Properties

Label 126.2.e.d.121.2
Level $126$
Weight $2$
Character 126.121
Analytic conductor $1.006$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(25,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.2
Root \(0.500000 + 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 126.121
Dual form 126.2.e.d.25.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-0.796790 + 1.53790i) q^{3} +1.00000 q^{4} +(0.230252 + 0.398809i) q^{5} +(-0.796790 + 1.53790i) q^{6} +(0.0665372 + 2.64491i) q^{7} +1.00000 q^{8} +(-1.73025 - 2.45076i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(-0.796790 + 1.53790i) q^{3} +1.00000 q^{4} +(0.230252 + 0.398809i) q^{5} +(-0.796790 + 1.53790i) q^{6} +(0.0665372 + 2.64491i) q^{7} +1.00000 q^{8} +(-1.73025 - 2.45076i) q^{9} +(0.230252 + 0.398809i) q^{10} +(1.82383 - 3.15897i) q^{11} +(-0.796790 + 1.53790i) q^{12} +(0.730252 - 1.26483i) q^{13} +(0.0665372 + 2.64491i) q^{14} +(-0.796790 + 0.0363376i) q^{15} +1.00000 q^{16} +(-1.86693 - 3.23361i) q^{17} +(-1.73025 - 2.45076i) q^{18} +(-2.02704 + 3.51094i) q^{19} +(0.230252 + 0.398809i) q^{20} +(-4.12062 - 2.00511i) q^{21} +(1.82383 - 3.15897i) q^{22} +(-0.566537 - 0.981271i) q^{23} +(-0.796790 + 1.53790i) q^{24} +(2.39397 - 4.14647i) q^{25} +(0.730252 - 1.26483i) q^{26} +(5.14766 - 0.708209i) q^{27} +(0.0665372 + 2.64491i) q^{28} +(-4.48755 - 7.77266i) q^{29} +(-0.796790 + 0.0363376i) q^{30} -0.514589 q^{31} +1.00000 q^{32} +(3.40496 + 5.32190i) q^{33} +(-1.86693 - 3.23361i) q^{34} +(-1.03950 + 0.635534i) q^{35} +(-1.73025 - 2.45076i) q^{36} +(-4.55408 + 7.88791i) q^{37} +(-2.02704 + 3.51094i) q^{38} +(1.36333 + 2.13086i) q^{39} +(0.230252 + 0.398809i) q^{40} +(-0.472958 + 0.819187i) q^{41} +(-4.12062 - 2.00511i) q^{42} +(4.66372 + 8.07779i) q^{43} +(1.82383 - 3.15897i) q^{44} +(0.578990 - 1.25433i) q^{45} +(-0.566537 - 0.981271i) q^{46} +2.32743 q^{47} +(-0.796790 + 1.53790i) q^{48} +(-6.99115 + 0.351971i) q^{49} +(2.39397 - 4.14647i) q^{50} +(6.46050 - 0.294632i) q^{51} +(0.730252 - 1.26483i) q^{52} +(6.21780 + 10.7695i) q^{53} +(5.14766 - 0.708209i) q^{54} +1.67977 q^{55} +(0.0665372 + 2.64491i) q^{56} +(-3.78434 - 5.91486i) q^{57} +(-4.48755 - 7.77266i) q^{58} -12.8961 q^{59} +(-0.796790 + 0.0363376i) q^{60} +12.0833 q^{61} -0.514589 q^{62} +(6.36693 - 4.73944i) q^{63} +1.00000 q^{64} +0.672570 q^{65} +(3.40496 + 5.32190i) q^{66} -2.32023 q^{67} +(-1.86693 - 3.23361i) q^{68} +(1.96050 - 0.0894089i) q^{69} +(-1.03950 + 0.635534i) q^{70} +1.67977 q^{71} +(-1.73025 - 2.45076i) q^{72} +(-6.62062 - 11.4673i) q^{73} +(-4.55408 + 7.88791i) q^{74} +(4.46936 + 6.98554i) q^{75} +(-2.02704 + 3.51094i) q^{76} +(8.47656 + 4.61369i) q^{77} +(1.36333 + 2.13086i) q^{78} -5.00720 q^{79} +(0.230252 + 0.398809i) q^{80} +(-3.01245 + 8.48087i) q^{81} +(-0.472958 + 0.819187i) q^{82} +(3.32383 + 5.75705i) q^{83} +(-4.12062 - 2.00511i) q^{84} +(0.859728 - 1.48909i) q^{85} +(4.66372 + 8.07779i) q^{86} +(15.5292 - 0.708209i) q^{87} +(1.82383 - 3.15897i) q^{88} +(-1.36333 + 2.36135i) q^{89} +(0.578990 - 1.25433i) q^{90} +(3.39397 + 1.84730i) q^{91} +(-0.566537 - 0.981271i) q^{92} +(0.410019 - 0.791385i) q^{93} +2.32743 q^{94} -1.86693 q^{95} +(-0.796790 + 1.53790i) q^{96} +(-5.59358 - 9.68836i) q^{97} +(-6.99115 + 0.351971i) q^{98} +(-10.8976 + 0.996040i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} - 2 q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} + 4 q^{7} + 6 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 6 q^{2} - 2 q^{3} + 6 q^{4} - 5 q^{5} - 2 q^{6} + 4 q^{7} + 6 q^{8} - 4 q^{9} - 5 q^{10} - q^{11} - 2 q^{12} - 2 q^{13} + 4 q^{14} - 2 q^{15} + 6 q^{16} - 4 q^{17} - 4 q^{18} - 3 q^{19} - 5 q^{20} - 10 q^{21} - q^{22} - 7 q^{23} - 2 q^{24} - 2 q^{25} - 2 q^{26} + 7 q^{27} + 4 q^{28} - 5 q^{29} - 2 q^{30} + 28 q^{31} + 6 q^{32} - 19 q^{33} - 4 q^{34} - 19 q^{35} - 4 q^{36} - 9 q^{37} - 3 q^{38} + 9 q^{39} - 5 q^{40} - 12 q^{41} - 10 q^{42} + 18 q^{43} - q^{44} + 29 q^{45} - 7 q^{46} - 6 q^{47} - 2 q^{48} - 12 q^{49} - 2 q^{50} + 26 q^{51} - 2 q^{52} + 9 q^{53} + 7 q^{54} + 14 q^{55} + 4 q^{56} + 2 q^{57} - 5 q^{58} - 8 q^{59} - 2 q^{60} - 8 q^{61} + 28 q^{62} + 31 q^{63} + 6 q^{64} + 24 q^{65} - 19 q^{66} - 10 q^{67} - 4 q^{68} - q^{69} - 19 q^{70} + 14 q^{71} - 4 q^{72} - 25 q^{73} - 9 q^{74} + 44 q^{75} - 3 q^{76} + 52 q^{77} + 9 q^{78} - 14 q^{79} - 5 q^{80} - 40 q^{81} - 12 q^{82} + 8 q^{83} - 10 q^{84} + 14 q^{85} + 18 q^{86} + 31 q^{87} - q^{88} - 9 q^{89} + 29 q^{90} + 4 q^{91} - 7 q^{92} - 6 q^{94} - 4 q^{95} - 2 q^{96} - 28 q^{97} - 12 q^{98} - 41 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.796790 + 1.53790i −0.460027 + 0.887905i
\(4\) 1.00000 0.500000
\(5\) 0.230252 + 0.398809i 0.102972 + 0.178353i 0.912908 0.408166i \(-0.133831\pi\)
−0.809936 + 0.586519i \(0.800498\pi\)
\(6\) −0.796790 + 1.53790i −0.325288 + 0.627844i
\(7\) 0.0665372 + 2.64491i 0.0251487 + 0.999684i
\(8\) 1.00000 0.353553
\(9\) −1.73025 2.45076i −0.576751 0.816920i
\(10\) 0.230252 + 0.398809i 0.0728122 + 0.126114i
\(11\) 1.82383 3.15897i 0.549906 0.952465i −0.448374 0.893846i \(-0.647997\pi\)
0.998280 0.0586193i \(-0.0186698\pi\)
\(12\) −0.796790 + 1.53790i −0.230013 + 0.443953i
\(13\) 0.730252 1.26483i 0.202536 0.350802i −0.746809 0.665038i \(-0.768415\pi\)
0.949345 + 0.314236i \(0.101748\pi\)
\(14\) 0.0665372 + 2.64491i 0.0177828 + 0.706883i
\(15\) −0.796790 + 0.0363376i −0.205730 + 0.00938234i
\(16\) 1.00000 0.250000
\(17\) −1.86693 3.23361i −0.452796 0.784266i 0.545763 0.837940i \(-0.316240\pi\)
−0.998558 + 0.0536743i \(0.982907\pi\)
\(18\) −1.73025 2.45076i −0.407824 0.577650i
\(19\) −2.02704 + 3.51094i −0.465035 + 0.805465i −0.999203 0.0399136i \(-0.987292\pi\)
0.534168 + 0.845378i \(0.320625\pi\)
\(20\) 0.230252 + 0.398809i 0.0514860 + 0.0891764i
\(21\) −4.12062 2.00511i −0.899193 0.437552i
\(22\) 1.82383 3.15897i 0.388842 0.673495i
\(23\) −0.566537 0.981271i −0.118131 0.204609i 0.800896 0.598804i \(-0.204357\pi\)
−0.919027 + 0.394194i \(0.871024\pi\)
\(24\) −0.796790 + 1.53790i −0.162644 + 0.313922i
\(25\) 2.39397 4.14647i 0.478794 0.829295i
\(26\) 0.730252 1.26483i 0.143214 0.248054i
\(27\) 5.14766 0.708209i 0.990668 0.136295i
