 18.4676i −0.0533035 + 0.705095i
\(687\) −16.5687 0.755615i −0.632134 0.0288285i
\(688\) 4.66372 8.07779i 0.177802 0.307963i
\(689\) 18.1623 0.691927
\(690\) 0.487068 0.761280i 0.0185424 0.0289814i
\(691\) −15.3638 −0.584467 −0.292233 0.956347i \(-0.594398\pi\)
−0.292233 + 0.956347i \(0.594398\pi\)
\(692\) 2.93872 0.111713
\(693\) −3.35953 + 28.7569i −0.127618 + 1.09238i
\(694\) −18.2881 −0.694208
\(695\) −0.932479 −0.0353709
\(696\) 15.5292 + 0.708209i 0.588632 + 0.0268446i
\(697\) 3.53191 0.133781
\(698\) −3.90136 + 6.75735i −0.147669 + 0.255770i
\(699\) 13.4684 21.0509i 0.509421 0.796217i
\(700\) 11.1264 6.05594i 0.420537 0.228893i
\(701\) −13.3700 −0.504980 −0.252490 0.967600i \(-0.581249\pi\)
−0.252490 + 0.967600i \(0.581249\pi\)
\(702\) 2.86333 + 7.02811i 0.108069 + 0.265259i
\(703\) −18.4626 + 31.9782i −0.696332 + 1.20608i
\(704\) 1.82383 + 3.15897i 0.0687382 + 0.119058i
\(705\) −1.85447 0.0845733i −0.0698435 0.00318522i
\(706\) −13.4626 23.3180i −0.506673 0.877584i
\(707\) −31.9662 + 17.3988i −1.20221 + 0.654351i
\(708\) 10.2755 + 19.8329i 0.386176 + 0.745365i
\(709\) −1.12588 −0.0422832 −0.0211416 0.999776i \(-0.506730\pi\)
−0.0211416 + 0.999776i \(0.506730\pi\)
\(710\) 0.386770 0.669906i 0.0145152 0.0251411i
\(711\) 8.66372 12.2714i 0.324915 0.460215i
\(712\) −1.36333 2.36135i −0.0510928 0.0884954i
\(713\) 0.291534 0.504951i 0.0109180 0.0189106i
\(714\) 1.20914 17.0679i 0.0452509 0.638749i
\(715\) 1.22665 + 2.12463i 0.0458743 + 0.0794565i
\(716\) −4.58113 + 7.93474i −0.171205 + 0.296535i
\(717\) −17.0914 + 26.7137i −0.638292 + 0.997640i
\(718\) −3.13161 5.42411i −0.116871 0.202426i
\(719\) 9.13667 + 15.8252i 0.340740 + 0.590180i 0.984570 0.174989i \(-0.0559889\pi\)
−0.643830 + 0.765169i \(0.722656\pi\)
\(720\) 0.578990 + 1.25433i 0.0215777 + 0.0467463i
\(721\) 25.1965 + 15.4048i 0.938366 + 0.573705i
\(722\) 1.28220 2.22084i 0.0477186 0.0826510i
\(723\) −0.0871712 + 0.136247i −0.00324193 + 0.00506709i
\(724\) 22.4284 0.833545
\(725\) −42.9722 −1.59595
\(726\) 3.98901 + 0.181919i 0.148046 + 0.00675165i
\(727\) −14.8478 + 25.7171i −0.550673 + 0.953793i 0.447553 + 0.894257i \(0.352295\pi\)
−0.998226 + 0.0595359i \(0.981038\pi\)
\(728\) 3.39397 1.84730i 0.125789 0.0684654i
\(729\) 25.9969 + 7.29124i 0.962847 + 0.270046i
\(730\) 3.04883 + 5.28073i 0.112842 + 0.195448i
\(731\) 17.4136 + 30.1613i 0.644066 + 1.11555i
\(732\) −9.62782 18.5828i −0.355854 0.686840i
\(733\) −9.61390 + 16.6518i −0.355098 + 0.615047i −0.987135 0.159891i \(-0.948886\pi\)
0.632037 + 0.774938i \(0.282219\pi\)
\(734\) −14.6367 25.3515i −0.540249 0.935740i
\(735\) 5.55768 + 0.534488i 0.204998 + 0.0197149i
\(736\) −0.566537 + 0.981271i −0.0208828 + 0.0361701i
\(737\) −4.23171 7.32955i −0.155877 0.269987i
\(738\) 2.82597 + 0.258294i 0.104025 + 0.00950793i
\(739\) −15.1336 + 26.2121i −0.556697 + 0.964227i 0.441073 + 0.897471i \(0.354598\pi\)
−0.997769 + 0.0667556i \(0.978735\pi\)
\(740\) −4.19436 −0.154188
\(741\) −10.2448 0.467216i −0.376354 0.0171636i
\(742\) −28.0708 17.1621i −1.03051 0.630041i
\(743\) −11.8815 20.5794i −0.435890 0.754984i 0.561477 0.827492i \(-0.310233\pi\)
−0.997368 + 0.0725076i \(0.976900\pi\)
\(744\) 0.410019 + 0.791385i 0.0150320 + 0.0290136i
\(745\) −2.10963 3.65399i −0.0772909 0.133872i
\(746\) −8.92986 + 15.4670i −0.326946 + 0.566286i
\(747\) 8.35807 + 18.1071i 0.305806 + 0.662503i
\(748\) −13.6198 −0.497990
\(749\) −18.0811 + 9.84134i −0.660670 + 0.359595i
\(750\) −3.59144 6.93190i −0.131141 0.253117i
\(751\) −6.33415 + 10.9711i −0.231136 + 0.400340i −0.958143 0.286291i \(-0.907578\pi\)
0.727006 + 0.686631i \(0.240911\pi\)
\(752\) 2.32743 0.0848727
\(753\) 14.5600 + 28.1025i 0.530596 + 1.02411i
\(754\) −13.1082 −0.477371
\(755\) 0.0478448 0.00174125
\(756\) 2.21566 13.5680i 0.0805829 0.493464i
\(757\) −29.0799 −1.05693 −0.528464 0.848955i \(-0.677232\pi\)
−0.528464 + 0.848955i \(0.677232\pi\)
\(758\) −22.4255 −0.814530
\(759\) 3.29319 + 6.35624i 0.119535 + 0.230717i
\(760\) −1.86693 −0.0677205
\(761\) −14.6015 + 25.2905i −0.529302 + 0.916778i 0.470114 + 0.882606i \(0.344213\pi\)
−0.999416 + 0.0341724i \(0.989120\pi\)
\(762\) −7.01965 13.5487i −0.254295 0.490819i
\(763\) 16.9626 + 10.3707i 0.614089 + 0.375446i
\(764\) 2.48968 0.0900736
\(765\) −5.13696 0.469519i −0.185727 0.0169755i
\(766\) 7.07014 12.2458i 0.255454 0.442460i
\(767\) −9.41741 16.3114i −0.340043 0.588972i
\(768\) −0.796790 1.53790i −0.0287517 0.0554941i