Properties

Label 126.2.e.d.25.1
Level $126$
Weight $2$
Character 126.25
Analytic conductor $1.006$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(25,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 25.1
Root \(0.500000 - 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 126.25
Dual form 126.2.e.d.121.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-1.29418 + 1.15113i) q^{3} +1.00000 q^{4} +(-1.84981 + 3.20397i) q^{5} +(-1.29418 + 1.15113i) q^{6} +(2.64400 + 0.0963576i) q^{7} +1.00000 q^{8} +(0.349814 - 2.97954i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(-1.29418 + 1.15113i) q^{3} +1.00000 q^{4} +(-1.84981 + 3.20397i) q^{5} +(-1.29418 + 1.15113i) q^{6} +(2.64400 + 0.0963576i) q^{7} +1.00000 q^{8} +(0.349814 - 2.97954i) q^{9} +(-1.84981 + 3.20397i) q^{10} +(0.738550 + 1.27921i) q^{11} +(-1.29418 + 1.15113i) q^{12} +(-1.34981 - 2.33795i) q^{13} +(2.64400 + 0.0963576i) q^{14} +(-1.29418 - 6.27589i) q^{15} +1.00000 q^{16} +(3.28799 - 5.69497i) q^{17} +(0.349814 - 2.97954i) q^{18} +(-0.444368 - 0.769668i) q^{19} +(-1.84981 + 3.20397i) q^{20} +(-3.53273 + 2.91887i) q^{21} +(0.738550 + 1.27921i) q^{22} +(-3.14400 + 5.44556i) q^{23} +(-1.29418 + 1.15113i) q^{24} +(-4.34362 - 7.52338i) q^{25} +(-1.34981 - 2.33795i) q^{26} +(2.97710 + 4.25874i) q^{27} +(2.64400 + 0.0963576i) q^{28} +(1.25526 - 2.17417i) q^{29} +(-1.29418 - 6.27589i) q^{30} +6.81089 q^{31} +1.00000 q^{32} +(-2.42835 - 0.805361i) q^{33} +(3.28799 - 5.69497i) q^{34} +(-5.19963 + 8.29305i) q^{35} +(0.349814 - 2.97954i) q^{36} +(-1.38874 - 2.40536i) q^{37} +(-0.444368 - 0.769668i) q^{38} +(4.43818 + 1.47192i) q^{39} +(-1.84981 + 3.20397i) q^{40} +(-2.05563 - 3.56046i) q^{41} +(-3.53273 + 2.91887i) q^{42} +(0.00618986 - 0.0107211i) q^{43} +(0.738550 + 1.27921i) q^{44} +(8.89926 + 6.63238i) q^{45} +(-3.14400 + 5.44556i) q^{46} -6.98762 q^{47} +(-1.29418 + 1.15113i) q^{48} +(6.98143 + 0.509538i) q^{49} +(-4.34362 - 7.52338i) q^{50} +(2.30037 + 11.1552i) q^{51} +(-1.34981 - 2.33795i) q^{52} +(-1.60507 + 2.78007i) q^{53} +(2.97710 + 4.25874i) q^{54} -5.46472 q^{55} +(2.64400 + 0.0963576i) q^{56} +(1.46108 + 0.484566i) q^{57} +(1.25526 - 2.17417i) q^{58} +6.90978 q^{59} +(-1.29418 - 6.27589i) q^{60} -5.73305 q^{61} +6.81089 q^{62} +(1.21201 - 7.84417i) q^{63} +1.00000 q^{64} +9.98762 q^{65} +(-2.42835 - 0.805361i) q^{66} -9.46472 q^{67} +(3.28799 - 5.69497i) q^{68} +(-2.19963 - 10.6667i) q^{69} +(-5.19963 + 8.29305i) q^{70} -5.46472 q^{71} +(0.349814 - 2.97954i) q^{72} +(-6.03273 + 10.4490i) q^{73} +(-1.38874 - 2.40536i) q^{74} +(14.2818 + 4.73656i) q^{75} +(-0.444368 - 0.769668i) q^{76} +(1.82946 + 3.45338i) q^{77} +(4.43818 + 1.47192i) q^{78} +11.4523 q^{79} +(-1.84981 + 3.20397i) q^{80} +(-8.75526 - 2.08457i) q^{81} +(-2.05563 - 3.56046i) q^{82} +(2.23855 - 3.87728i) q^{83} +(-3.53273 + 2.91887i) q^{84} +(12.1643 + 21.0693i) q^{85} +(0.00618986 - 0.0107211i) q^{86} +(0.878215 + 4.25874i) q^{87} +(0.738550 + 1.27921i) q^{88} +(-4.43818 - 7.68715i) q^{89} +(8.89926 + 6.63238i) q^{90} +(-3.34362 - 6.31159i) q^{91} +(-3.14400 + 5.44556i) q^{92} +(-8.81453 + 7.84020i) q^{93} -6.98762 q^{94} +3.28799 q^{95} +(-1.29418 + 1.15113i) q^{96} +(-6.58836 + 11.4114i) q^{97} +(6.98143 + 0.509538i) q^{98} +(4.06979 - 1.75305i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} - 2 q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} + 4 q^{7} + 6 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 6 q^{2} - 2 q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} + 4 q^{7} + 6 q^{8} - 4 q^{9} - 5 q^{10} - q^{11} - 2 q^{12} - 2 q^{13} + 4 q^{14} - 2 q^{15} + 6 q^{16} - 4 q^{17} - 4 q^{18} - 3 q^{19} - 5 q^{20} - 10 q^{21} - q^{22} - 7 q^{23} - 2 q^{24} - 2 q^{25} - 2 q^{26} + 7 q^{27} + 4 q^{28} - 5 q^{29} - 2 q^{30} + 28 q^{31} + 6 q^{32} - 19 q^{33} - 4 q^{34} - 19 q^{35} - 4 q^{36} - 9 q^{37} - 3 q^{38} + 9 q^{39} - 5 q^{40} - 12 q^{41} - 10 q^{42} + 18 q^{43} - q^{44} + 29 q^{45} - 7 q^{46} - 6 q^{47} - 2 q^{48} - 12 q^{49} - 2 q^{50} + 26 q^{51} - 2 q^{52} + 9 q^{53} + 7 q^{54} + 14 q^{55} + 4 q^{56} + 2 q^{57} - 5 q^{58} - 8 q^{59} - 2 q^{60} - 8 q^{61} + 28 q^{62} + 31 q^{63} + 6 q^{64} + 24 q^{65} - 19 q^{66} - 10 q^{67} - 4 q^{68} - q^{69} - 19 q^{70} + 14 q^{71} - 4 q^{72} - 25 q^{73} - 9 q^{74} + 44 q^{75} - 3 q^{76} + 52 q^{77} + 9 q^{78} - 14 q^{79} - 5 q^{80} - 40 q^{81} - 12 q^{82} + 8 q^{83} - 10 q^{84} + 14 q^{85} + 18 q^{86} + 31 q^{87} - q^{88} - 9 q^{89} + 29 q^{90} + 4 q^{91} - 7 q^{92} - 6 q^{94} - 4 q^{95} - 2 q^{96} - 28 q^{97} - 12 q^{98} - 41 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.29418 + 1.15113i −0.747196 + 0.664603i
\(4\) 1.00000 0.500000
\(5\) −1.84981 + 3.20397i −0.827262 + 1.43286i 0.0729162 + 0.997338i \(0.476769\pi\)
−0.900178 + 0.435522i \(0.856564\pi\)
\(6\) −1.29418 + 1.15113i −0.528348 + 0.469946i
\(7\) 2.64400 + 0.0963576i 0.999337 + 0.0364197i
\(8\) 1.00000 0.353553
\(9\) 0.349814 2.97954i 0.116605 0.993178i
\(10\) −1.84981 + 3.20397i −0.584963 + 1.01318i
\(11\) 0.738550 + 1.27921i 0.222681 + 0.385695i 0.955621 0.294598i \(-0.0951858\pi\)
−0.732940 + 0.680293i \(0.761852\pi\)
\(12\) −1.29418 + 1.15113i −0.373598 + 0.332302i
\(13\) −1.34981 2.33795i −0.374371 0.648430i 0.615862 0.787854i \(-0.288808\pi\)
−0.990233 + 0.139425i \(0.955475\pi\)
\(14\) 2.64400 + 0.0963576i 0.706638 + 0.0257526i
\(15\) −1.29418 6.27589i −0.334156 1.62043i
\(16\) 1.00000 0.250000
\(17\) 3.28799 5.69497i 0.797455 1.38123i −0.123813 0.992306i \(-0.539512\pi\)
0.921268 0.388927i \(-0.127154\pi\)
\(18\) 0.349814 2.97954i 0.0824520 0.702283i
\(19\) −0.444368 0.769668i −0.101945 0.176574i 0.810541 0.585682i \(-0.199173\pi\)
−0.912486 + 0.409108i \(0.865840\pi\)
\(20\) −1.84981 + 3.20397i −0.413631 + 0.716430i
\(21\) −3.53273 + 2.91887i −0.770905 + 0.636950i
\(22\) 0.738550 + 1.27921i 0.157459 + 0.272728i
\(23\) −3.14400 + 5.44556i −0.655568 + 1.13548i 0.326182 + 0.945307i \(0.394238\pi\)
−0.981751 + 0.190171i \(0.939096\pi\)
