Properties

Label 126.2.e.d.121.3
Level $126$
Weight $2$
Character 126.121
Analytic conductor $1.006$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(25,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.3
Root \(0.500000 - 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 126.121
Dual form 126.2.e.d.25.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(1.09097 + 1.34528i) q^{3} +1.00000 q^{4} +(-0.880438 - 1.52496i) q^{5} +(1.09097 + 1.34528i) q^{6} +(-0.710533 - 2.54856i) q^{7} +1.00000 q^{8} +(-0.619562 + 2.93533i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(1.09097 + 1.34528i) q^{3} +1.00000 q^{4} +(-0.880438 - 1.52496i) q^{5} +(1.09097 + 1.34528i) q^{6} +(-0.710533 - 2.54856i) q^{7} +1.00000 q^{8} +(-0.619562 + 2.93533i) q^{9} +(-0.880438 - 1.52496i) q^{10} +(-3.06238 + 5.30420i) q^{11} +(1.09097 + 1.34528i) q^{12} +(-0.380438 + 0.658939i) q^{13} +(-0.710533 - 2.54856i) q^{14} +(1.09097 - 2.84813i) q^{15} +1.00000 q^{16} +(-3.42107 - 5.92546i) q^{17} +(-0.619562 + 2.93533i) q^{18} +(0.971410 - 1.68253i) q^{19} +(-0.880438 - 1.52496i) q^{20} +(2.65335 - 3.73627i) q^{21} +(-3.06238 + 5.30420i) q^{22} +(0.210533 + 0.364654i) q^{23} +(1.09097 + 1.34528i) q^{24} +(0.949657 - 1.64485i) q^{25} +(-0.380438 + 0.658939i) q^{26} +(-4.62476 + 2.36887i) q^{27} +(-0.710533 - 2.54856i) q^{28} +(0.732287 + 1.26836i) q^{29} +(1.09097 - 2.84813i) q^{30} +7.70370 q^{31} +1.00000 q^{32} +(-10.4766 + 1.66697i) q^{33} +(-3.42107 - 5.92546i) q^{34} +(-3.26088 + 3.32738i) q^{35} +(-0.619562 + 2.93533i) q^{36} +(1.44282 - 2.49904i) q^{37} +(0.971410 - 1.68253i) q^{38} +(-1.30150 + 0.207087i) q^{39} +(-0.880438 - 1.52496i) q^{40} +(-3.47141 + 6.01266i) q^{41} +(2.65335 - 3.73627i) q^{42} +(4.33009 + 7.49994i) q^{43} +(-3.06238 + 5.30420i) q^{44} +(5.02175 - 1.63957i) q^{45} +(0.210533 + 0.364654i) q^{46} +1.66019 q^{47} +(1.09097 + 1.34528i) q^{48} +(-5.99028 + 3.62167i) q^{49} +(0.949657 - 1.64485i) q^{50} +(4.23912 - 11.0668i) q^{51} +(-0.380438 + 0.658939i) q^{52} +(-0.112725 - 0.195246i) q^{53} +(-4.62476 + 2.36887i) q^{54} +10.7850 q^{55} +(-0.710533 - 2.54856i) q^{56} +(3.32326 - 0.528775i) q^{57} +(0.732287 + 1.26836i) q^{58} +1.98633 q^{59} +(1.09097 - 2.84813i) q^{60} -10.3502 q^{61} +7.70370 q^{62} +(7.92107 - 0.506659i) q^{63} +1.00000 q^{64} +1.33981 q^{65} +(-10.4766 + 1.66697i) q^{66} +6.78495 q^{67} +(-3.42107 - 5.92546i) q^{68} +(-0.260877 + 0.681054i) q^{69} +(-3.26088 + 3.32738i) q^{70} +10.7850 q^{71} +(-0.619562 + 2.93533i) q^{72} +(0.153353 + 0.265616i) q^{73} +(1.44282 - 2.49904i) q^{74} +(3.24884 - 0.516934i) q^{75} +(0.971410 - 1.68253i) q^{76} +(15.6940 + 4.03584i) q^{77} +(-1.30150 + 0.207087i) q^{78} -13.4451 q^{79} +(-0.880438 - 1.52496i) q^{80} +(-8.23229 - 3.63723i) q^{81} +(-3.47141 + 6.01266i) q^{82} +(-1.56238 - 2.70612i) q^{83} +(2.65335 - 3.73627i) q^{84} +(-6.02408 + 10.4340i) q^{85} +(4.33009 + 7.49994i) q^{86} +(-0.907394 + 2.36887i) q^{87} +(-3.06238 + 5.30420i) q^{88} +(1.30150 - 2.25427i) q^{89} +(5.02175 - 1.63957i) q^{90} +(1.94966 + 0.501371i) q^{91} +(0.210533 + 0.364654i) q^{92} +(8.40451 + 10.3636i) q^{93} +1.66019 q^{94} -3.42107 q^{95} +(1.09097 + 1.34528i) q^{96} +(-1.81806 - 3.14897i) q^{97} +(-5.99028 + 3.62167i) q^{98} +(-13.6722 - 12.2754i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} - 2 q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} + 4 q^{7} + 6 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 6 q^{2} - 2 q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} + 4 q^{7} + 6 q^{8} - 4 q^{9} - 5 q^{10} - q^{11} - 2 q^{12} - 2 q^{13} + 4 q^{14} - 2 q^{15} + 6 q^{16} - 4 q^{17} - 4 q^{18} - 3 q^{19} - 5 q^{20} - 10 q^{21} - q^{22} - 7 q^{23} - 2 q^{24} - 2 q^{25} - 2 q^{26} + 7 q^{27} + 4 q^{28} - 5 q^{29} - 2 q^{30} + 28 q^{31} + 6 q^{32} - 19 q^{33} - 4 q^{34} - 19 q^{35} - 4 q^{36} - 9 q^{37} - 3 q^{38} + 9 q^{39} - 5 q^{40} - 12 q^{41} - 10 q^{42} + 18 q^{43} - q^{44} + 29 q^{45} - 7 q^{46} - 6 q^{47} - 2 q^{48} - 12 q^{49} - 2 q^{50} + 26 q^{51} - 2 q^{52} + 9 q^{53} + 7 q^{54} + 14 q^{55} + 4 q^{56} + 2 q^{57} - 5 q^{58} - 8 q^{59} - 2 q^{60} - 8 q^{61} + 28 q^{62} + 31 q^{63} + 6 q^{64} + 24 q^{65} - 19 q^{66} - 10 q^{67} - 4 q^{68} - q^{69} - 19 q^{70} + 14 q^{71} - 4 q^{72} - 25 q^{73} - 9 q^{74} + 44 q^{75} - 3 q^{76} + 52 q^{77} + 9 q^{78} - 14 q^{79} - 5 q^{80} - 40 q^{81} - 12 q^{82} + 8 q^{83} - 10 q^{84} + 14 q^{85} + 18 q^{86} + 31 q^{87} - q^{88} - 9 q^{89} + 29 q^{90} + 4 q^{91} - 7 q^{92} - 6 q^{94} - 4 q^{95} - 2 q^{96} - 28 q^{97} - 12 q^{98} - 41 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.09097 + 1.34528i 0.629873 + 0.776698i
\(4\) 1.00000 0.500000
\(5\) −0.880438 1.52496i −0.393744 0.681985i 0.599196 0.800602i \(-0.295487\pi\)
−0.992940 + 0.118618i \(0.962154\pi\)
\(6\) 1.09097 + 1.34528i 0.445387 + 0.549209i
\(7\) −0.710533 2.54856i −0.268556 0.963264i
\(8\) 1.00000 0.353553
\(9\) −0.619562 + 2.93533i −0.206521 + 0.978442i
\(10\) −0.880438 1.52496i −0.278419 0.482236i
\(11\) −3.06238 + 5.30420i −0.923343 + 1.59928i −0.129138 + 0.991627i \(0.541221\pi\)
−0.794205 + 0.607650i \(0.792112\pi\)
\(12\) 1.09097 + 1.34528i 0.314936 + 0.388349i
\(13\) −0.380438 + 0.658939i −0.105515 + 0.182757i −0.913948 0.405831i \(-0.866982\pi\)
0.808434 + 0.588587i \(0.200316\pi\)
\(14\) −0.710533 2.54856i −0.189898 0.681130i
\(15\) 1.09097 2.84813i 0.281688 0.735384i
\(16\) 1.00000 0.250000
\(17\) −3.42107 5.92546i −0.829731 1.43714i −0.898250 0.439486i \(-0.855161\pi\)
0.0685191 0.997650i \(-0.478173\pi\)
\(18\) −0.619562 + 2.93533i −0.146032 + 0.691863i
\(19\) 0.971410 1.68253i 0.222857 0.385999i −0.732818 0.680425i \(-0.761795\pi\)
0.955674 + 0.294426i \(0.0951285\pi\)
\(20\) −0.880438 1.52496i −0.196872 0.340992i
\(21\) 2.65335 3.73627i 0.579009 0.815321i
\(22\) −3.06238 + 5.30420i −0.652902 + 1.13086i
\(23\) 0.210533 + 0.364654i 0.0438992 + 0.0760357i 0.887140 0.461500i \(-0.152689\pi\)
−0.843241 + 0.537536i \(0.819355\pi\)