\(24\) −1.29418 + 1.15113i −0.264174 + 0.234973i
\(25\) −4.34362 7.52338i −0.868725 1.50468i
\(26\) −1.34981 2.33795i −0.264720 0.458509i
\(27\) 2.97710 + 4.25874i 0.572943 + 0.819595i
\(28\) 2.64400 + 0.0963576i 0.499668 + 0.0182099i
\(29\) 1.25526 2.17417i 0.233096 0.403734i −0.725622 0.688094i \(-0.758448\pi\)
0.958718 + 0.284360i \(0.0917810\pi\)
\(30\) −1.29418 6.27589i −0.236284 1.14582i
\(31\) 6.81089 1.22327 0.611636 0.791139i \(-0.290512\pi\)
0.611636 + 0.791139i \(0.290512\pi\)
\(32\) 1.00000 0.176777
\(33\) −2.42835 0.805361i −0.422721 0.140195i
\(34\) 3.28799 5.69497i 0.563886 0.976679i
\(35\) −5.19963 + 8.29305i −0.878898 + 1.40178i
\(36\) 0.349814 2.97954i 0.0583023 0.496589i
\(37\) −1.38874 2.40536i −0.228307 0.395439i 0.729000 0.684514i \(-0.239986\pi\)
−0.957306 + 0.289075i \(0.906652\pi\)
\(38\) −0.444368 0.769668i −0.0720860 0.124857i
\(39\) 4.43818 + 1.47192i 0.710677 + 0.235696i
\(40\) −1.84981 + 3.20397i −0.292481 + 0.506592i
\(41\) −2.05563 3.56046i −0.321036 0.556050i 0.659666 0.751559i \(-0.270698\pi\)
−0.980702 + 0.195508i \(0.937364\pi\)
\(42\) −3.53273 + 2.91887i −0.545112 + 0.450392i
\(43\) 0.00618986 0.0107211i 0.000943944 0.00163496i −0.865553 0.500817i \(-0.833033\pi\)
0.866497 + 0.499182i \(0.166366\pi\)
\(44\) 0.738550 + 1.27921i 0.111341 + 0.192848i
\(45\) 8.89926 + 6.63238i 1.32662 + 0.988697i
\(46\) −3.14400 + 5.44556i −0.463557 + 0.802904i
\(47\) −6.98762 −1.01925 −0.509625 0.860397i \(-0.670216\pi\)
−0.509625 + 0.860397i \(0.670216\pi\)
\(48\) −1.29418 + 1.15113i −0.186799 + 0.166151i
\(49\) 6.98143 + 0.509538i 0.997347 + 0.0727912i
\(50\) −4.34362 7.52338i −0.614281 1.06397i
\(51\) 2.30037 + 11.1552i 0.322116 + 1.56204i
\(52\) −1.34981 2.33795i −0.187186 0.324215i
\(53\) −1.60507 + 2.78007i −0.220474 + 0.381872i −0.954952 0.296760i \(-0.904094\pi\)
0.734478 + 0.678632i \(0.237427\pi\)
\(54\) 2.97710 + 4.25874i 0.405132 + 0.579541i
\(55\) −5.46472 −0.736863
\(56\) 2.64400 + 0.0963576i 0.353319 + 0.0128763i
\(57\) 1.46108 + 0.484566i 0.193525 + 0.0641824i
\(58\) 1.25526 2.17417i 0.164824 0.285483i
\(59\) 6.90978 0.899576 0.449788 0.893135i \(-0.351499\pi\)
0.449788 + 0.893135i \(0.351499\pi\)
\(60\) −1.29418 6.27589i −0.167078 0.810214i
\(61\) −5.73305 −0.734042 −0.367021 0.930213i \(-0.619622\pi\)
−0.367021 + 0.930213i \(0.619622\pi\)
\(62\) 6.81089 0.864984
\(63\) 1.21201 7.84417i 0.152699 0.988273i
\(64\) 1.00000 0.125000
\(65\) 9.98762 1.23881
\(66\) −2.42835 0.805361i −0.298909 0.0991331i
\(67\) −9.46472 −1.15630 −0.578150 0.815931i \(-0.696225\pi\)
−0.578150 + 0.815931i \(0.696225\pi\)
\(68\) 3.28799 5.69497i 0.398728 0.690616i
\(69\) −2.19963 10.6667i −0.264804 1.28412i
\(70\) −5.19963 + 8.29305i −0.621474 + 0.991209i
\(71\) −5.46472 −0.648543 −0.324271 0.945964i \(-0.605119\pi\)
−0.324271 + 0.945964i \(0.605119\pi\)
\(72\) 0.349814 2.97954i 0.0412260 0.351142i
\(73\) −6.03273 + 10.4490i −0.706078 + 1.22296i 0.260223 + 0.965548i \(0.416204\pi\)
−0.966301 + 0.257414i \(0.917130\pi\)
\(74\) −1.38874 2.40536i −0.161437 0.279618i
\(75\) 14.2818 + 4.73656i 1.64912 + 0.546931i
\(76\) −0.444368 0.769668i −0.0509725 0.0882870i
\(77\) 1.82946 + 3.45338i 0.208487 + 0.393549i
\(78\) 4.43818 + 1.47192i 0.502525 + 0.166662i
\(79\) 11.4523 1.28849 0.644244 0.764820i \(-0.277172\pi\)
0.644244 + 0.764820i \(0.277172\pi\)
\(80\) −1.84981 + 3.20397i −0.206816 + 0.358215i
\(81\) −8.75526 2.08457i −0.972807 0.231619i
\(82\) −2.05563 3.56046i −0.227007 0.393187i
\(83\) 2.23855 3.87728i 0.245713 0.425587i −0.716619 0.697465i \(-0.754311\pi\)
0.962332 + 0.271878i \(0.0876447\pi\)
\(84\) −3.53273 + 2.91887i −0.385453 + 0.318475i
\(85\) 12.1643 + 21.0693i 1.31941 + 2.28528i
\(86\) 0.00618986 0.0107211i 0.000667469 0.00115609i
\(87\) 0.878215 + 4.25874i 0.0941546 + 0.456585i
\(88\) 0.738550 + 1.27921i 0.0787297 + 0.136364i
\(89\) −4.43818 7.68715i −0.470446 0.814836i 0.528983 0.848633i \(-0.322574\pi\)
−0.999429 + 0.0337963i \(0.989240\pi\)
\(90\) 8.89926 + 6.63238i 0.938064 + 0.699114i
\(91\) −3.34362 6.31159i −0.350507 0.661634i
\(92\) −3.14400 + 5.44556i −0.327784 + 0.567739i
\(93\) −8.81453 + 7.84020i −0.914025 + 0.812991i
\(94\) −6.98762 −0.720718
\(95\) 3.28799 0.337341
\(96\) −1.29418 + 1.15113i −0.132087 + 0.117486i
\(97\) −6.58836 + 11.4114i −0.668947 + 1.15865i 0.309252 + 0.950980i \(0.399921\pi\)
−0.978199 + 0.207670i \(0.933412\pi\)
\(98\) 6.98143 + 0.509538i 0.705231 + 0.0514711i
\(99\) 4.06979 1.75305i 0.409030 0.176188i
\(100\) −4.34362 7.52338i −0.434362 0.752338i
\(101\) −2.62729 4.55059i −0.261425 0.452801i 0.705196 0.709012i \(-0.250859\pi\)
−0.966621 + 0.256212i \(0.917526\pi\)
\(102\) 2.30037 + 11.1552i 0.227771 + 1.10453i
\(103\) −0.833104 + 1.44298i −0.0820882 + 0.142181i −0.904147 0.427222i \(-0.859492\pi\)
0.822059 + 0.569403i \(0.192826\pi\)
\(104\) −1.34981 2.33795i −0.132360 0.229255i
\(105\) −2.81708 16.7181i −0.274919 1.63152i
\(106\) −1.60507 + 2.78007i −0.155899 + 0.270024i
\(107\) −5.38255 9.32284i −0.520350 0.901273i −0.999720 0.0236602i \(-0.992468\pi\)
0.479370 0.877613i \(-0.340865\pi\)
\(108\) 2.97710 + 4.25874i 0.286472 + 0.409798i
\(109\) −0.0945538 + 0.163772i −0.00905662 + 0.0156865i −0.870518 0.492136i \(-0.836216\pi\)
0.861462 + 0.507823i \(0.169550\pi\)
\(110\) −5.46472 −0.521041
\(111\) 4.56615 + 1.51436i 0.433400 + 0.143737i
\(112\) 2.64400 + 0.0963576i 0.249834 + 0.00910494i
\(113\) −6.78180 11.7464i −0.637978 1.10501i −0.985876 0.167478i \(-0.946438\pi\)
0.347897 0.937533i \(-0.386896\pi\)
\(114\) 1.46108 + 0.484566i 0.136843 + 0.0453838i
\(115\) −11.6316 20.1466i −1.08465 1.87868i
\(116\) 1.25526 2.17417i 0.116548 0.201867i
\(117\) −7.43818 + 3.20397i −0.687660 + 0.296207i
\(118\) 6.90978 0.636097
\(119\) 9.24219 14.7407i 0.847230 1.35127i
\(120\) −1.29418 6.27589i −0.118142 0.572908i
\(121\) 4.40909 7.63676i 0.400826 0.694251i
\(122\) −5.73305 −0.519046
\(123\) 6.75890 + 2.24159i 0.609430 + 0.202117i
\(124\) 6.81089 0.611636
\(125\) 13.6414 1.22013
\(126\) 1.21201 7.84417i 0.107974 0.698814i
\(127\) −2.85669 −0.253490 −0.126745 0.991935i \(-0.540453\pi\)
−0.126745 + 0.991935i \(0.540453\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0.00433060 + 0.0210004i 0.000381288 + 0.00184898i
\(130\) 9.98762 0.875972
\(131\) −0.0778435 + 0.134829i −0.00680122 + 0.0117801i −0.869406 0.494098i \(-0.835498\pi\)
0.862605 + 0.505878i \(0.168832\pi\)
\(132\) −2.42835 0.805361i −0.211360 0.0700977i
\(133\) −1.10074 2.07782i −0.0954466 0.180170i
\(134\) −9.46472 −0.817627
\(135\) −19.1520 + 1.66066i −1.64834 + 0.142927i
\(136\) 3.28799 5.69497i 0.281943 0.488340i
\(137\) 1.70582 + 2.95456i 0.145738 + 0.252425i 0.929648 0.368449i \(-0.120111\pi\)
−0.783910 + 0.620874i \(0.786778\pi\)
\(138\) −2.19963 10.6667i −0.187245 0.908009i
\(139\) −6.75526 11.7005i −0.572974 0.992420i −0.996259 0.0864229i \(-0.972456\pi\)
0.423285 0.905997i \(-0.360877\pi\)
\(140\) −5.19963 + 8.29305i −0.439449 + 0.700890i
\(141\) 9.04325 8.04364i 0.761579 0.677396i
\(142\) −5.46472 −0.458589
\(143\) 1.99381 3.45338i 0.166731 0.288786i
\(144\) 0.349814 2.97954i 0.0291512 0.248295i
\(145\) 4.64400 + 8.04364i 0.385663 + 0.667988i
\(146\) −6.03273 + 10.4490i −0.499272 + 0.864765i
\(147\) −9.62178 + 7.37708i −0.793591 + 0.608451i
\(148\) −1.38874 2.40536i −0.114153 0.197719i
\(149\) −0.166896 + 0.289073i −0.0136727 + 0.0236818i −0.872781 0.488112i \(-0.837686\pi\)
0.859108 + 0.511794i \(0.171019\pi\)
\(150\) 14.2818 + 4.73656i 1.16610 + 0.386738i
\(151\) 9.95489 + 17.2424i 0.810117 + 1.40316i 0.912781 + 0.408448i \(0.133930\pi\)
−0.102664 + 0.994716i \(0.532737\pi\)
\(152\) −0.444368 0.769668i −0.0360430 0.0624283i
\(153\) −15.8182 11.7889i −1.27882 0.953074i
\(154\) 1.82946 + 3.45338i 0.147422 + 0.278281i
\(155\) −12.5989 + 21.8219i −1.01197 + 1.75278i
\(156\) 4.43818 + 1.47192i 0.355339 + 0.117848i
\(157\) −6.96286 −0.555697 −0.277848 0.960625i \(-0.589621\pi\)
−0.277848 + 0.960625i \(0.589621\pi\)
\(158\) 11.4523 0.911099
\(159\) −1.12296 5.44556i −0.0890561 0.431861i
\(160\) −1.84981 + 3.20397i −0.146241 + 0.253296i
\(161\) −8.83743 + 14.0951i −0.696487 + 1.11085i
\(162\) −8.75526 2.08457i −0.687878 0.163779i
\(163\) 4.03706 + 6.99240i 0.316207 + 0.547687i 0.979693 0.200502i \(-0.0642572\pi\)
−0.663486 + 0.748189i \(0.730924\pi\)
\(164\) −2.05563 3.56046i −0.160518 0.278025i
\(165\) 7.07234 6.29059i 0.550581 0.489721i
\(166\) 2.23855 3.87728i 0.173745 0.300935i
\(167\) 9.74288 + 16.8752i 0.753927 + 1.30584i 0.945906 + 0.324440i \(0.105176\pi\)
−0.191979 + 0.981399i \(0.561491\pi\)
\(168\) −3.53273 + 2.91887i −0.272556 + 0.225196i
\(169\) 2.85600 4.94674i 0.219693 0.380519i
\(170\) 12.1643 + 21.0693i 0.932963 + 1.61594i
\(171\) −2.44870 + 1.05477i −0.187257 + 0.0806602i
\(172\) 0.00618986 0.0107211i 0.000471972 0.000817480i
\(173\) 22.5636 1.71548 0.857740 0.514085i \(-0.171868\pi\)
0.857740 + 0.514085i \(0.171868\pi\)
\(174\) 0.878215 + 4.25874i 0.0665773 + 0.322854i
\(175\) −10.7596 20.3103i −0.813349 1.53532i
\(176\) 0.738550 + 1.27921i 0.0556703 + 0.0964238i
\(177\) −8.94251 + 7.95403i −0.672160 + 0.597861i
\(178\) −4.43818 7.68715i −0.332656 0.576176i
\(179\) 0.166896 0.289073i 0.0124744 0.0216063i −0.859721 0.510764i \(-0.829363\pi\)
0.872195 + 0.489158i \(0.162696\pi\)
\(180\) 8.89926 + 6.63238i 0.663311 + 0.494348i
\(181\) 23.2422 1.72758 0.863789 0.503853i \(-0.168085\pi\)
0.863789 + 0.503853i \(0.168085\pi\)
\(182\) −3.34362 6.31159i −0.247846 0.467846i
\(183\) 7.41961 6.59947i 0.548473 0.487847i
\(184\) −3.14400 + 5.44556i −0.231778 + 0.401452i
\(185\) 10.2756 0.755478
\(186\) −8.81453 + 7.84020i −0.646313 + 0.574871i
\(187\) 9.71339 0.710313
\(188\) −6.98762 −0.509625
\(189\) 7.46108 + 11.5470i 0.542714 + 0.839918i
\(190\) 3.28799 0.238536
\(191\) −16.3214 −1.18098 −0.590488 0.807046i \(-0.701065\pi\)
−0.590488 + 0.807046i \(0.701065\pi\)
\(192\) −1.29418 + 1.15113i −0.0933995 + 0.0830754i
\(193\) −14.3214 −1.03088 −0.515439 0.856926i \(-0.672371\pi\)
−0.515439 + 0.856926i \(0.672371\pi\)
\(194\) −6.58836 + 11.4114i −0.473017 + 0.819289i
\(195\) −12.9258 + 11.4970i −0.925636 + 0.823319i
\(196\) 6.98143 + 0.509538i 0.498674 + 0.0363956i
\(197\) 2.42402 0.172704 0.0863520 0.996265i \(-0.472479\pi\)
0.0863520 + 0.996265i \(0.472479\pi\)
\(198\) 4.06979 1.75305i 0.289228 0.124584i
\(199\) −3.05563 + 5.29251i −0.216608 + 0.375176i −0.953769 0.300541i \(-0.902833\pi\)
0.737161 + 0.675717i \(0.236166\pi\)
\(200\) −4.34362 7.52338i −0.307141 0.531983i
\(201\) 12.2491 10.8951i 0.863983 0.768481i
\(202\) −2.62729 4.55059i −0.184855 0.320179i
\(203\) 3.52840 5.62755i 0.247645 0.394977i
\(204\) 2.30037 + 11.1552i 0.161058 + 0.781022i
\(205\) 15.2101 1.06232
\(206\) −0.833104 + 1.44298i −0.0580451 + 0.100537i
\(207\) 15.1254 + 11.2726i 1.05129 + 0.783499i
\(208\) −1.34981 2.33795i −0.0935928 0.162107i
\(209\) 0.656376 1.13688i 0.0454025 0.0786394i
\(210\) −2.81708 16.7181i −0.194397 1.15366i
\(211\) 5.72253 + 9.91171i 0.393955 + 0.682350i 0.992967 0.118390i \(-0.0377732\pi\)
−0.599012 + 0.800740i \(0.704440\pi\)
\(212\) −1.60507 + 2.78007i −0.110237 + 0.190936i
\(213\) 7.07234 6.29059i 0.484589 0.431024i
\(214\) −5.38255 9.32284i −0.367943 0.637296i
\(215\) 0.0229002 + 0.0396643i 0.00156178 + 0.00270508i
\(216\) 2.97710 + 4.25874i 0.202566 + 0.289771i
\(217\) 18.0080 + 0.656281i 1.22246 + 0.0445513i
\(218\) −0.0945538 + 0.163772i −0.00640399 + 0.0110920i
\(219\) −4.22067 20.4673i −0.285206 1.38305i
\(220\) −5.46472 −0.368431
\(221\) −17.7527 −1.19418
\(222\) 4.56615 + 1.51436i 0.306460 + 0.101637i
\(223\) −3.61126 + 6.25489i −0.241828 + 0.418859i −0.961235 0.275730i \(-0.911080\pi\)
0.719407 + 0.694589i \(0.244414\pi\)
\(224\) 2.64400 + 0.0963576i 0.176659 + 0.00643816i
\(225\) −23.9356 + 10.3102i −1.59571 + 0.687347i
\(226\) −6.78180 11.7464i −0.451119 0.781361i
\(227\) −6.82760 11.8258i −0.453164 0.784903i 0.545417 0.838165i \(-0.316371\pi\)
−0.998581 + 0.0532622i \(0.983038\pi\)
\(228\) 1.46108 + 0.484566i 0.0967623 + 0.0320912i