\(24\) 1.09097 + 1.34528i 0.222694 + 0.274604i
\(25\) 0.949657 1.64485i 0.189931 0.328971i
\(26\) −0.380438 + 0.658939i −0.0746101 + 0.129228i
\(27\) −4.62476 + 2.36887i −0.890036 + 0.455890i
\(28\) −0.710533 2.54856i −0.134278 0.481632i
\(29\) 0.732287 + 1.26836i 0.135982 + 0.235528i 0.925972 0.377592i \(-0.123248\pi\)
−0.789990 + 0.613120i \(0.789914\pi\)
\(30\) 1.09097 2.84813i 0.199183 0.519995i
\(31\) 7.70370 1.38362 0.691812 0.722077i \(-0.256813\pi\)
0.691812 + 0.722077i \(0.256813\pi\)
\(32\) 1.00000 0.176777
\(33\) −10.4766 + 1.66697i −1.82374 + 0.290182i
\(34\) −3.42107 5.92546i −0.586708 1.01621i
\(35\) −3.26088 + 3.32738i −0.551189 + 0.562431i
\(36\) −0.619562 + 2.93533i −0.103260 + 0.489221i
\(37\) 1.44282 2.49904i 0.237198 0.410839i −0.722711 0.691150i \(-0.757104\pi\)
0.959909 + 0.280311i \(0.0904376\pi\)
\(38\) 0.971410 1.68253i 0.157584 0.272943i
\(39\) −1.30150 + 0.207087i −0.208408 + 0.0331604i
\(40\) −0.880438 1.52496i −0.139210 0.241118i
\(41\) −3.47141 + 6.01266i −0.542143 + 0.939020i 0.456638 + 0.889653i \(0.349054\pi\)
−0.998781 + 0.0493667i \(0.984280\pi\)
\(42\) 2.65335 3.73627i 0.409421 0.576519i
\(43\) 4.33009 + 7.49994i 0.660333 + 1.14373i 0.980528 + 0.196379i \(0.0629183\pi\)
−0.320195 + 0.947352i \(0.603748\pi\)
\(44\) −3.06238 + 5.30420i −0.461671 + 0.799638i
\(45\) 5.02175 1.63957i 0.748599 0.244412i
\(46\) 0.210533 + 0.364654i 0.0310414 + 0.0537654i
\(47\) 1.66019 0.242164 0.121082 0.992643i \(-0.461364\pi\)
0.121082 + 0.992643i \(0.461364\pi\)
\(48\) 1.09097 + 1.34528i 0.157468 + 0.194175i
\(49\) −5.99028 + 3.62167i −0.855755 + 0.517381i
\(50\) 0.949657 1.64485i 0.134302 0.232617i
\(51\) 4.23912 11.0668i 0.593596 1.54966i
\(52\) −0.380438 + 0.658939i −0.0527573 + 0.0913783i
\(53\) −0.112725 0.195246i −0.0154840 0.0268190i 0.858180 0.513350i \(-0.171596\pi\)
−0.873664 + 0.486531i \(0.838262\pi\)
\(54\) −4.62476 + 2.36887i −0.629351 + 0.322363i
\(55\) 10.7850 1.45424
\(56\) −0.710533 2.54856i −0.0949490 0.340565i
\(57\) 3.32326 0.528775i 0.440176 0.0700379i
\(58\) 0.732287 + 1.26836i 0.0961540 + 0.166544i
\(59\) 1.98633 0.258598 0.129299 0.991606i \(-0.458727\pi\)
0.129299 + 0.991606i \(0.458727\pi\)
\(60\) 1.09097 2.84813i 0.140844 0.367692i
\(61\) −10.3502 −1.32521 −0.662605 0.748969i \(-0.730549\pi\)
−0.662605 + 0.748969i \(0.730549\pi\)
\(62\) 7.70370 0.978370
\(63\) 7.92107 0.506659i 0.997961 0.0638331i
\(64\) 1.00000 0.125000
\(65\) 1.33981 0.166183
\(66\) −10.4766 + 1.66697i −1.28958 + 0.205190i
\(67\) 6.78495 0.828914 0.414457 0.910069i \(-0.363972\pi\)
0.414457 + 0.910069i \(0.363972\pi\)
\(68\) −3.42107 5.92546i −0.414865 0.718568i
\(69\) −0.260877 + 0.681054i −0.0314059 + 0.0819893i
\(70\) −3.26088 + 3.32738i −0.389749 + 0.397699i
\(71\) 10.7850 1.27994 0.639969 0.768401i \(-0.278947\pi\)
0.639969 + 0.768401i \(0.278947\pi\)
\(72\) −0.619562 + 2.93533i −0.0730160 + 0.345932i
\(73\) 0.153353 + 0.265616i 0.0179487 + 0.0310880i 0.874860 0.484375i \(-0.160953\pi\)
−0.856912 + 0.515463i \(0.827620\pi\)
\(74\) 1.44282 2.49904i 0.167724 0.290507i
\(75\) 3.24884 0.516934i 0.375144 0.0596904i
\(76\) 0.971410 1.68253i 0.111428 0.193000i
\(77\) 15.6940 + 4.03584i 1.78850 + 0.459927i
\(78\) −1.30150 + 0.207087i −0.147366 + 0.0234480i
\(79\) −13.4451 −1.51270 −0.756348 0.654169i \(-0.773018\pi\)
−0.756348 + 0.654169i \(0.773018\pi\)
\(80\) −0.880438 1.52496i −0.0984360 0.170496i
\(81\) −8.23229 3.63723i −0.914699 0.404137i
\(82\) −3.47141 + 6.01266i −0.383353 + 0.663987i
\(83\) −1.56238 2.70612i −0.171494 0.297036i 0.767449 0.641110i \(-0.221526\pi\)
−0.938942 + 0.344075i \(0.888193\pi\)
\(84\) 2.65335 3.73627i 0.289505 0.407661i
\(85\) −6.02408 + 10.4340i −0.653403 + 1.13173i
\(86\) 4.33009 + 7.49994i 0.466926 + 0.808740i
\(87\) −0.907394 + 2.36887i −0.0972828 + 0.253970i
\(88\) −3.06238 + 5.30420i −0.326451 + 0.565430i
\(89\) 1.30150 2.25427i 0.137959 0.238952i −0.788765 0.614695i \(-0.789279\pi\)
0.926724 + 0.375743i \(0.122612\pi\)
\(90\) 5.02175 1.63957i 0.529339 0.172825i
\(91\) 1.94966 + 0.501371i 0.204380 + 0.0525580i
\(92\) 0.210533 + 0.364654i 0.0219496 + 0.0380178i
\(93\) 8.40451 + 10.3636i 0.871508 + 1.07466i
\(94\) 1.66019 0.171236
\(95\) −3.42107 −0.350994
\(96\) 1.09097 + 1.34528i 0.111347 + 0.137302i
\(97\) −1.81806 3.14897i −0.184596 0.319729i 0.758845 0.651272i \(-0.225764\pi\)
−0.943440 + 0.331543i \(0.892431\pi\)
\(98\) −5.99028 + 3.62167i −0.605110 + 0.365844i
\(99\) −13.6722 12.2754i −1.37411 1.23372i
\(100\) 0.949657 1.64485i 0.0949657 0.164485i
\(101\) 4.00520 6.93721i 0.398532 0.690278i −0.595013 0.803716i \(-0.702853\pi\)
0.993545 + 0.113438i \(0.0361863\pi\)
\(102\) 4.23912 11.0668i 0.419736 1.09578i
\(103\) 3.41423 + 5.91362i 0.336414 + 0.582686i 0.983755 0.179514i \(-0.0574525\pi\)
−0.647341 + 0.762200i \(0.724119\pi\)
\(104\) −0.380438 + 0.658939i −0.0373051 + 0.0646142i
\(105\) −8.03379 0.756713i −0.784018 0.0738476i
\(106\) −0.112725 0.195246i −0.0109488 0.0189639i
\(107\) 1.77292 3.07078i 0.171394 0.296863i −0.767513 0.641033i \(-0.778506\pi\)
0.938908 + 0.344170i \(0.111840\pi\)
\(108\) −4.62476 + 2.36887i −0.445018 + 0.227945i
\(109\) 0.351848 + 0.609419i 0.0337010 + 0.0583718i 0.882384 0.470530i \(-0.155937\pi\)
−0.848683 + 0.528902i \(0.822604\pi\)
\(110\) 10.7850 1.02830
\(111\) 4.93598 0.785381i 0.468503 0.0745451i
\(112\) −0.710533 2.54856i −0.0671391 0.240816i
\(113\) 4.25116 7.36323i 0.399916 0.692674i −0.593799 0.804613i \(-0.702373\pi\)
0.993715 + 0.111939i \(0.0357061\pi\)
\(114\) 3.32326 0.528775i 0.311252 0.0495243i
\(115\) 0.370723 0.642111i 0.0345701 0.0598772i
\(116\) 0.732287 + 1.26836i 0.0679911 + 0.117764i
\(117\) −1.69850 1.52496i −0.157026 0.140983i
\(118\) 1.98633 0.182856
\(119\) −12.6706 + 12.9290i −1.16151 + 1.18520i
\(120\) 1.09097 2.84813i 0.0995916 0.259997i
\(121\) −13.2564 22.9607i −1.20512 2.08734i
\(122\) −10.3502 −0.937064
\(123\) −11.8759 + 1.88962i −1.07082 + 0.170381i
\(124\) 7.70370 0.691812
\(125\) −12.1488 −1.08663
\(126\) 7.92107 0.506659i 0.705665 0.0451368i