\(229\) −8.68725 + 15.0468i −0.574070 + 0.994318i 0.422073 + 0.906562i \(0.361303\pi\)
−0.996142 + 0.0877555i \(0.972031\pi\)
\(230\) −11.6316 20.1466i −0.766966 1.32842i
\(231\) −6.34294 2.36336i −0.417335 0.155498i
\(232\) 1.25526 2.17417i 0.0824119 0.142742i
\(233\) 7.62110 + 13.2001i 0.499275 + 0.864769i 1.00000 0.000837426i \(-0.000266561\pi\)
−0.500725 + 0.865606i \(0.666933\pi\)
\(234\) −7.43818 + 3.20397i −0.486249 + 0.209450i
\(235\) 12.9258 22.3881i 0.843186 1.46044i
\(236\) 6.90978 0.449788
\(237\) −14.8214 + 13.1831i −0.962754 + 0.856334i
\(238\) 9.24219 14.7407i 0.599082 0.955495i
\(239\) 9.47524 + 16.4116i 0.612902 + 1.06158i 0.990749 + 0.135710i \(0.0433314\pi\)
−0.377846 + 0.925868i \(0.623335\pi\)
\(240\) −1.29418 6.27589i −0.0835391 0.405107i
\(241\) 12.2527 + 21.2223i 0.789267 + 1.36705i 0.926417 + 0.376500i \(0.122872\pi\)
−0.137150 + 0.990550i \(0.543794\pi\)
\(242\) 4.40909 7.63676i 0.283427 0.490910i
\(243\) 13.7305 7.38061i 0.880812 0.473466i
\(244\) −5.73305 −0.367021
\(245\) −14.5469 + 21.4258i −0.929367 + 1.36884i
\(246\) 6.75890 + 2.24159i 0.430932 + 0.142918i
\(247\) −1.19963 + 2.07782i −0.0763305 + 0.132208i
\(248\) 6.81089 0.432492
\(249\) 1.56615 + 7.59476i 0.0992509 + 0.481299i
\(250\) 13.6414 0.862761
\(251\) −12.1236 −0.765238 −0.382619 0.923906i \(-0.624978\pi\)
−0.382619 + 0.923906i \(0.624978\pi\)
\(252\) 1.21201 7.84417i 0.0763493 0.494136i
\(253\) −9.28799 −0.583931
\(254\) −2.85669 −0.179245
\(255\) −39.9963 13.2648i −2.50466 0.830672i
\(256\) 1.00000 0.0625000
\(257\) 4.10439 7.10900i 0.256025 0.443448i −0.709149 0.705059i \(-0.750921\pi\)
0.965173 + 0.261611i \(0.0842539\pi\)
\(258\) 0.00433060 + 0.0210004i 0.000269611 + 0.00130743i
\(259\) −3.44004 6.49358i −0.213754 0.403491i
\(260\) 9.98762 0.619406
\(261\) −6.03892 4.50065i −0.373800 0.278583i
\(262\) −0.0778435 + 0.134829i −0.00480919 + 0.00832976i
\(263\) 2.67309 + 4.62992i 0.164830 + 0.285493i 0.936595 0.350414i \(-0.113959\pi\)
−0.771765 + 0.635908i \(0.780626\pi\)
\(264\) −2.42835 0.805361i −0.149454 0.0495665i
\(265\) −5.93818 10.2852i −0.364779 0.631816i
\(266\) −1.10074 2.07782i −0.0674909 0.127399i
\(267\) 14.5927 + 4.83967i 0.893058 + 0.296183i
\(268\) −9.46472 −0.578150
\(269\) 9.24219 16.0079i 0.563506 0.976022i −0.433681 0.901067i \(-0.642785\pi\)
0.997187 0.0749550i \(-0.0238813\pi\)
\(270\) −19.1520 + 1.66066i −1.16555 + 0.101065i
\(271\) −3.67742 6.36947i −0.223387 0.386918i 0.732447 0.680824i \(-0.238378\pi\)
−0.955834 + 0.293906i \(0.905045\pi\)
\(272\) 3.28799 5.69497i 0.199364 0.345308i
\(273\) 11.5927 + 4.31941i 0.701622 + 0.261422i
\(274\) 1.70582 + 2.95456i 0.103052 + 0.178492i
\(275\) 6.41597 11.1128i 0.386897 0.670126i
\(276\) −2.19963 10.6667i −0.132402 0.642059i
\(277\) 4.54944 + 7.87987i 0.273349 + 0.473455i 0.969717 0.244230i \(-0.0785351\pi\)
−0.696368 + 0.717685i \(0.745202\pi\)
\(278\) −6.75526 11.7005i −0.405154 0.701747i
\(279\) 2.38255 20.2933i 0.142639 1.21493i
\(280\) −5.19963 + 8.29305i −0.310737 + 0.495604i
\(281\) 6.00433 10.3998i 0.358188 0.620400i −0.629470 0.777025i \(-0.716728\pi\)
0.987658 + 0.156624i \(0.0500612\pi\)
\(282\) 9.04325 8.04364i 0.538518 0.478992i
\(283\) 9.84294 0.585102 0.292551 0.956250i \(-0.405496\pi\)
0.292551 + 0.956250i \(0.405496\pi\)
\(284\) −5.46472 −0.324271
\(285\) −4.25526 + 3.78490i −0.252060 + 0.224198i
\(286\) 1.99381 3.45338i 0.117896 0.204203i
\(287\) −5.09201 9.61192i −0.300572 0.567373i
\(288\) 0.349814 2.97954i 0.0206130 0.175571i
\(289\) −13.1218 22.7276i −0.771870 1.33692i
\(290\) 4.64400 + 8.04364i 0.272705 + 0.472339i
\(291\) −4.60940 22.3524i −0.270208 1.31032i
\(292\) −6.03273 + 10.4490i −0.353039 + 0.611481i
\(293\) 10.7101 + 18.5505i 0.625694 + 1.08373i 0.988406 + 0.151832i \(0.0485173\pi\)
−0.362713 + 0.931901i \(0.618149\pi\)
\(294\) −9.62178 + 7.37708i −0.561154 + 0.430240i
\(295\) −12.7818 + 22.1387i −0.744185 + 1.28897i
\(296\) −1.38874 2.40536i −0.0807186 0.139809i
\(297\) −3.24907 + 6.95362i −0.188530 + 0.403490i
\(298\) −0.166896 + 0.289073i −0.00966804 + 0.0167455i
\(299\) 16.9752 0.981704
\(300\) 14.2818 + 4.73656i 0.824560 + 0.273465i
\(301\) 0.0173990 0.0277502i 0.00100286 0.00159950i
\(302\) 9.95489 + 17.2424i 0.572839 + 0.992187i
\(303\) 8.63849 + 2.86496i 0.496269 + 0.164587i
\(304\) −0.444368 0.769668i −0.0254862 0.0441435i
\(305\) 10.6051 18.3685i 0.607245 1.05178i
\(306\) −15.8182 11.7889i −0.904265 0.673925i
\(307\) −5.68725 −0.324588 −0.162294 0.986742i \(-0.551889\pi\)
−0.162294 + 0.986742i \(0.551889\pi\)
\(308\) 1.82946 + 3.45338i 0.104243 + 0.196775i
\(309\) −0.582863 2.82648i −0.0331579 0.160793i
\(310\) −12.5989 + 21.8219i −0.715569 + 1.23940i
\(311\) −11.7207 −0.664618 −0.332309 0.943171i \(-0.607828\pi\)
−0.332309 + 0.943171i \(0.607828\pi\)
\(312\) 4.43818 + 1.47192i 0.251262 + 0.0833311i
\(313\) −26.7738 −1.51334 −0.756671 0.653796i \(-0.773176\pi\)
−0.756671 + 0.653796i \(0.773176\pi\)
\(314\) −6.96286 −0.392937
\(315\) 22.8905 + 18.3935i 1.28973 + 1.03636i
\(316\) 11.4523 0.644244
\(317\) 1.90249 0.106855 0.0534273 0.998572i \(-0.482985\pi\)
0.0534273 + 0.998572i \(0.482985\pi\)
\(318\) −1.12296 5.44556i −0.0629722 0.305372i
\(319\) 3.70829 0.207624
\(320\) −1.84981 + 3.20397i −0.103408 + 0.179107i
\(321\) 17.6978 + 5.86946i 0.987793 + 0.327601i
\(322\) −8.83743 + 14.0951i −0.492491 + 0.785489i
\(323\) −5.84431 −0.325186
\(324\) −8.75526 2.08457i −0.486403 0.115809i
\(325\) −11.7262 + 20.3103i −0.650451 + 1.12661i
\(326\) 4.03706 + 6.99240i 0.223592 + 0.387273i
\(327\) −0.0661525 0.320794i −0.00365824 0.0177400i
\(328\) −2.05563 3.56046i −0.113503 0.196593i
\(329\) −18.4752 0.673310i −1.01857 0.0371208i
\(330\) 7.07234 6.29059i 0.389320 0.346285i
\(331\) 5.56732 0.306008 0.153004 0.988226i \(-0.451105\pi\)
0.153004 + 0.988226i \(0.451105\pi\)
\(332\) 2.23855 3.87728i 0.122856 0.212794i
\(333\) −7.65266 + 3.29636i −0.419363 + 0.180639i
\(334\) 9.74288 + 16.8752i 0.533107 + 0.923368i
\(335\) 17.5080 30.3247i 0.956563 1.65682i
\(336\) −3.53273 + 2.91887i −0.192726 + 0.159237i