\(127\) −18.9532 −1.68183 −0.840913 0.541170i \(-0.817982\pi\)
−0.840913 + 0.541170i \(0.817982\pi\)
\(128\) 1.00000 0.0883883
\(129\) −5.36552 + 14.0074i −0.472408 + 1.23328i
\(130\) 1.33981 0.117509
\(131\) 3.64652 + 6.31595i 0.318598 + 0.551827i 0.980196 0.198031i \(-0.0634548\pi\)
−0.661598 + 0.749859i \(0.730121\pi\)
\(132\) −10.4766 + 1.66697i −0.911872 + 0.145091i
\(133\) −4.97825 1.28020i −0.431669 0.111007i
\(134\) 6.78495 0.586131
\(135\) 7.68427 + 4.96695i 0.661356 + 0.427487i
\(136\) −3.42107 5.92546i −0.293354 0.508104i
\(137\) 4.09097 7.08577i 0.349515 0.605378i −0.636648 0.771154i \(-0.719680\pi\)
0.986163 + 0.165776i \(0.0530129\pi\)
\(138\) −0.260877 + 0.681054i −0.0222073 + 0.0579752i
\(139\) −6.23229 + 10.7946i −0.528616 + 0.915589i 0.470828 + 0.882225i \(0.343955\pi\)
−0.999443 + 0.0333640i \(0.989378\pi\)
\(140\) −3.26088 + 3.32738i −0.275594 + 0.281215i
\(141\) 1.81122 + 2.23342i 0.152532 + 0.188088i
\(142\) 10.7850 0.905053
\(143\) −2.33009 4.03584i −0.194852 0.337494i
\(144\) −0.619562 + 2.93533i −0.0516301 + 0.244611i
\(145\) 1.28947 2.23342i 0.107084 0.185476i
\(146\) 0.153353 + 0.265616i 0.0126916 + 0.0219825i
\(147\) −11.4074 4.10748i −0.940866 0.338779i
\(148\) 1.44282 2.49904i 0.118599 0.205420i
\(149\) −4.41423 7.64567i −0.361628 0.626358i 0.626601 0.779340i \(-0.284446\pi\)
−0.988229 + 0.152982i \(0.951112\pi\)
\(150\) 3.24884 0.516934i 0.265267 0.0422075i
\(151\) 7.49316 12.9785i 0.609785 1.05618i −0.381491 0.924373i \(-0.624589\pi\)
0.991276 0.131806i \(-0.0420775\pi\)
\(152\) 0.971410 1.68253i 0.0787918 0.136471i
\(153\) 19.5127 6.37076i 1.57751 0.515045i
\(154\) 15.6940 + 4.03584i 1.26466 + 0.325217i
\(155\) −6.78263 11.7479i −0.544794 0.943611i
\(156\) −1.30150 + 0.207087i −0.104204 + 0.0165802i
\(157\) 18.9806 1.51481 0.757407 0.652943i \(-0.226466\pi\)
0.757407 + 0.652943i \(0.226466\pi\)
\(158\) −13.4451 −1.06964
\(159\) 0.139680 0.364654i 0.0110774 0.0289190i
\(160\) −0.880438 1.52496i −0.0696048 0.120559i
\(161\) 0.779752 0.795655i 0.0614530 0.0627064i
\(162\) −8.23229 3.63723i −0.646790 0.285768i
\(163\) −7.51887 + 13.0231i −0.588924 + 1.02005i 0.405450 + 0.914117i \(0.367115\pi\)
−0.994374 + 0.105929i \(0.966219\pi\)
\(164\) −3.47141 + 6.01266i −0.271072 + 0.469510i
\(165\) 11.7661 + 14.5088i 0.915988 + 1.12951i
\(166\) −1.56238 2.70612i −0.121264 0.210036i
\(167\) 0.572097 0.990901i 0.0442702 0.0766782i −0.843041 0.537849i \(-0.819237\pi\)
0.887311 + 0.461171i \(0.152570\pi\)
\(168\) 2.65335 3.73627i 0.204711 0.288260i
\(169\) 6.21053 + 10.7570i 0.477733 + 0.827458i
\(170\) −6.02408 + 10.4340i −0.462026 + 0.800252i
\(171\) 4.33693 + 3.89384i 0.331653 + 0.297769i
\(172\) 4.33009 + 7.49994i 0.330167 + 0.571865i
\(173\) 0.497677 0.0378377 0.0189188 0.999821i \(-0.493978\pi\)
0.0189188 + 0.999821i \(0.493978\pi\)
\(174\) −0.907394 + 2.36887i −0.0687893 + 0.179584i
\(175\) −4.86677 1.25153i −0.367893 0.0946068i
\(176\) −3.06238 + 5.30420i −0.230836 + 0.399819i
\(177\) 2.16703 + 2.67217i 0.162884 + 0.200852i
\(178\) 1.30150 2.25427i 0.0975519 0.168965i
\(179\) 4.41423 + 7.64567i 0.329935 + 0.571464i 0.982499 0.186270i \(-0.0596398\pi\)
−0.652564 + 0.757734i \(0.726306\pi\)
\(180\) 5.02175 1.63957i 0.374299 0.122206i
\(181\) 1.32941 0.0988140 0.0494070 0.998779i \(-0.484267\pi\)
0.0494070 + 0.998779i \(0.484267\pi\)
\(182\) 1.94966 + 0.501371i 0.144518 + 0.0371641i
\(183\) −11.2918 13.9239i −0.834713 1.02929i
\(184\) 0.210533 + 0.364654i 0.0155207 + 0.0268827i
\(185\) −5.08126 −0.373581
\(186\) 8.40451 + 10.3636i 0.616249 + 0.759899i
\(187\) 41.9064 3.06450
\(188\) 1.66019 0.121082
\(189\) 9.32326 + 10.1033i 0.678167 + 0.734908i
\(190\) −3.42107 −0.248190
\(191\) −16.1683 −1.16989 −0.584947 0.811071i \(-0.698885\pi\)
−0.584947 + 0.811071i \(0.698885\pi\)
\(192\) 1.09097 + 1.34528i 0.0787341 + 0.0970873i
\(193\) −14.1683 −1.01985 −0.509927 0.860218i \(-0.670328\pi\)
−0.509927 + 0.860218i \(0.670328\pi\)
\(194\) −1.81806 3.14897i −0.130529 0.226083i
\(195\) 1.46169 + 1.80242i 0.104674 + 0.129074i
\(196\) −5.99028 + 3.62167i −0.427877 + 0.258691i
\(197\) 15.8421 1.12871 0.564353 0.825534i \(-0.309126\pi\)
0.564353 + 0.825534i \(0.309126\pi\)
\(198\) −13.6722 12.2754i −0.971643 0.872373i
\(199\) −4.47141 7.74471i −0.316970 0.549008i 0.662884 0.748722i \(-0.269332\pi\)
−0.979854 + 0.199714i \(0.935999\pi\)
\(200\) 0.949657 1.64485i 0.0671509 0.116309i
\(201\) 7.40219 + 9.12767i 0.522110 + 0.643816i
\(202\) 4.00520 6.93721i 0.281805 0.488101i
\(203\) 2.71217 2.76748i 0.190357 0.194239i
\(204\) 4.23912 11.0668i 0.296798 0.774831i
\(205\) 12.2255 0.853862
\(206\) 3.41423 + 5.91362i 0.237881 + 0.412021i
\(207\) −1.20082 + 0.392058i −0.0834626 + 0.0272499i
\(208\) −0.380438 + 0.658939i −0.0263787 + 0.0456892i
\(209\) 5.94966 + 10.3051i 0.411546 + 0.712819i
\(210\) −8.03379 0.756713i −0.554384 0.0522181i
\(211\) 11.3856 19.7205i 0.783820 1.35762i −0.145882 0.989302i \(-0.546602\pi\)
0.929702 0.368314i \(-0.120065\pi\)
\(212\) −0.112725 0.195246i −0.00774199 0.0134095i
\(213\) 11.7661 + 14.5088i 0.806198 + 0.994126i
\(214\) 1.77292 3.07078i 0.121194 0.209914i
\(215\) 7.62476 13.2065i 0.520005 0.900674i
\(216\) −4.62476 + 2.36887i −0.314675 + 0.161181i
\(217\) −5.47373 19.6333i −0.371581 1.33280i
\(218\) 0.351848 + 0.609419i 0.0238302 + 0.0412751i
\(219\) −0.190024 + 0.496083i −0.0128406 + 0.0335222i
\(220\) 10.7850 0.727121
\(221\) 5.20602 0.350195
\(222\) 4.93598 0.785381i 0.331282 0.0527113i
\(223\) −6.44282 11.1593i −0.431443 0.747281i 0.565555 0.824711i \(-0.308662\pi\)
−0.996998 + 0.0774293i \(0.975329\pi\)
\(224\) −0.710533 2.54856i −0.0474745 0.170283i
\(225\) 4.23981 + 3.80664i 0.282654 + 0.253776i
\(226\) 4.25116 7.36323i 0.282783 0.489795i
\(227\) −10.9984 + 19.0497i −0.729987 + 1.26437i 0.226901 + 0.973918i \(0.427141\pi\)
−0.956888 + 0.290457i \(0.906193\pi\)
\(228\) 3.32326 0.528775i 0.220088 0.0350190i
\(229\) 1.89931 + 3.28971i 0.125510 + 0.217390i 0.921932 0.387351i \(-0.126610\pi\)
−0.796422 + 0.604741i \(0.793277\pi\)
\(230\) 0.370723 0.642111i 0.0244448 0.0423396i
\(231\) 11.6923 + 25.5158i 0.769300 + 1.67882i
\(232\) 0.732287 + 1.26836i 0.0480770 + 0.0832718i
\(233\) −3.33530 + 5.77690i −0.218503 + 0.378458i −0.954350 0.298689i \(-0.903451\pi\)
0.735848 + 0.677147i \(0.236784\pi\)
\(234\) −1.69850 1.52496i −0.111034 0.0996900i
\(235\) −1.46169 2.53173i −0.0953505 0.165152i
\(236\) 1.98633 0.129299
\(237\) −14.6683 18.0875i −0.952807 1.17491i
\(238\) −12.6706 + 12.9290i −0.821313 + 0.838064i
\(239\) −7.82038 + 13.5453i −0.505858 + 0.876172i 0.494119 + 0.869394i \(0.335491\pi\)
−0.999977 + 0.00677786i \(0.997843\pi\)
\(240\) 1.09097 2.84813i 0.0704219 0.183846i
\(241\) −10.7060 + 18.5434i −0.689635 + 1.19448i 0.282320 + 0.959320i \(0.408896\pi\)
−0.971956 + 0.235163i \(0.924437\pi\)
\(242\) −13.2564 22.9607i −0.852151 1.47597i
\(243\) −4.08809 15.0429i −0.262251 0.965000i
\(244\) −10.3502 −0.662605
\(245\) 10.7970 + 5.94631i 0.689794 + 0.379896i
\(246\) −11.8759 + 1.88962i −0.757181 + 0.120478i
\(247\) 0.739123 + 1.28020i 0.0470293 + 0.0814571i
\(248\) 7.70370 0.489185
\(249\) 1.93598 5.05415i 0.122688 0.320294i
\(250\) −12.1488 −0.768360
\(251\) −23.6030 −1.48981 −0.744904 0.667171i \(-0.767505\pi\)
−0.744904 + 0.667171i \(0.767505\pi\)
\(252\) 7.92107 0.506659i 0.498980 0.0319165i
\(253\) −2.57893 −0.162136
\(254\) −18.9532 −1.18923
\(255\) −20.6088 + 3.27913i −1.29057 + 0.205347i
\(256\) 1.00000 0.0625000
\(257\) −10.1300 17.5456i −0.631890 1.09447i −0.987165 0.159704i \(-0.948946\pi\)
0.355275 0.934762i \(-0.384387\pi\)
\(258\) −5.36552 + 14.0074i −0.334043 + 0.872064i
\(259\) −7.39411 1.90146i −0.459448 0.118151i
\(260\) 1.33981 0.0830915
\(261\) −4.17674 + 1.36368i −0.258534 + 0.0844094i
\(262\) 3.64652 + 6.31595i 0.225283 + 0.390201i
\(263\) 11.2443 19.4757i 0.693355 1.20093i −0.277377 0.960761i \(-0.589465\pi\)
0.970732 0.240165i \(-0.0772014\pi\)
\(264\) −10.4766 + 1.66697i −0.644791 + 0.102595i
\(265\) −0.198495 + 0.343803i −0.0121935 + 0.0211197i
\(266\) −4.97825 1.28020i −0.305236 0.0784940i
\(267\) 4.45254 0.708458i 0.272491 0.0433569i
\(268\) 6.78495 0.414457
\(269\) −12.6706 21.9461i −0.772540 1.33808i −0.936167 0.351556i \(-0.885653\pi\)
0.163627 0.986522i \(-0.447681\pi\)
\(270\) 7.68427 + 4.96695i 0.467650 + 0.302279i
\(271\) −6.87880 + 11.9144i −0.417858 + 0.723751i −0.995724 0.0923810i \(-0.970552\pi\)
0.577866 + 0.816132i \(0.303886\pi\)
\(272\) −3.42107 5.92546i −0.207433 0.359284i
\(273\) 1.45254 + 3.16982i 0.0879114 + 0.191846i
\(274\) 4.09097 7.08577i 0.247145 0.428067i
\(275\) 5.81642 + 10.0743i 0.350743 + 0.607505i
\(276\) −0.260877 + 0.681054i −0.0157029 + 0.0409946i
\(277\) 1.64132 2.84284i 0.0986171 0.170810i −0.812495 0.582968i \(-0.801891\pi\)
0.911112 + 0.412158i \(0.135225\pi\)
\(278\) −6.23229 + 10.7946i −0.373788 + 0.647419i
\(279\) −4.77292 + 22.6129i −0.285747 + 1.35380i
\(280\) −3.26088 + 3.32738i −0.194875 + 0.198849i
\(281\) 0.634479 + 1.09895i 0.0378498 + 0.0655578i 0.884330 0.466863i \(-0.154616\pi\)
−0.846480 + 0.532421i \(0.821282\pi\)
\(282\) 1.81122 + 2.23342i 0.107857 + 0.132998i
\(283\) −8.19235 −0.486984 −0.243492 0.969903i \(-0.578293\pi\)
−0.243492 + 0.969903i \(0.578293\pi\)
\(284\) 10.7850 0.639969
\(285\) −3.73229 4.60230i −0.221082 0.272616i
\(286\) −2.33009 4.03584i −0.137781 0.238644i
\(287\) 17.7902 + 4.57489i 1.05012 + 0.270047i
\(288\) −0.619562 + 2.93533i −0.0365080 + 0.172966i
\(289\) −14.9074 + 25.8204i −0.876906 + 1.51884i
\(290\) 1.28947 2.23342i 0.0757201 0.131151i
\(291\) 2.25280 5.88123i 0.132061 0.344764i
\(292\) 0.153353 + 0.265616i 0.00897433 + 0.0155440i
\(293\) 7.72545 13.3809i 0.451326 0.781719i −0.547143 0.837039i \(-0.684285\pi\)
0.998469 + 0.0553202i \(0.0176180\pi\)
\(294\) −11.4074 4.10748i −0.665293 0.239553i
\(295\) −1.74884 3.02908i −0.101821 0.176360i
\(296\) 1.44282 2.49904i 0.0838622 0.145254i
\(297\) 1.59781 31.7851i 0.0927142 1.84436i
\(298\) −4.41423 7.64567i −0.255709 0.442902i
\(299\) −0.320380 −0.0185280
\(300\) 3.24884 0.516934i 0.187572 0.0298452i
\(301\) 16.0374 16.3645i 0.924378 0.943231i
\(302\) 7.49316 12.9785i 0.431183 0.746831i
\(303\) 13.7021 2.18018i 0.787163 0.125248i
\(304\) 0.971410 1.68253i 0.0557142 0.0964998i
\(305\) 9.11273 + 15.7837i 0.521793 + 0.903772i
\(306\) 19.5127 6.37076i 1.11547 0.364192i
\(307\) 4.89931 0.279619 0.139809 0.990178i \(-0.455351\pi\)
0.139809 + 0.990178i \(0.455351\pi\)
\(308\) 15.6940 + 4.03584i 0.894248 + 0.229963i
\(309\) −4.23065 + 11.0447i −0.240673 + 0.628310i
\(310\) −6.78263 11.7479i −0.385228 0.667234i
\(311\) −7.69002 −0.436061 −0.218031 0.975942i \(-0.569963\pi\)
−0.218031 + 0.975942i \(0.569963\pi\)
\(312\) −1.30150 + 0.207087i −0.0736832 + 0.0117240i
\(313\) −1.72313 −0.0973969 −0.0486985 0.998814i \(-0.515507\pi\)
−0.0486985 + 0.998814i \(0.515507\pi\)
\(314\) 18.9806 1.07114
\(315\) −7.74665 11.6333i −0.436474 0.655460i
\(316\) −13.4451 −0.756348
\(317\) 33.2028 1.86485 0.932426 0.361361i \(-0.117688\pi\)
0.932426 + 0.361361i \(0.117688\pi\)
\(318\) 0.139680 0.364654i 0.00783288 0.0204488i
\(319\) −8.97017 −0.502233
\(320\) −0.880438 1.52496i −0.0492180 0.0852481i
\(321\) 6.06526 0.965064i 0.338530 0.0538646i
\(322\) 0.779752 0.795655i 0.0434539 0.0443401i
\(323\) −13.2930 −0.739644
\(324\) −8.23229 3.63723i −0.457349 0.202068i
\(325\) 0.722572 + 1.25153i 0.0400811 + 0.0694224i
\(326\) −7.51887 + 13.0231i −0.416432 + 0.721281i
\(327\) −0.435984 + 1.13819i −0.0241099 + 0.0629423i
\(328\) −3.47141 + 6.01266i −0.191677 + 0.331994i
\(329\) −1.17962 4.23109i −0.0650346 0.233267i
\(330\) 11.7661 + 14.5088i 0.647701 + 0.798683i
\(331\) 2.88891 0.158789 0.0793944 0.996843i \(-0.474701\pi\)
0.0793944 + 0.996843i \(0.474701\pi\)
\(332\) −1.56238 2.70612i −0.0857468 0.148518i
\(333\) 6.44158 + 5.78346i 0.352996 + 0.316931i
\(334\) 0.572097 0.990901i 0.0313037 0.0542197i
\(335\) −5.97373 10.3468i −0.326380 0.565307i
\(336\) 2.65335 3.73627i 0.144752 0.203830i