\(337\) −16.8869 29.2489i −0.919887 1.59329i −0.799585 0.600553i \(-0.794947\pi\)
−0.120302 0.992737i \(-0.538386\pi\)
\(338\) 2.85600 4.94674i 0.155346 0.269067i
\(339\) 22.2985 + 7.39530i 1.21109 + 0.401657i
\(340\) 12.1643 + 21.0693i 0.659704 + 1.14264i
\(341\) 5.03018 + 8.71253i 0.272400 + 0.471810i
\(342\) −2.44870 + 1.05477i −0.132410 + 0.0570354i
\(343\) 18.4098 + 2.01993i 0.994035 + 0.109066i
\(344\) 0.00618986 0.0107211i 0.000333735 0.000578045i
\(345\) 38.2447 + 12.6838i 2.05902 + 0.682875i
\(346\) 22.5636 1.21303
\(347\) −30.4065 −1.63231 −0.816154 0.577834i \(-0.803898\pi\)
−0.816154 + 0.577834i \(0.803898\pi\)
\(348\) 0.878215 + 4.25874i 0.0470773 + 0.228292i
\(349\) −6.29782 + 10.9082i −0.337115 + 0.583900i −0.983889 0.178782i \(-0.942784\pi\)
0.646774 + 0.762682i \(0.276118\pi\)
\(350\) −10.7596 20.3103i −0.575124 1.08563i
\(351\) 5.93818 12.7088i 0.316956 0.678346i
\(352\) 0.738550 + 1.27921i 0.0393648 + 0.0681819i
\(353\) 3.76578 + 6.52252i 0.200432 + 0.347159i 0.948668 0.316274i \(-0.102432\pi\)
−0.748235 + 0.663433i \(0.769099\pi\)
\(354\) −8.94251 + 7.95403i −0.475289 + 0.422752i
\(355\) 10.1087 17.5088i 0.536515 0.929271i
\(356\) −4.43818 7.68715i −0.235223 0.407418i
\(357\) 5.00728 + 29.7160i 0.265014 + 1.57274i
\(358\) 0.166896 0.289073i 0.00882074 0.0152780i
\(359\) −3.44801 5.97213i −0.181979 0.315197i 0.760575 0.649250i \(-0.224917\pi\)
−0.942554 + 0.334053i \(0.891584\pi\)
\(360\) 8.89926 + 6.63238i 0.469032 + 0.349557i
\(361\) 9.10507 15.7705i 0.479214 0.830024i
\(362\) 23.2422 1.22158
\(363\) 3.08472 + 14.9588i 0.161906 + 0.785132i
\(364\) −3.34362 6.31159i −0.175254 0.330817i
\(365\) −22.3189 38.6574i −1.16822 2.02342i
\(366\) 7.41961 6.59947i 0.387829 0.344960i
\(367\) −11.5618 20.0257i −0.603522 1.04533i −0.992283 0.123992i \(-0.960430\pi\)
0.388761 0.921339i \(-0.372903\pi\)
\(368\) −3.14400 + 5.44556i −0.163892 + 0.283869i
\(369\) −11.3276 + 4.87933i −0.589691 + 0.254008i
\(370\) 10.2756 0.534204
\(371\) −4.51169 + 7.19583i −0.234235 + 0.373589i
\(372\) −8.81453 + 7.84020i −0.457012 + 0.406495i
\(373\) −14.5822 + 25.2571i −0.755036 + 1.30776i 0.190320 + 0.981722i \(0.439047\pi\)
−0.945356 + 0.326039i \(0.894286\pi\)
\(374\) 9.71339 0.502267
\(375\) −17.6545 + 15.7030i −0.911675 + 0.810901i
\(376\) −6.98762 −0.360359
\(377\) −6.77747 −0.349058
\(378\) 7.46108 + 11.5470i 0.383756 + 0.593912i
\(379\) −13.5622 −0.696645 −0.348322 0.937375i \(-0.613249\pi\)
−0.348322 + 0.937375i \(0.613249\pi\)
\(380\) 3.28799 0.168670
\(381\) 3.69708 3.28842i 0.189407 0.168471i
\(382\) −16.3214 −0.835076
\(383\) 1.41783 2.45575i 0.0724475 0.125483i −0.827526 0.561428i \(-0.810252\pi\)
0.899973 + 0.435945i \(0.143586\pi\)
\(384\) −1.29418 + 1.15113i −0.0660434 + 0.0587432i
\(385\) −14.4487 0.526567i −0.736374 0.0268364i
\(386\) −14.3214 −0.728941
\(387\) −0.0297787 0.0221933i −0.00151374 0.00112815i
\(388\) −6.58836 + 11.4114i −0.334474 + 0.579325i
\(389\) 9.30401 + 16.1150i 0.471732 + 0.817064i 0.999477 0.0323388i \(-0.0102956\pi\)
−0.527745 + 0.849403i \(0.676962\pi\)
\(390\) −12.9258 + 11.4970i −0.654523 + 0.582174i
\(391\) 20.6749 + 35.8099i 1.04557 + 1.81099i
\(392\) 6.98143 + 0.509538i 0.352615 + 0.0257356i
\(393\) −0.0544615 0.264101i −0.00274722 0.0133221i
\(394\) 2.42402 0.122120
\(395\) −21.1847 + 36.6930i −1.06592 + 1.84622i
\(396\) 4.06979 1.75305i 0.204515 0.0880941i
\(397\) −10.2880 17.8193i −0.516340 0.894326i −0.999820 0.0189712i \(-0.993961\pi\)
0.483481 0.875355i \(-0.339372\pi\)
\(398\) −3.05563 + 5.29251i −0.153165 + 0.265290i
\(399\) 3.81639 + 1.42198i 0.191059 + 0.0711879i
\(400\) −4.34362 7.52338i −0.217181 0.376169i
\(401\) 3.37704 5.84921i 0.168642 0.292096i −0.769301 0.638887i \(-0.779395\pi\)
0.937942 + 0.346791i \(0.112729\pi\)
\(402\) 12.2491 10.8951i 0.610928 0.543398i
\(403\) −9.19344 15.9235i −0.457958 0.793206i
\(404\) −2.62729 4.55059i −0.130712 0.226400i
\(405\) 22.8745 24.1955i 1.13664 1.20229i
\(406\) 3.52840 5.62755i 0.175112 0.279291i
\(407\) 2.05130 3.55296i 0.101679 0.176114i
\(408\) 2.30037 + 11.1552i 0.113885 + 0.552266i
\(409\) 15.3214 0.757595 0.378798 0.925480i \(-0.376338\pi\)
0.378798 + 0.925480i \(0.376338\pi\)
\(410\) 15.2101 0.751176
\(411\) −5.60872 1.86013i −0.276658 0.0917534i
\(412\) −0.833104 + 1.44298i −0.0410441 + 0.0710904i
\(413\) 18.2694 + 0.665809i 0.898980 + 0.0327623i
\(414\) 15.1254 + 11.2726i 0.743374 + 0.554017i
\(415\) 8.28180 + 14.3445i 0.406538 + 0.704144i
\(416\) −1.34981 2.33795i −0.0661801 0.114627i
\(417\) 22.2112 + 7.36636i 1.08769 + 0.360732i
\(418\) 0.656376 1.13688i 0.0321044 0.0556064i
\(419\) −4.32141 7.48491i −0.211115 0.365662i 0.740949 0.671561i \(-0.234376\pi\)
−0.952064 + 0.305900i \(0.901043\pi\)
\(420\) −2.81708 16.7181i −0.137460 0.815762i
\(421\) 18.5636 32.1531i 0.904735 1.56705i 0.0834618 0.996511i \(-0.473402\pi\)
0.821273 0.570536i \(-0.193264\pi\)
\(422\) 5.72253 + 9.91171i 0.278568 + 0.482494i
\(423\) −2.44437 + 20.8199i −0.118849 + 1.01230i
\(424\) −1.60507 + 2.78007i −0.0779493 + 0.135012i
\(425\) −57.1272 −2.77108
\(426\) 7.07234 6.29059i 0.342656 0.304780i
\(427\) −15.1582 0.552423i −0.733555 0.0267336i
\(428\) −5.38255 9.32284i −0.260175 0.450637i
\(429\) 1.39493 + 6.76443i 0.0673476 + 0.326590i
\(430\) 0.0229002 + 0.0396643i 0.00110434 + 0.00191278i
\(431\) −4.71015 + 8.15822i −0.226880 + 0.392967i −0.956882 0.290478i \(-0.906186\pi\)
0.730002 + 0.683445i \(0.239519\pi\)
\(432\) 2.97710 + 4.25874i 0.143236 + 0.204899i
\(433\) −0.208771 −0.0100329 −0.00501645 0.999987i \(-0.501597\pi\)
−0.00501645 + 0.999987i \(0.501597\pi\)
\(434\) 18.0080 + 0.656281i 0.864410 + 0.0315025i
\(435\) −15.2694 5.06410i −0.732113 0.242805i
\(436\) −0.0945538 + 0.163772i −0.00452831 + 0.00784326i
\(437\) 5.58836 0.267328
\(438\) −4.22067 20.4673i −0.201671 0.977968i
\(439\) −9.96796 −0.475745 −0.237872 0.971296i \(-0.576450\pi\)
−0.237872 + 0.971296i \(0.576450\pi\)
\(440\) −5.46472 −0.260520
\(441\) 3.96039 20.6232i 0.188590 0.982056i