\(337\) −4.36156 + 7.55445i −0.237590 + 0.411517i −0.960022 0.279924i \(-0.909691\pi\)
0.722433 + 0.691441i \(0.243024\pi\)
\(338\) 6.21053 + 10.7570i 0.337808 + 0.585101i
\(339\) 14.5435 2.31407i 0.789895 0.125683i
\(340\) −6.02408 + 10.4340i −0.326701 + 0.565863i
\(341\) −23.5917 + 40.8620i −1.27756 + 2.21280i
\(342\) 4.33693 + 3.89384i 0.234514 + 0.210555i
\(343\) 13.4863 + 12.6933i 0.728193 + 0.685372i
\(344\) 4.33009 + 7.49994i 0.233463 + 0.404370i
\(345\) 1.26827 0.201799i 0.0682813 0.0108645i
\(346\) 0.497677 0.0267553
\(347\) 9.69467 0.520437 0.260219 0.965550i \(-0.416205\pi\)
0.260219 + 0.965550i \(0.416205\pi\)
\(348\) −0.907394 + 2.36887i −0.0486414 + 0.126985i
\(349\) 14.1992 + 24.5937i 0.760065 + 1.31647i 0.942817 + 0.333312i \(0.108166\pi\)
−0.182752 + 0.983159i \(0.558500\pi\)
\(350\) −4.86677 1.25153i −0.260140 0.0668971i
\(351\) 0.198495 3.94865i 0.0105949 0.210763i
\(352\) −3.06238 + 5.30420i −0.163225 + 0.282715i
\(353\) 2.19686 3.80507i 0.116927 0.202524i −0.801621 0.597832i \(-0.796029\pi\)
0.918548 + 0.395308i \(0.129362\pi\)
\(354\) 2.16703 + 2.67217i 0.115176 + 0.142024i
\(355\) −9.49549 16.4467i −0.503968 0.872898i
\(356\) 1.30150 2.25427i 0.0689796 0.119476i
\(357\) −31.2164 2.94031i −1.65215 0.155618i
\(358\) 4.41423 + 7.64567i 0.233299 + 0.404086i
\(359\) 16.0796 27.8507i 0.848650 1.46990i −0.0337633 0.999430i \(-0.510749\pi\)
0.882413 0.470475i \(-0.155917\pi\)
\(360\) 5.02175 1.63957i 0.264670 0.0864127i
\(361\) 7.61273 + 13.1856i 0.400670 + 0.693980i
\(362\) 1.32941 0.0698721
\(363\) 16.4263 42.8830i 0.862155 2.25077i
\(364\) 1.94966 + 0.501371i 0.102190 + 0.0262790i
\(365\) 0.270036 0.467717i 0.0141343 0.0244814i
\(366\) −11.2918 13.9239i −0.590231 0.727816i
\(367\) −17.3015 + 29.9671i −0.903131 + 1.56427i −0.0797249 + 0.996817i \(0.525404\pi\)
−0.823406 + 0.567452i \(0.807929\pi\)
\(368\) 0.210533 + 0.364654i 0.0109748 + 0.0190089i
\(369\) −15.4984 13.9149i −0.806813 0.724383i
\(370\) −5.08126 −0.264162
\(371\) −0.417500 + 0.426015i −0.0216755 + 0.0221176i
\(372\) 8.40451 + 10.3636i 0.435754 + 0.537330i
\(373\) −5.48796 9.50543i −0.284156 0.492172i 0.688248 0.725475i \(-0.258380\pi\)
−0.972404 + 0.233303i \(0.925047\pi\)
\(374\) 41.9064 2.16693
\(375\) −13.2540 16.3436i −0.684436 0.843980i
\(376\) 1.66019 0.0856178
\(377\) −1.11436 −0.0573925
\(378\) 9.32326 + 10.1033i 0.479537 + 0.519658i
\(379\) 33.9877 1.74583 0.872916 0.487871i \(-0.162226\pi\)
0.872916 + 0.487871i \(0.162226\pi\)
\(380\) −3.42107 −0.175497
\(381\) −20.6774 25.4974i −1.05934 1.30627i
\(382\) −16.1683 −0.827241
\(383\) 10.5120 + 18.2074i 0.537140 + 0.930354i 0.999056 + 0.0434304i \(0.0138287\pi\)
−0.461916 + 0.886923i \(0.652838\pi\)
\(384\) 1.09097 + 1.34528i 0.0556734 + 0.0686511i
\(385\) −7.66307 27.4861i −0.390546 1.40082i
\(386\) −14.1683 −0.721146
\(387\) −24.6975 + 8.06357i −1.25545 + 0.409894i
\(388\) −1.81806 3.14897i −0.0922978 0.159865i
\(389\) −6.86909 + 11.8976i −0.348277 + 0.603233i −0.985943 0.167080i \(-0.946566\pi\)
0.637667 + 0.770312i \(0.279900\pi\)
\(390\) 1.46169 + 1.80242i 0.0740158 + 0.0912691i
\(391\) 1.44050 2.49501i 0.0728491 0.126178i
\(392\) −5.99028 + 3.62167i −0.302555 + 0.182922i
\(393\) −4.51848 + 11.7961i −0.227927 + 0.595035i
\(394\) 15.8421 0.798115
\(395\) 11.8376 + 20.5034i 0.595615 + 1.03164i
\(396\) −13.6722 12.2754i −0.687055 0.616861i
\(397\) −3.57893 + 6.19889i −0.179622 + 0.311114i −0.941751 0.336311i \(-0.890821\pi\)
0.762129 + 0.647425i \(0.224154\pi\)
\(398\) −4.47141 7.74471i −0.224132 0.388207i
\(399\) −3.70890 8.09380i −0.185677 0.405197i
\(400\) 0.949657 1.64485i 0.0474828 0.0822427i
\(401\) 4.63968 + 8.03616i 0.231695 + 0.401307i 0.958307 0.285741i \(-0.0922397\pi\)
−0.726612 + 0.687048i \(0.758906\pi\)
\(402\) 7.40219 + 9.12767i 0.369188 + 0.455247i
\(403\) −2.93078 + 5.07626i −0.145993 + 0.252867i
\(404\) 4.00520 6.93721i 0.199266 0.345139i
\(405\) 1.70137 + 15.7563i 0.0845419 + 0.782937i
\(406\) 2.71217 2.76748i 0.134603 0.137348i
\(407\) 8.83693 + 15.3060i 0.438030 + 0.758691i
\(408\) 4.23912 11.0668i 0.209868 0.547889i
\(409\) 15.1683 0.750023 0.375011 0.927020i \(-0.377639\pi\)
0.375011 + 0.927020i \(0.377639\pi\)
\(410\) 12.2255 0.603772
\(411\) 13.9955 2.22687i 0.690346 0.109843i
\(412\) 3.41423 + 5.91362i 0.168207 + 0.291343i
\(413\) −1.41135 5.06227i −0.0694481 0.249098i
\(414\) −1.20082 + 0.392058i −0.0590170 + 0.0192686i
\(415\) −2.75116 + 4.76515i −0.135049 + 0.233912i
\(416\) −0.380438 + 0.658939i −0.0186525 + 0.0323071i
\(417\) −21.3211 + 3.39247i −1.04410 + 0.166130i
\(418\) 5.94966 + 10.3051i 0.291007 + 0.504039i
\(419\) −4.16827 + 7.21966i −0.203633 + 0.352703i −0.949696 0.313172i \(-0.898608\pi\)
0.746063 + 0.665875i \(0.231942\pi\)
\(420\) −8.03379 0.756713i −0.392009 0.0369238i
\(421\) −3.50232 6.06620i −0.170693 0.295649i 0.767969 0.640486i \(-0.221267\pi\)
−0.938662 + 0.344838i \(0.887934\pi\)
\(422\) 11.3856 19.7205i 0.554244 0.959979i
\(423\) −1.02859 + 4.87320i −0.0500118 + 0.236943i
\(424\) −0.112725 0.195246i −0.00547442 0.00948197i
\(425\) −12.9954 −0.630367
\(426\) 11.7661 + 14.5088i 0.570068 + 0.702953i
\(427\) 7.35417 + 26.3781i 0.355893 + 1.27653i
\(428\) 1.77292 3.07078i 0.0856971 0.148432i
\(429\) 2.88727 7.53762i 0.139399 0.363920i
\(430\) 7.62476 13.2065i 0.367699 0.636873i
\(431\) −1.72545 2.98857i −0.0831120 0.143954i 0.821473 0.570247i \(-0.193153\pi\)
−0.904585 + 0.426293i \(0.859819\pi\)
\(432\) −4.62476 + 2.36887i −0.222509 + 0.113972i
\(433\) 28.2599 1.35809 0.679043 0.734099i \(-0.262395\pi\)
0.679043 + 0.734099i \(0.262395\pi\)
\(434\) −5.47373 19.6333i −0.262748 0.942429i
\(435\) 4.41135 0.701905i 0.211508 0.0336538i
\(436\) 0.351848 + 0.609419i 0.0168505 + 0.0291859i
\(437\) 0.818057 0.0391330
\(438\) −0.190024 + 0.496083i −0.00907968 + 0.0237037i
\(439\) −28.8960 −1.37913 −0.689566 0.724222i \(-0.742199\pi\)
−0.689566 + 0.724222i \(0.742199\pi\)
\(440\) 10.7850 0.514152
\(441\) −6.91943 19.8273i −0.329497 0.944157i
\(442\) 5.20602 0.247625
\(443\) −13.7609 −0.653799 −0.326899 0.945059i \(-0.606004\pi\)
−0.326899 + 0.945059i \(0.606004\pi\)
\(444\) 4.93598 0.785381i 0.234251 0.0372725i
\(445\) −4.58358 −0.217283
\(446\) −6.44282 11.1593i −0.305076 0.528408i
\(447\) 5.46978 14.2796i 0.258711 0.675401i
\(448\) −0.710533 2.54856i −0.0335695 0.120408i
\(449\) −20.2003 −0.953309 −0.476655 0.879091i \(-0.658151\pi\)
−0.476655 + 0.879091i \(0.658151\pi\)
\(450\) 4.23981 + 3.80664i 0.199867 + 0.179447i
\(451\) −21.2616 36.8261i −1.00117 1.73407i
\(452\) 4.25116 7.36323i 0.199958 0.346337i
\(453\) 25.6346 4.07881i 1.20442 0.191639i
\(454\) −10.9984 + 19.0497i −0.516179 + 0.894048i
\(455\) −0.951980 3.41458i −0.0446295 0.160078i
\(456\) 3.32326 0.528775i 0.155626 0.0247621i
\(457\) 20.0298 0.936956 0.468478 0.883475i \(-0.344803\pi\)
0.468478 + 0.883475i \(0.344803\pi\)
\(458\) 1.89931 + 3.28971i 0.0887491 + 0.153718i
\(459\) 29.8583 + 19.2998i 1.39367 + 0.900837i
\(460\) 0.370723 0.642111i 0.0172851 0.0299386i
\(461\) 5.97661 + 10.3518i 0.278359 + 0.482131i 0.970977 0.239173i \(-0.0768763\pi\)
−0.692618 + 0.721304i \(0.743543\pi\)
\(462\) 11.6923 + 25.5158i 0.543977 + 1.18710i
\(463\) 6.64527 11.5100i 0.308832 0.534913i −0.669275 0.743015i \(-0.733395\pi\)
0.978107 + 0.208102i \(0.0667286\pi\)
\(464\) 0.732287 + 1.26836i 0.0339956 + 0.0588820i
\(465\) 8.40451 21.9411i 0.389750 1.01750i
\(466\) −3.33530 + 5.77690i −0.154505 + 0.267610i
\(467\) −5.61505 + 9.72555i −0.259833 + 0.450045i −0.966197 0.257804i \(-0.917001\pi\)
0.706364 + 0.707849i \(0.250334\pi\)
\(468\) −1.69850 1.52496i −0.0785130 0.0704915i
\(469\) −4.82094 17.2918i −0.222610 0.798463i
\(470\) −1.46169 2.53173i −0.0674230 0.116780i
\(471\) 20.7073 + 25.5342i 0.954140 + 1.17655i
\(472\) 1.98633 0.0914281
\(473\) −53.0416 −2.43886
\(474\) −14.6683 18.0875i −0.673736 0.830786i
\(475\) −1.84501 3.19565i −0.0846550 0.146627i
\(476\) −12.6706 + 12.9290i −0.580756 + 0.592601i
\(477\) 0.642950 0.209918i 0.0294387 0.00961150i
\(478\) −7.82038 + 13.5453i −0.357696 + 0.619547i
\(479\) 16.3135 28.2559i 0.745385 1.29104i −0.204630 0.978839i \(-0.565599\pi\)
0.950015 0.312205i \(-0.101068\pi\)
\(480\) 1.09097 2.84813i 0.0497958 0.129999i
\(481\) 1.09781 + 1.90146i 0.0500557 + 0.0866991i
\(482\) −10.7060 + 18.5434i −0.487646 + 0.844627i
\(483\) 1.92107 + 0.180948i 0.0874116 + 0.00823340i
\(484\) −13.2564 22.9607i −0.602562 1.04367i
\(485\) −3.20137 + 5.54494i −0.145367 + 0.251783i
\(486\) −4.08809 15.0429i −0.185440 0.682358i
\(487\) 1.84897 + 3.20251i 0.0837848 + 0.145120i 0.904873 0.425682i \(-0.139966\pi\)
−0.821088 + 0.570802i \(0.806632\pi\)
\(488\) −10.3502 −0.468532
\(489\) −25.7226 + 4.09280i −1.16321 + 0.185083i
\(490\) 10.7970 + 5.94631i 0.487758 + 0.268627i
\(491\) −18.7804 + 32.5287i −0.847549 + 1.46800i 0.0358393 + 0.999358i \(0.488590\pi\)
−0.883389 + 0.468641i \(0.844744\pi\)
\(492\) −11.8759 + 1.88962i −0.535408 + 0.0851906i
\(493\) 5.01040 8.67827i 0.225657 0.390850i
\(494\) 0.739123 + 1.28020i 0.0332547 + 0.0575989i
\(495\) −6.68194 + 31.6574i −0.300331 + 1.42289i
\(496\) 7.70370 0.345906
\(497\) −7.66307 27.4861i −0.343736 1.23292i
\(498\) 1.93598 5.05415i 0.0867535 0.226482i
\(499\) 15.8977 + 27.5356i 0.711678 + 1.23266i 0.964227 + 0.265078i \(0.0853977\pi\)
−0.252549 + 0.967584i \(0.581269\pi\)
\(500\) −12.1488 −0.543313
\(501\) 1.95718 0.311414i 0.0874404 0.0139129i
\(502\) −23.6030 −1.05345
\(503\) 30.8252 1.37443 0.687214 0.726455i \(-0.258834\pi\)
0.687214 + 0.726455i \(0.258834\pi\)
\(504\) 7.92107 0.506659i 0.352832 0.0225684i
\(505\) −14.1053 −0.627679
\(506\) −2.57893 −0.114648
\(507\) −7.69562 + 20.0904i −0.341774 + 0.892248i
\(508\) −18.9532 −0.840913
\(509\) −4.00808 6.94220i −0.177655 0.307708i 0.763422 0.645900i \(-0.223518\pi\)
−0.941077 + 0.338193i \(0.890184\pi\)
\(510\) −20.6088 + 3.27913i −0.912572 + 0.145202i
\(511\) 0.567974 0.579559i 0.0251257 0.0256382i
\(512\) 1.00000 0.0441942
\(513\) −0.506837 + 10.0825i −0.0223774 + 0.445151i
\(514\) −10.1300 17.5456i −0.446814 0.773904i
\(515\) 6.01204 10.4132i 0.264922 0.458858i
\(516\) −5.36552 + 14.0074i −0.236204 + 0.616642i
\(517\) −5.08414 + 8.80598i −0.223600 + 0.387287i
\(518\) −7.39411 1.90146i −0.324879 0.0835453i
\(519\) 0.542951 + 0.669515i 0.0238329 + 0.0293885i
\(520\) 1.33981 0.0587546
\(521\) 14.8646 + 25.7462i 0.651229 + 1.12796i 0.982825 + 0.184540i \(0.0590795\pi\)
−0.331596 + 0.943421i \(0.607587\pi\)
\(522\) −4.17674 + 1.36368i −0.182811 + 0.0596864i
\(523\) 13.4698 23.3303i 0.588992 1.02016i −0.405373 0.914152i \(-0.632858\pi\)
0.994365 0.106013i \(-0.0338084\pi\)
\(524\) 3.64652 + 6.31595i 0.159299 + 0.275914i
\(525\) −3.62584 7.91255i −0.158245 0.345332i
\(526\) 11.2443 19.4757i 0.490276 0.849183i
\(527\) −26.3549 45.6480i −1.14804 1.98846i
\(528\) −10.4766 + 1.66697i −0.455936 + 0.0725455i
\(529\) 11.4114 19.7650i 0.496146 0.859350i
\(530\) −0.198495 + 0.343803i −0.00862207 + 0.0149339i
\(531\) −1.23065 + 5.83052i −0.0534057 + 0.253023i
\(532\) −4.97825 1.28020i −0.215834 0.0555037i
\(533\) −2.64132 4.57489i −0.114408 0.198161i
\(534\) 4.45254 0.708458i 0.192680 0.0306580i
\(535\) −6.24377 −0.269942
\(536\) 6.78495 0.293065
\(537\) −5.46978 + 14.2796i −0.236038 + 0.616210i
\(538\) −12.6706 21.9461i −0.546268 0.946164i
\(539\) −0.865521 42.8646i −0.0372806 1.84631i
\(540\) 7.68427 + 4.96695i 0.330678 + 0.213744i
\(541\) 7.15568 12.3940i 0.307647 0.532859i −0.670201 0.742180i \(-0.733792\pi\)
0.977847 + 0.209321i \(0.0671252\pi\)
\(542\) −6.87880 + 11.9144i −0.295470 + 0.511769i
\(543\) 1.45034 + 1.78843i 0.0622403 + 0.0767487i
\(544\) −3.42107 5.92546i −0.146677 0.254052i
\(545\) 0.619562 1.07311i 0.0265391 0.0459671i
\(546\) 1.45254 + 3.16982i 0.0621628 + 0.135656i
\(547\) 1.02463 + 1.77471i 0.0438101 + 0.0758813i 0.887099 0.461579i \(-0.152717\pi\)
−0.843289 + 0.537461i \(0.819384\pi\)
\(548\) 4.09097 7.08577i 0.174758 0.302689i
\(549\) 6.41260 30.3813i 0.273683 1.29664i
\(550\) 5.81642 + 10.0743i 0.248013 + 0.429571i
\(551\) 2.84540 0.121218