\(442\) −17.7527 −0.844410
\(443\) −15.6996 −0.745912 −0.372956 0.927849i \(-0.621656\pi\)
−0.372956 + 0.927849i \(0.621656\pi\)
\(444\) 4.56615 + 1.51436i 0.216700 + 0.0718685i
\(445\) 32.8392 1.55673
\(446\) −3.61126 + 6.25489i −0.170998 + 0.296178i
\(447\) −0.116765 0.566231i −0.00552281 0.0267818i
\(448\) 2.64400 + 0.0963576i 0.124917 + 0.00455247i
\(449\) 33.6253 1.58688 0.793439 0.608650i \(-0.208288\pi\)
0.793439 + 0.608650i \(0.208288\pi\)
\(450\) −23.9356 + 10.3102i −1.12834 + 0.486027i
\(451\) 3.03637 5.25915i 0.142977 0.247644i
\(452\) −6.78180 11.7464i −0.318989 0.552505i
\(453\) −32.7316 10.8554i −1.53786 0.510033i
\(454\) −6.82760 11.8258i −0.320435 0.555010i
\(455\) 26.4072 + 0.962383i 1.23799 + 0.0451172i
\(456\) 1.46108 + 0.484566i 0.0684213 + 0.0226919i
\(457\) 32.7083 1.53003 0.765015 0.644013i \(-0.222732\pi\)
0.765015 + 0.644013i \(0.222732\pi\)
\(458\) −8.68725 + 15.0468i −0.405928 + 0.703089i
\(459\) 34.0421 2.95178i 1.58895 0.137778i
\(460\) −11.6316 20.1466i −0.542327 0.939338i
\(461\) −2.07165 + 3.58821i −0.0964865 + 0.167120i −0.910228 0.414107i \(-0.864094\pi\)
0.813742 + 0.581227i \(0.197427\pi\)
\(462\) −6.34294 2.36336i −0.295100 0.109953i
\(463\) −8.34176 14.4484i −0.387675 0.671472i 0.604462 0.796634i \(-0.293388\pi\)
−0.992136 + 0.125162i \(0.960055\pi\)
\(464\) 1.25526 2.17417i 0.0582740 0.100934i
\(465\) −8.81453 42.7444i −0.408764 1.98223i
\(466\) 7.62110 + 13.2001i 0.353040 + 0.611484i
\(467\) 14.9585 + 25.9089i 0.692198 + 1.19892i 0.971116 + 0.238608i \(0.0766909\pi\)
−0.278918 + 0.960315i \(0.589976\pi\)
\(468\) −7.43818 + 3.20397i −0.343830 + 0.148104i
\(469\) −25.0247 0.911998i −1.15553 0.0421121i
\(470\) 12.9258 22.3881i 0.596223 1.03269i
\(471\) 9.01121 8.01514i 0.415215 0.369318i
\(472\) 6.90978 0.318048
\(473\) 0.0182861 0.000840794
\(474\) −14.8214 + 13.1831i −0.680770 + 0.605520i
\(475\) −3.86033 + 6.68630i −0.177124 + 0.306788i
\(476\) 9.24219 14.7407i 0.423615 0.675637i
\(477\) 7.72184 + 5.75488i 0.353559 + 0.263498i
\(478\) 9.47524 + 16.4116i 0.433387 + 0.750649i
\(479\) 1.47965 + 2.56283i 0.0676068 + 0.117098i 0.897847 0.440307i \(-0.145130\pi\)
−0.830241 + 0.557405i \(0.811797\pi\)
\(480\) −1.29418 6.27589i −0.0590711 0.286454i
\(481\) −3.74907 + 6.49358i −0.170943 + 0.296082i
\(482\) 12.2527 + 21.2223i 0.558096 + 0.966650i
\(483\) −4.78799 28.4146i −0.217861 1.29291i
\(484\) 4.40909 7.63676i 0.200413 0.347126i
\(485\) −24.3745 42.2179i −1.10679 1.91701i
\(486\) 13.7305 7.38061i 0.622828 0.334791i
\(487\) −14.0309 + 24.3022i −0.635800 + 1.10124i 0.350546 + 0.936546i \(0.385996\pi\)
−0.986345 + 0.164691i \(0.947337\pi\)
\(488\) −5.73305 −0.259523
\(489\) −13.2738 4.40226i −0.600263 0.199077i
\(490\) −14.5469 + 21.4258i −0.657162 + 0.967917i
\(491\) 17.0734 + 29.5721i 0.770513 + 1.33457i 0.937282 + 0.348572i \(0.113333\pi\)
−0.166769 + 0.985996i \(0.553333\pi\)
\(492\) 6.75890 + 2.24159i 0.304715 + 0.101059i
\(493\) −8.25457 14.2973i −0.371767 0.643920i
\(494\) −1.19963 + 2.07782i −0.0539738 + 0.0934854i
\(495\) −1.91164 + 16.2823i −0.0859216 + 0.731836i
\(496\) 6.81089 0.305818
\(497\) −14.4487 0.526567i −0.648113 0.0236198i
\(498\) 1.56615 + 7.59476i 0.0701810 + 0.340329i
\(499\) 1.14035 1.97515i 0.0510493 0.0884199i −0.839372 0.543558i \(-0.817077\pi\)
0.890421 + 0.455138i \(0.150410\pi\)
\(500\) 13.6414 0.610064
\(501\) −32.0345 10.6242i −1.43120 0.474656i
\(502\) −12.1236 −0.541105
\(503\) 13.9890 0.623739 0.311869 0.950125i \(-0.399045\pi\)
0.311869 + 0.950125i \(0.399045\pi\)
\(504\) 1.21201 7.84417i 0.0539871 0.349407i
\(505\) 19.4400 0.865067
\(506\) −9.28799 −0.412902
\(507\) 1.99814 + 9.68961i 0.0887405 + 0.430331i
\(508\) −2.85669 −0.126745
\(509\) −12.8090 + 22.1859i −0.567750 + 0.983373i 0.429038 + 0.903287i \(0.358853\pi\)
−0.996788 + 0.0800859i \(0.974481\pi\)
\(510\) −39.9963 13.2648i −1.77107 0.587374i
\(511\) −16.9574 + 27.0458i −0.750149 + 1.19644i
\(512\) 1.00000 0.0441942
\(513\) 1.95489 4.18383i 0.0863104 0.184720i
\(514\) 4.10439 7.10900i 0.181037 0.313565i
\(515\) −3.08217 5.33848i −0.135817 0.235242i
\(516\) 0.00433060 + 0.0210004i 0.000190644 + 0.000924492i
\(517\) −5.16071 8.93861i −0.226968 0.393119i
\(518\) −3.44004 6.49358i −0.151147 0.285312i
\(519\) −29.2014 + 25.9736i −1.28180 + 1.14011i
\(520\) 9.98762 0.437986
\(521\) −20.9127 + 36.2219i −0.916203 + 1.58691i −0.111073 + 0.993812i \(0.535429\pi\)
−0.805130 + 0.593099i \(0.797904\pi\)
\(522\) −6.03892 4.50065i −0.264316 0.196988i
\(523\) 7.88323 + 13.6542i 0.344710 + 0.597055i 0.985301 0.170827i \(-0.0546440\pi\)
−0.640591 + 0.767882i \(0.721311\pi\)
\(524\) −0.0778435 + 0.134829i −0.00340061 + 0.00589003i
\(525\) 37.3046 + 13.8996i 1.62811 + 0.606628i
\(526\) 2.67309 + 4.62992i 0.116552 + 0.201874i
\(527\) 22.3942 38.7878i 0.975505 1.68962i
\(528\) −2.42835 0.805361i −0.105680 0.0350488i
\(529\) −8.26942 14.3231i −0.359540 0.622742i
\(530\) −5.93818 10.2852i −0.257938 0.446762i
\(531\) 2.41714 20.5879i 0.104895 0.893440i
\(532\) −1.10074 2.07782i −0.0477233 0.0900848i
\(533\) −5.54944 + 9.61192i −0.240373 + 0.416338i
\(534\) 14.5927 + 4.83967i 0.631488 + 0.209433i
\(535\) 39.8268 1.72186
\(536\) −9.46472 −0.408814
\(537\) 0.116765 + 0.566231i 0.00503879 + 0.0244347i
\(538\) 9.24219 16.0079i 0.398459 0.690152i
\(539\) 4.50433 + 9.30701i 0.194015 + 0.400881i
\(540\) −19.1520 + 1.66066i −0.824170 + 0.0714636i
\(541\) −21.0963 36.5399i −0.907002 1.57097i −0.818207 0.574924i \(-0.805031\pi\)
−0.0887957 0.996050i \(-0.528302\pi\)
\(542\) −3.67742 6.36947i −0.157959 0.273592i
\(543\) −30.0796 + 26.7547i −1.29084 + 1.14815i
\(544\) 3.28799 5.69497i 0.140971 0.244170i
\(545\) −0.349814 0.605896i −0.0149844 0.0259537i
\(546\) 11.5927 + 4.31941i 0.496122 + 0.184854i
\(547\) 20.3356 35.2222i 0.869486 1.50599i 0.00696400 0.999976i \(-0.497783\pi\)
0.862522 0.506019i \(-0.168883\pi\)
\(548\) 1.70582 + 2.95456i 0.0728689 + 0.126213i
\(549\) −2.00550 + 17.0818i −0.0855927 + 0.729034i
\(550\) 6.41597 11.1128i 0.273578 0.473851i