\(552\) −0.260877 + 0.681054i −0.0111037 + 0.0289876i
\(553\) 9.55322 + 34.2657i 0.406244 + 1.45713i
\(554\) 1.64132 2.84284i 0.0697328 0.120781i
\(555\) −5.54351 6.83572i −0.235309 0.290160i
\(556\) −6.23229 + 10.7946i −0.264308 + 0.457795i
\(557\) 8.84338 + 15.3172i 0.374706 + 0.649010i 0.990283 0.139067i \(-0.0444103\pi\)
−0.615577 + 0.788077i \(0.711077\pi\)
\(558\) −4.77292 + 22.6129i −0.202054 + 0.957279i
\(559\) −6.58934 −0.278699
\(560\) −3.26088 + 3.32738i −0.137797 + 0.140608i
\(561\) 45.7187 + 56.3759i 1.93025 + 2.38019i
\(562\) 0.634479 + 1.09895i 0.0267639 + 0.0463564i
\(563\) 0.937063 0.0394925 0.0197462 0.999805i \(-0.493714\pi\)
0.0197462 + 0.999805i \(0.493714\pi\)
\(564\) 1.81122 + 2.23342i 0.0762661 + 0.0940440i
\(565\) −14.9715 −0.629858
\(566\) −8.19235 −0.344350
\(567\) −3.42038 + 23.5648i −0.143642 + 0.989630i
\(568\) 10.7850 0.452527
\(569\) 23.5264 0.986278 0.493139 0.869951i \(-0.335849\pi\)
0.493139 + 0.869951i \(0.335849\pi\)
\(570\) −3.73229 4.60230i −0.156328 0.192769i
\(571\) −0.484004 −0.0202549 −0.0101275 0.999949i \(-0.503224\pi\)
−0.0101275 + 0.999949i \(0.503224\pi\)
\(572\) −2.33009 4.03584i −0.0974262 0.168747i
\(573\) −17.6391 21.7509i −0.736885 0.908655i
\(574\) 17.7902 + 4.57489i 0.742547 + 0.190952i
\(575\) 0.799737 0.0333514
\(576\) −0.619562 + 2.93533i −0.0258151 + 0.122305i
\(577\) −2.23065 3.86360i −0.0928633 0.160844i 0.815852 0.578261i \(-0.196269\pi\)
−0.908715 + 0.417417i \(0.862935\pi\)
\(578\) −14.9074 + 25.8204i −0.620066 + 1.07399i
\(579\) −15.4572 19.0603i −0.642379 0.792119i
\(580\) 1.28947 2.23342i 0.0535422 0.0927378i
\(581\) −5.78659 + 5.90461i −0.240068 + 0.244965i
\(582\) 2.25280 5.88123i 0.0933814 0.243785i
\(583\) 1.38083 0.0571881
\(584\) 0.153353 + 0.265616i 0.00634581 + 0.0109913i
\(585\) −0.830095 + 3.93278i −0.0343202 + 0.162600i
\(586\) 7.72545 13.3809i 0.319135 0.552759i
\(587\) 8.31518 + 14.4023i 0.343204 + 0.594447i 0.985026 0.172407i \(-0.0551544\pi\)
−0.641822 + 0.766854i \(0.721821\pi\)
\(588\) −11.4074 4.10748i −0.470433 0.169390i
\(589\) 7.48345 12.9617i 0.308350 0.534078i
\(590\) −1.74884 3.02908i −0.0719985 0.124705i
\(591\) 17.2833 + 21.3121i 0.710941 + 0.876663i
\(592\) 1.44282 2.49904i 0.0592995 0.102710i
\(593\) 20.7632 35.9629i 0.852642 1.47682i −0.0261726 0.999657i \(-0.508332\pi\)
0.878815 0.477163i \(-0.158335\pi\)
\(594\) 1.59781 31.7851i 0.0655589 1.30416i
\(595\) 30.8720 + 7.93899i 1.26563 + 0.325467i
\(596\) −4.41423 7.64567i −0.180814 0.313179i
\(597\) 5.54063 14.4646i 0.226763 0.591995i
\(598\) −0.320380 −0.0131013
\(599\) 15.0766 0.616014 0.308007 0.951384i \(-0.400338\pi\)
0.308007 + 0.951384i \(0.400338\pi\)
\(600\) 3.24884 0.516934i 0.132633 0.0211037i
\(601\) −8.05555 13.9526i −0.328593 0.569139i 0.653640 0.756805i \(-0.273241\pi\)
−0.982233 + 0.187666i \(0.939908\pi\)
\(602\) 16.0374 16.3645i 0.653634 0.666965i
\(603\) −4.20370 + 19.9161i −0.171188 + 0.811044i
\(604\) 7.49316 12.9785i 0.304892 0.528089i
\(605\) −23.3428 + 40.4310i −0.949021 + 1.64375i
\(606\) 13.7021 2.18018i 0.556608 0.0885638i
\(607\) −9.78659 16.9509i −0.397225 0.688014i 0.596157 0.802868i \(-0.296694\pi\)
−0.993382 + 0.114853i \(0.963360\pi\)
\(608\) 0.971410 1.68253i 0.0393959 0.0682357i
\(609\) 6.68194 + 0.629380i 0.270766 + 0.0255038i
\(610\) 9.11273 + 15.7837i 0.368963 + 0.639063i
\(611\) −0.631600 + 1.09396i −0.0255518 + 0.0442570i
\(612\) 19.5127 6.37076i 0.788755 0.257523i
\(613\) −2.77579 4.80782i −0.112113 0.194186i 0.804509 0.593941i \(-0.202429\pi\)
−0.916622 + 0.399755i \(0.869095\pi\)
\(614\) 4.89931 0.197720
\(615\) 13.3376 + 16.4467i 0.537825 + 0.663194i
\(616\) 15.6940 + 4.03584i 0.632329 + 0.162609i
\(617\) 0.634479 1.09895i 0.0255431 0.0442420i −0.852971 0.521958i \(-0.825202\pi\)
0.878514 + 0.477716i \(0.158535\pi\)
\(618\) −4.23065 + 11.0447i −0.170182 + 0.444283i
\(619\) −2.25116 + 3.89913i −0.0904818 + 0.156719i −0.907714 0.419589i \(-0.862174\pi\)
0.817232 + 0.576309i \(0.195507\pi\)
\(620\) −6.78263 11.7479i −0.272397 0.471805i
\(621\) −1.83749 1.18771i −0.0737358 0.0476613i
\(622\) −7.69002 −0.308342
\(623\) −6.66991 1.71522i −0.267224 0.0687190i
\(624\) −1.30150 + 0.207087i −0.0521019 + 0.00829011i
\(625\) 5.94802 + 10.3023i 0.237921 + 0.412091i
\(626\) −1.72313 −0.0688700
\(627\) −7.37236 + 19.2465i −0.294424 + 0.768633i
\(628\) 18.9806 0.757407
\(629\) −19.7439 −0.787242
\(630\) −7.74665 11.6333i −0.308634 0.463480i
\(631\) −1.69905 −0.0676381 −0.0338191 0.999428i \(-0.510767\pi\)
−0.0338191 + 0.999428i \(0.510767\pi\)
\(632\) −13.4451 −0.534819
\(633\) 38.9510 6.19763i 1.54816 0.246334i
\(634\) 33.2028 1.31865
\(635\) 16.6871 + 28.9030i 0.662209 + 1.14698i
\(636\) 0.139680 0.364654i 0.00553868 0.0144595i
\(637\) −0.107523 5.32505i −0.00426023 0.210986i
\(638\) −8.97017 −0.355132
\(639\) −6.68194 + 31.6574i −0.264334 + 1.25235i
\(640\) −0.880438 1.52496i −0.0348024 0.0602795i
\(641\) 0.474289 0.821492i 0.0187333 0.0324470i −0.856507 0.516136i \(-0.827370\pi\)
0.875240 + 0.483689i \(0.160703\pi\)
\(642\) 6.06526 0.965064i 0.239377 0.0380880i
\(643\) −9.84897 + 17.0589i −0.388405 + 0.672738i −0.992235 0.124375i \(-0.960307\pi\)
0.603830 + 0.797113i \(0.293641\pi\)
\(644\) 0.779752 0.795655i 0.0307265 0.0313532i
\(645\) 26.0848 4.15044i 1.02709 0.163424i
\(646\) −13.2930 −0.523007
\(647\) 11.7271 + 20.3119i 0.461039 + 0.798543i 0.999013 0.0444181i \(-0.0141434\pi\)
−0.537974 + 0.842962i \(0.680810\pi\)
\(648\) −8.23229 3.63723i −0.323395 0.142884i
\(649\) −6.08289 + 10.5359i −0.238774 + 0.413569i
\(650\) 0.722572 + 1.25153i 0.0283416 + 0.0490891i
\(651\) 20.4406 28.7831i 0.801131 1.12810i
\(652\) −7.51887 + 13.0231i −0.294462 + 0.510023i
\(653\) −11.3954 19.7373i −0.445935 0.772382i 0.552182 0.833724i \(-0.313795\pi\)
−0.998117 + 0.0613420i \(0.980462\pi\)
\(654\) −0.435984 + 1.13819i −0.0170483 + 0.0445069i
\(655\) 6.42107 11.1216i 0.250892 0.434557i
\(656\) −3.47141 + 6.01266i −0.135536 + 0.234755i
\(657\) −0.874681 + 0.285577i −0.0341246 + 0.0111414i
\(658\) −1.17962 4.23109i −0.0459864 0.164945i
\(659\) −13.2398 22.9320i −0.515750 0.893305i −0.999833 0.0182828i \(-0.994180\pi\)
0.484083 0.875022i \(-0.339153\pi\)
\(660\) 11.7661 + 14.5088i 0.457994 + 0.564754i
\(661\) −26.7382 −1.03999 −0.519997 0.854168i \(-0.674067\pi\)
−0.519997 + 0.854168i \(0.674067\pi\)
\(662\) 2.88891 0.112281
\(663\) 5.67962 + 7.00356i 0.220578 + 0.271996i
\(664\) −1.56238 2.70612i −0.0606322 0.105018i
\(665\) 2.43078 + 8.71878i 0.0942617 + 0.338100i
\(666\) 6.44158 + 5.78346i 0.249606 + 0.224104i
\(667\) −0.308342 + 0.534063i −0.0119390 + 0.0206790i
\(668\) 0.572097 0.990901i 0.0221351 0.0383391i
\(669\) 7.98345 20.8419i 0.308658 0.805793i
\(670\) −5.97373 10.3468i −0.230785 0.399732i
\(671\) 31.6963 54.8996i 1.22362 2.11938i
\(672\) 2.65335 3.73627i 0.102355 0.144130i
\(673\) −10.3856 17.9885i −0.400337 0.693404i 0.593429 0.804886i \(-0.297774\pi\)
−0.993766 + 0.111482i \(0.964440\pi\)
\(674\) −4.36156 + 7.55445i −0.168001 + 0.290987i
\(675\) −0.495487 + 9.85667i −0.0190713 + 0.379384i
\(676\) 6.21053 + 10.7570i 0.238867 + 0.413729i
\(677\) −20.6979 −0.795486 −0.397743 0.917497i \(-0.630207\pi\)
−0.397743 + 0.917497i \(0.630207\pi\)
\(678\) 14.5435 2.31407i 0.558540 0.0888712i
\(679\) −6.73353 + 6.87087i −0.258409 + 0.263680i
\(680\) −6.02408 + 10.4340i −0.231013 + 0.400126i
\(681\) −37.6261 + 5.98682i −1.44184 + 0.229416i
\(682\) −23.5917 + 40.8620i −0.903371 + 1.56469i
\(683\) 14.2918 + 24.7541i 0.546860 + 0.947190i 0.998487 + 0.0549828i \(0.0175104\pi\)
−0.451627 + 0.892207i \(0.649156\pi\)
\(684\) 4.33693 + 3.89384i 0.165827 + 0.148885i
\(685\) −14.4074 −0.550478
\(686\) 13.4863 + 12.6933i 0.514910 + 0.484631i
\(687\) −2.35348 + 6.14409i −0.0897910 + 0.234412i
\(688\) 4.33009 + 7.49994i 0.165083 + 0.285933i
\(689\) 0.171540 0.00653515
\(690\) 1.26827 0.201799i 0.0482822 0.00768234i
\(691\) −6.69794 −0.254802 −0.127401 0.991851i \(-0.540663\pi\)
−0.127401 + 0.991851i \(0.540663\pi\)
\(692\) 0.497677 0.0189188
\(693\) −21.5699 + 43.5665i −0.819373 + 1.65495i
\(694\) 9.69467 0.368005
\(695\) 21.9486 0.832557
\(696\) −0.907394 + 2.36887i −0.0343947 + 0.0897919i
\(697\) 47.5037 1.79933
\(698\) 14.1992 + 24.5937i 0.537447 + 0.930886i
\(699\) −11.4103 + 1.81553i −0.431576 + 0.0686695i
\(700\) −4.86677 1.25153i −0.183946 0.0473034i
\(701\) −25.1442 −0.949683 −0.474842 0.880071i \(-0.657495\pi\)
−0.474842 + 0.880071i \(0.657495\pi\)
\(702\) 0.198495 3.94865i 0.00749171 0.149032i
\(703\) −2.80314 4.85518i −0.105722 0.183117i
\(704\) −3.06238 + 5.30420i −0.115418 + 0.199910i
\(705\) 1.81122 4.72844i 0.0682145 0.178083i
\(706\) 2.19686 3.80507i 0.0826799 0.143206i
\(707\) −20.5257 5.27836i −0.771949 0.198513i
\(708\) 2.16703 + 2.67217i 0.0814418 + 0.100426i
\(709\) 8.86621 0.332977 0.166489 0.986043i \(-0.446757\pi\)
0.166489 + 0.986043i \(0.446757\pi\)
\(710\) −9.49549 16.4467i −0.356359 0.617232i
\(711\) 8.33009 39.4659i 0.312403 1.48009i
\(712\) 1.30150 2.25427i 0.0487760 0.0844824i
\(713\) 1.62188 + 2.80919i 0.0607401 + 0.105205i
\(714\) −31.2164 2.94031i −1.16825 0.110038i
\(715\) −4.10301 + 7.10662i −0.153444 + 0.265773i
\(716\) 4.41423 + 7.64567i 0.164968 + 0.285732i
\(717\) −26.7540 + 4.25693i −0.999148 + 0.158978i
\(718\) 16.0796 27.8507i 0.600086 1.03938i
\(719\) 11.8015 20.4408i 0.440122 0.762313i −0.557576 0.830126i \(-0.688269\pi\)
0.997698 + 0.0678123i \(0.0216019\pi\)
\(720\) 5.02175 1.63957i 0.187150 0.0611030i
\(721\) 12.6453 12.9032i 0.470935 0.480540i
\(722\) 7.61273 + 13.1856i 0.283316 + 0.490718i
\(723\) −36.6260 + 5.82769i −1.36214 + 0.216734i
\(724\) 1.32941 0.0494070
\(725\) 2.78168 0.103309
\(726\) 16.4263 42.8830i 0.609636 1.59154i
\(727\) 3.25692 + 5.64115i 0.120792 + 0.209219i 0.920080 0.391730i \(-0.128123\pi\)
−0.799288 + 0.600948i \(0.794790\pi\)
\(728\) 1.94966 + 0.501371i 0.0722591 + 0.0185820i
\(729\) 15.7769 21.9110i 0.584329 0.811517i
\(730\) 0.270036 0.467717i 0.00999449 0.0173110i
\(731\) 29.6271 51.3156i 1.09580 1.89798i
\(732\) −11.2918 13.9239i −0.417357 0.514644i
\(733\) 11.5991 + 20.0901i 0.428421 + 0.742047i 0.996733 0.0807664i \(-0.0257368\pi\)
−0.568312 + 0.822813i \(0.692403\pi\)
\(734\) −17.3015 + 29.9671i −0.638610 + 1.10611i
\(735\) 3.77975 + 21.0122i 0.139418 + 0.775048i
\(736\) 0.210533 + 0.364654i 0.00776036 + 0.0134413i
\(737\) −20.7781 + 35.9888i −0.765372 + 1.32566i
\(738\) −15.4984 13.9149i −0.570503 0.512216i
\(739\) −7.57838 13.1261i −0.278775 0.482853i 0.692305 0.721605i \(-0.256595\pi\)
−0.971081 + 0.238752i \(0.923262\pi\)
\(740\) −5.08126 −0.186791
\(741\) −0.915865 + 2.39099i −0.0336451 + 0.0878352i
\(742\) −0.417500 + 0.426015i −0.0153269 + 0.0156395i
\(743\) −5.21737 + 9.03675i −0.191407 + 0.331526i −0.945717 0.324992i \(-0.894638\pi\)
0.754310 + 0.656518i \(0.227972\pi\)
\(744\) 8.40451 + 10.3636i 0.308124 + 0.379949i
\(745\) −7.77292 + 13.4631i −0.284778 + 0.493249i
\(746\) −5.48796 9.50543i −0.200929 0.348018i
\(747\) 8.91135 2.90949i 0.326049 0.106453i
\(748\) 41.9064 1.53225
\(749\) −9.08577 2.33648i −0.331987 0.0853733i
\(750\) −13.2540 16.3436i −0.483969 0.596784i
\(751\) −20.1059 34.8244i −0.733674 1.27076i −0.955303 0.295630i \(-0.904470\pi\)
0.221628 0.975131i \(-0.428863\pi\)
\(752\) 1.66019 0.0605409
\(753\) −25.7502 31.7527i −0.938390 1.15713i
\(754\) −1.11436 −0.0405826
\(755\) −26.3891 −0.960397
\(756\) 9.32326 + 10.1033i 0.339084 + 0.367454i
\(757\) −21.5206 −0.782181 −0.391091 0.920352i \(-0.627902\pi\)
−0.391091 + 0.920352i \(0.627902\pi\)
\(758\) 33.9877 1.23449
\(759\) −2.81354 3.46939i −0.102125 0.125931i
\(760\) −3.42107 −0.124095
\(761\) 11.8313 + 20.4925i 0.428886 + 0.742852i 0.996774 0.0802535i \(-0.0255730\pi\)
−0.567889 + 0.823105i \(0.692240\pi\)
\(762\) −20.6774 25.4974i −0.749064 0.923674i
\(763\) 1.30314 1.32972i 0.0471768 0.0481390i
\(764\) −16.1683 −0.584947
\(765\) −26.8949 24.1471i −0.972388 0.873042i
\(766\) 10.5120 + 18.2074i 0.379815 + 0.657860i
\(767\) −0.755675 + 1.30887i −0.0272858 + 0.0472605i