\(551\) −2.23119 −0.0950519
\(552\) −2.19963 10.6667i −0.0936224 0.454004i
\(553\) 30.2799 + 1.10352i 1.28763 + 0.0469264i
\(554\) 4.54944 + 7.87987i 0.193287 + 0.334783i
\(555\) −13.2985 + 11.8285i −0.564490 + 0.502093i
\(556\) −6.75526 11.7005i −0.286487 0.496210i
\(557\) 6.68794 11.5838i 0.283377 0.490823i −0.688837 0.724916i \(-0.741879\pi\)
0.972214 + 0.234093i \(0.0752119\pi\)
\(558\) 2.38255 20.2933i 0.100861 0.859084i
\(559\) −0.0334206 −0.00141354
\(560\) −5.19963 + 8.29305i −0.219724 + 0.350445i
\(561\) −12.5709 + 11.1813i −0.530743 + 0.472076i
\(562\) 6.00433 10.3998i 0.253277 0.438689i
\(563\) −32.7614 −1.38073 −0.690364 0.723463i \(-0.742549\pi\)
−0.690364 + 0.723463i \(0.742549\pi\)
\(564\) 9.04325 8.04364i 0.380790 0.338698i
\(565\) 50.1803 2.11110
\(566\) 9.84294 0.413729
\(567\) −22.9480 6.35522i −0.963726 0.266894i
\(568\) −5.46472 −0.229295
\(569\) −16.7280 −0.701272 −0.350636 0.936512i \(-0.614035\pi\)
−0.350636 + 0.936512i \(0.614035\pi\)
\(570\) −4.25526 + 3.78490i −0.178233 + 0.158532i
\(571\) −27.4734 −1.14973 −0.574863 0.818250i \(-0.694945\pi\)
−0.574863 + 0.818250i \(0.694945\pi\)
\(572\) 1.99381 3.45338i 0.0833654 0.144393i
\(573\) 21.1229 18.7880i 0.882421 0.784881i
\(574\) −5.09201 9.61192i −0.212536 0.401194i
\(575\) 54.6253 2.27803
\(576\) 0.349814 2.97954i 0.0145756 0.124147i
\(577\) 1.41714 2.45455i 0.0589962 0.102184i −0.835019 0.550221i \(-0.814543\pi\)
0.894015 + 0.448037i \(0.147877\pi\)
\(578\) −13.1218 22.7276i −0.545794 0.945343i
\(579\) 18.5345 16.4858i 0.770268 0.685125i
\(580\) 4.64400 + 8.04364i 0.192831 + 0.333994i
\(581\) 6.29232 10.0358i 0.261050 0.416356i
\(582\) −4.60940 22.3524i −0.191066 0.926539i
\(583\) −4.74171 −0.196382
\(584\) −6.03273 + 10.4490i −0.249636 + 0.432383i
\(585\) 3.49381 29.7585i 0.144451 1.23036i
\(586\) 10.7101 + 18.5505i 0.442432 + 0.766315i
\(587\) −2.34795 + 4.06678i −0.0969105 + 0.167854i −0.910404 0.413720i \(-0.864229\pi\)
0.813494 + 0.581573i \(0.197563\pi\)
\(588\) −9.62178 + 7.37708i −0.396796 + 0.304226i
\(589\) −3.02654 5.24212i −0.124706 0.215998i
\(590\) −12.7818 + 22.1387i −0.526218 + 0.911437i
\(591\) −3.13712 + 2.79035i −0.129044 + 0.114780i
\(592\) −1.38874 2.40536i −0.0570767 0.0988597i
\(593\) 0.636024 + 1.10163i 0.0261184 + 0.0452383i 0.878789 0.477210i \(-0.158352\pi\)
−0.852671 + 0.522449i \(0.825019\pi\)
\(594\) −3.24907 + 6.95362i −0.133311 + 0.285310i
\(595\) 30.1323 + 56.8792i 1.23530 + 2.33182i
\(596\) −0.166896 + 0.289073i −0.00683634 + 0.0118409i
\(597\) −2.13781 10.3669i −0.0874946 0.424289i
\(598\) 16.9752 0.694169
\(599\) 43.8516 1.79173 0.895864 0.444329i \(-0.146558\pi\)
0.895864 + 0.444329i \(0.146558\pi\)
\(600\) 14.2818 + 4.73656i 0.583052 + 0.193369i
\(601\) −6.71634 + 11.6330i −0.273965 + 0.474522i −0.969874 0.243609i \(-0.921669\pi\)
0.695908 + 0.718131i \(0.255002\pi\)
\(602\) 0.0173990 0.0277502i 0.000709131 0.00113101i
\(603\) −3.31089 + 28.2005i −0.134830 + 1.14841i
\(604\) 9.95489 + 17.2424i 0.405059 + 0.701582i
\(605\) 16.3120 + 28.2532i 0.663177 + 1.14866i
\(606\) 8.63849 + 2.86496i 0.350915 + 0.116381i
\(607\) 2.29232 3.97042i 0.0930425 0.161154i −0.815747 0.578408i \(-0.803674\pi\)
0.908790 + 0.417254i \(0.137007\pi\)
\(608\) −0.444368 0.769668i −0.0180215 0.0312142i
\(609\) 1.91164 + 11.3447i 0.0774634 + 0.459711i
\(610\) 10.6051 18.3685i 0.429387 0.743720i
\(611\) 9.43199 + 16.3367i 0.381577 + 0.660911i
\(612\) −15.8182 11.7889i −0.639412 0.476537i
\(613\) −11.0538 + 19.1457i −0.446458 + 0.773287i −0.998152 0.0607587i \(-0.980648\pi\)
0.551695 + 0.834046i \(0.313981\pi\)
\(614\) −5.68725 −0.229519
\(615\) −19.6847 + 17.5088i −0.793764 + 0.706023i
\(616\) 1.82946 + 3.45338i 0.0737111 + 0.139141i
\(617\) 6.00433 + 10.3998i 0.241725 + 0.418680i 0.961206 0.275832i \(-0.0889534\pi\)
−0.719481 + 0.694513i \(0.755620\pi\)
\(618\) −0.582863 2.82648i −0.0234462 0.113698i
\(619\) 8.78180 + 15.2105i 0.352970 + 0.611363i 0.986768 0.162136i \(-0.0518383\pi\)
−0.633798 + 0.773499i \(0.718505\pi\)
\(620\) −12.5989 + 21.8219i −0.505983 + 0.876389i
\(621\) −32.5512 + 2.82251i −1.30624 + 0.113264i
\(622\) −11.7207 −0.469956
\(623\) −10.9938 20.7524i −0.440458 0.831429i
\(624\) 4.43818 + 1.47192i 0.177669 + 0.0589240i
\(625\) −3.51602 + 6.08993i −0.140641 + 0.243597i
\(626\) −26.7738 −1.07009
\(627\) 0.459219 + 2.22690i 0.0183394 + 0.0889337i
\(628\) −6.96286 −0.277848
\(629\) −18.2646 −0.728258
\(630\) 22.8905 + 18.3935i 0.911980 + 0.732815i
\(631\) −44.9381 −1.78896 −0.894479 0.447110i \(-0.852453\pi\)
−0.894479 + 0.447110i \(0.852453\pi\)
\(632\) 11.4523 0.455550
\(633\) −18.8156 6.24020i −0.747854 0.248026i
\(634\) 1.90249 0.0755576
\(635\) 5.28435 9.15276i 0.209703 0.363216i
\(636\) −1.12296 5.44556i −0.0445281 0.215931i
\(637\) −8.23236 17.0100i −0.326178 0.673960i
\(638\) 3.70829 0.146813
\(639\) −1.91164 + 16.2823i −0.0756232 + 0.644119i
\(640\) −1.84981 + 3.20397i −0.0731203 + 0.126648i
\(641\) 14.4920 + 25.1008i 0.572398 + 0.991422i 0.996319 + 0.0857228i \(0.0273199\pi\)
−0.423921 + 0.905699i \(0.639347\pi\)
\(642\) 17.6978 + 5.86946i 0.698475 + 0.231649i
\(643\) 6.03087 + 10.4458i 0.237834 + 0.411941i 0.960093 0.279682i \(-0.0902291\pi\)
−0.722258 + 0.691623i \(0.756896\pi\)
\(644\) −8.83743 + 14.0951i −0.348244 + 0.555425i
\(645\) −0.0752956 0.0249718i −0.00296476 0.000983262i
\(646\) −5.84431 −0.229941
\(647\) 18.8825 32.7055i 0.742349 1.28579i −0.209073 0.977900i \(-0.567045\pi\)
0.951423 0.307887i \(-0.0996219\pi\)
\(648\) −8.75526 2.08457i −0.343939 0.0818895i
\(649\) 5.10322 + 8.83903i 0.200319 + 0.346962i
\(650\) −11.7262 + 20.3103i −0.459938 + 0.796636i
\(651\) −24.0611 + 19.8801i −0.943027 + 0.779163i
\(652\) 4.03706 + 6.99240i 0.158104 + 0.273843i
\(653\) −18.7040 + 32.3962i −0.731942 + 1.26776i 0.224109 + 0.974564i \(0.428053\pi\)
−0.956052 + 0.293198i \(0.905281\pi\)
\(654\) −0.0661525 0.320794i −0.00258677 0.0125441i
\(655\) −0.287992 0.498817i −0.0112528 0.0194904i
\(656\) −2.05563 3.56046i −0.0802589 0.139013i
\(657\) 29.0228 + 21.6299i 1.13229 + 0.843864i
\(658\) −18.4752 0.673310i −0.720240 0.0262484i
\(659\) 14.9356 25.8693i 0.581810 1.00772i −0.413455 0.910524i \(-0.635678\pi\)
0.995265 0.0971993i \(-0.0309884\pi\)
\(660\) 7.07234 6.29059i 0.275291 0.244861i
\(661\) 5.60803 0.218127 0.109063 0.994035i \(-0.465215\pi\)
0.109063 + 0.994035i \(0.465215\pi\)
\(662\) 5.56732 0.216380
\(663\) 22.9752 20.4356i 0.892284 0.793654i
\(664\) 2.23855 3.87728i 0.0868726 0.150468i
\(665\) 8.69344 + 0.316823i 0.337117 + 0.0122859i
\(666\) −7.65266 + 3.29636i −0.296534 + 0.127731i
\(667\) 7.89307 + 13.6712i 0.305621 + 0.529351i
\(668\) 9.74288 + 16.8752i 0.376963 + 0.652920i
\(669\) −2.52654 12.2520i −0.0976818 0.473689i
\(670\) 17.5080 30.3247i 0.676392 1.17155i
\(671\) −4.23414 7.33375i −0.163457 0.283116i
\(672\) −3.53273 + 2.91887i −0.136278 + 0.112598i
\(673\) −4.72253 + 8.17966i −0.182040 + 0.315303i −0.942575 0.333994i \(-0.891603\pi\)
0.760535 + 0.649297i \(0.224937\pi\)
\(674\) −16.8869 29.2489i −0.650458 1.12663i
\(675\) 19.1087 40.8962i 0.735495 1.57410i
\(676\) 2.85600 4.94674i 0.109846 0.190259i
\(677\) 11.0617 0.425137 0.212569 0.977146i \(-0.431817\pi\)
0.212569 + 0.977146i \(0.431817\pi\)
\(678\) 22.2985 + 7.39530i 0.856369 + 0.284015i
\(679\) −18.5192 + 29.5368i −0.710701 + 1.13352i
\(680\) 12.1643 + 21.0693i 0.466481 + 0.807970i
\(681\) 22.4491 + 7.44524i 0.860252 + 0.285302i
\(682\) 5.03018 + 8.71253i 0.192616 + 0.333620i
\(683\) −4.41961 + 7.65499i −0.169112 + 0.292910i −0.938108 0.346343i \(-0.887423\pi\)
0.768996 + 0.639253i \(0.220757\pi\)
\(684\) −2.44870 + 1.05477i −0.0936283 + 0.0403301i
\(685\) −12.6218 −0.482254
\(686\) 18.4098 + 2.01993i 0.702889 + 0.0771213i
\(687\) −6.07784 29.4734i −0.231884 1.12448i
\(688\) 0.00618986 0.0107211i 0.000235986 0.000408740i
\(689\) 8.66621 0.330156
\(690\) 38.2447 + 12.6838i 1.45595 + 0.482865i
\(691\) 25.0617 0.953394 0.476697 0.879068i \(-0.341834\pi\)
0.476697 + 0.879068i \(0.341834\pi\)
\(692\) 22.5636 0.857740
\(693\) 10.9294 4.24290i 0.415175 0.161175i
\(694\) −30.4065 −1.15422
\(695\) 49.9839 1.89600
\(696\) 0.878215 + 4.25874i 0.0332887 + 0.161427i
\(697\) −27.0356 −1.02405
\(698\) −6.29782 + 10.9082i −0.238376 + 0.412880i
\(699\) −25.0581 8.31052i −0.947785 0.314333i
\(700\) −10.7596 20.3103i −0.406674 0.767658i
\(701\) −43.4858 −1.64243 −0.821217 0.570616i \(-0.806705\pi\)
−0.821217 + 0.570616i \(0.806705\pi\)
\(702\) 5.93818 12.7088i 0.224122 0.479663i
\(703\) −1.23422 + 2.13773i −0.0465495 + 0.0806260i
\(704\) 0.738550 + 1.27921i 0.0278351 + 0.0482119i
\(705\) 9.04325 + 43.8536i 0.340589 + 1.65162i
\(706\) 3.76578 + 6.52252i 0.141727 + 0.245478i
\(707\) −6.50805 12.2849i −0.244760 0.462021i
\(708\) −8.94251 + 7.95403i −0.336080 + 0.298931i
\(709\) −22.7403 −0.854031 −0.427016 0.904244i \(-0.640435\pi\)
−0.427016 + 0.904244i \(0.640435\pi\)
\(710\) 10.1087 17.5088i 0.379373 0.657094i
\(711\) 4.00619 34.1227i 0.150244 1.27970i
\(712\) −4.43818 7.68715i −0.166328 0.288088i
\(713\) −21.4134 + 37.0891i −0.801939 + 1.38900i
\(714\) 5.00728 + 29.7160i 0.187393 + 1.11209i
\(715\) 7.37636 + 12.7762i 0.275860 + 0.477804i
\(716\) 0.166896 0.289073i 0.00623721 0.0108032i
\(717\) −31.1545 10.3324i −1.16349 0.385870i
\(718\) −3.44801 5.97213i −0.128679 0.222878i
\(719\) 6.06182 + 10.4994i 0.226068 + 0.391561i 0.956639 0.291275i \(-0.0940796\pi\)
−0.730571 + 0.682836i \(0.760746\pi\)
\(720\) 8.89926 + 6.63238i 0.331656 + 0.247174i
\(721\) −2.34176 + 3.73495i −0.0872119 + 0.139097i
\(722\) 9.10507 15.7705i 0.338856 0.586915i
\(723\) −40.2868 13.3611i −1.49828 0.496905i
\(724\) 23.2422 0.863789
\(725\) −21.8095 −0.809985
\(726\) 3.08472 + 14.9588i 0.114485 + 0.555172i
\(727\) 23.0908 39.9945i 0.856392 1.48331i −0.0189562 0.999820i \(-0.506034\pi\)
0.875348 0.483494i \(-0.160632\pi\)
\(728\) −3.34362 6.31159i −0.123923 0.233923i
\(729\) −9.27375 + 25.3574i −0.343472 + 0.939163i
\(730\) −22.3189 38.6574i −0.826058 1.43077i
\(731\) −0.0407044 0.0705021i −0.00150551 0.00260761i
\(732\) 7.41961 6.59947i 0.274237 0.243923i
\(733\) 18.0149 31.2026i 0.665394 1.15250i −0.313785 0.949494i \(-0.601597\pi\)
0.979178 0.203002i \(-0.0650696\pi\)
\(734\) −11.5618 20.0257i −0.426755 0.739161i
\(735\) −5.83743 44.4741i −0.215317 1.64045i
\(736\) −3.14400 + 5.44556i −0.115889 + 0.200726i
\(737\) −6.99017 12.1073i −0.257486 0.445979i
\(738\) −11.3276 + 4.87933i −0.416975 + 0.179611i
\(739\) 23.2119 40.2042i 0.853865 1.47894i −0.0238296 0.999716i \(-0.507586\pi\)
0.877694 0.479221i \(-0.159081\pi\)
\(740\) 10.2756 0.377739
\(741\) −0.839294 4.07000i −0.0308322 0.149515i
\(742\) −4.51169 + 7.19583i −0.165629 + 0.264167i
\(743\) 0.598884 + 1.03730i 0.0219709 + 0.0380548i 0.876802 0.480852i \(-0.159673\pi\)
−0.854831 + 0.518907i \(0.826339\pi\)
\(744\) −8.81453 + 7.84020i −0.323157 + 0.287436i
\(745\) −0.617454 1.06946i −0.0226218 0.0391820i
\(746\) −14.5822 + 25.2571i −0.533891 + 0.924727i
\(747\) −10.7694 8.02617i −0.394033 0.293662i
\(748\) 9.71339 0.355157
\(749\) −13.3331 25.1682i −0.487181 0.919626i
\(750\) −17.6545 + 15.7030i −0.644652 + 0.573394i
\(751\) −24.0600 + 41.6731i −0.877961 + 1.52067i −0.0243853 + 0.999703i \(0.507763\pi\)
−0.853575 + 0.520970i \(0.825570\pi\)
\(752\) −6.98762 −0.254812
\(753\) 15.6902 13.9559i 0.571783 0.508580i
\(754\) −6.77747 −0.246821
\(755\) −73.6588 −2.68072
\(756\) 7.46108 + 11.5470i 0.271357 + 0.419959i
\(757\) 49.6006 1.80276 0.901382 0.433025i \(-0.142554\pi\)
0.901382 + 0.433025i \(0.142554\pi\)
\(758\) −13.5622 −0.492602
\(759\) 12.0204 10.6917i 0.436311 0.388083i
\(760\) 3.28799 0.119268
\(761\) 18.7701 32.5108i 0.680416 1.17852i −0.294438 0.955671i \(-0.595132\pi\)
0.974854 0.222845i \(-0.0715342\pi\)
\(762\) 3.69708 3.28842i 0.133931 0.119127i
\(763\) −0.265781 + 0.423902i −0.00962191 + 0.0153463i
\(764\) −16.3214 −0.590488
\(765\) 67.0319 28.8738i 2.42354 1.04393i
\(766\) 1.41783 2.45575i 0.0512281 0.0887297i
\(767\) −9.32691 16.1547i −0.336775 0.583312i