\(28\) 0.0665372 + 2.64491i 0.0125744 + 0.499842i
\(29\) −4.48755 7.77266i −0.833317 1.44335i −0.895394 0.445275i \(-0.853106\pi\)
0.0620772 0.998071i \(-0.480228\pi\)
\(30\) −0.796790 + 0.0363376i −0.145473 + 0.00663431i
\(31\) −0.514589 −0.0924229 −0.0462115 0.998932i \(-0.514715\pi\)
−0.0462115 + 0.998932i \(0.514715\pi\)
\(32\) 1.00000 0.176777
\(33\) 3.40496 + 5.32190i 0.592727 + 0.926424i
\(34\) −1.86693 3.23361i −0.320175 0.554560i
\(35\) −1.03950 + 0.635534i −0.175707 + 0.107425i
\(36\) −1.73025 2.45076i −0.288375 0.408460i
\(37\) −4.55408 + 7.88791i −0.748687 + 1.29676i 0.199765 + 0.979844i \(0.435982\pi\)
−0.948452 + 0.316920i \(0.897351\pi\)
\(38\) −2.02704 + 3.51094i −0.328830 + 0.569550i
\(39\) 1.36333 + 2.13086i 0.218307 + 0.341211i
\(40\) 0.230252 + 0.398809i 0.0364061 + 0.0630572i
\(41\) −0.472958 + 0.819187i −0.0738636 + 0.127936i −0.900592 0.434666i \(-0.856866\pi\)
0.826728 + 0.562602i \(0.190200\pi\)
\(42\) −4.12062 2.00511i −0.635826 0.309396i
\(43\) 4.66372 + 8.07779i 0.711210 + 1.23185i 0.964403 + 0.264436i \(0.0851858\pi\)
−0.253193 + 0.967416i \(0.581481\pi\)
\(44\) 1.82383 3.15897i 0.274953 0.476233i
\(45\) 0.578990 1.25433i 0.0863108 0.186985i
\(46\) −0.566537 0.981271i −0.0835314 0.144681i
\(47\) 2.32743 0.339491 0.169745 0.985488i \(-0.445705\pi\)
0.169745 + 0.985488i \(0.445705\pi\)
\(48\) −0.796790 + 1.53790i −0.115007 + 0.221976i
\(49\) −6.99115 + 0.351971i −0.998735 + 0.0502815i
\(50\) 2.39397 4.14647i 0.338558 0.586400i
\(51\) 6.46050 0.294632i 0.904652 0.0412567i
\(52\) 0.730252 1.26483i 0.101268 0.175401i
\(53\) 6.21780 + 10.7695i 0.854080 + 1.47931i 0.877495 + 0.479585i \(0.159213\pi\)
−0.0234151 + 0.999726i \(0.507454\pi\)
\(54\) 5.14766 0.708209i 0.700508 0.0963750i
\(55\) 1.67977 0.226500
\(56\) 0.0665372 + 2.64491i 0.00889141 + 0.353442i
\(57\) −3.78434 5.91486i −0.501248 0.783443i
\(58\) −4.48755 7.77266i −0.589244 1.02060i
\(59\) −12.8961 −1.67893 −0.839465 0.543414i \(-0.817131\pi\)
−0.839465 + 0.543414i \(0.817131\pi\)
\(60\) −0.796790 + 0.0363376i −0.102865 + 0.00469117i
\(61\) 12.0833 1.54710 0.773552 0.633733i \(-0.218478\pi\)
0.773552 + 0.633733i \(0.218478\pi\)
\(62\) −0.514589 −0.0653529
\(63\) 6.36693 4.73944i 0.802157 0.597113i
\(64\) 1.00000 0.125000
\(65\) 0.672570 0.0834220
\(66\) 3.40496 + 5.32190i 0.419121 + 0.655080i
\(67\) −2.32023 −0.283462 −0.141731 0.989905i \(-0.545267\pi\)
−0.141731 + 0.989905i \(0.545267\pi\)
\(68\) −1.86693 3.23361i −0.226398 0.392133i
\(69\) 1.96050 0.0894089i 0.236017 0.0107636i
\(70\) −1.03950 + 0.635534i −0.124243 + 0.0759608i
\(71\) 1.67977 0.199352 0.0996758 0.995020i \(-0.468219\pi\)
0.0996758 + 0.995020i \(0.468219\pi\)
\(72\) −1.73025 2.45076i −0.203912 0.288825i
\(73\) −6.62062 11.4673i −0.774885 1.34214i −0.934859 0.355019i \(-0.884474\pi\)
0.159974 0.987121i \(-0.448859\pi\)
\(74\) −4.55408 + 7.88791i −0.529402 + 0.916950i
\(75\) 4.46936 + 6.98554i 0.516077 + 0.806621i
\(76\) −2.02704 + 3.51094i −0.232518 + 0.402732i
\(77\) 8.47656 + 4.61369i 0.965993 + 0.525779i
\(78\) 1.36333 + 2.13086i 0.154366 + 0.241272i
\(79\) −5.00720 −0.563354 −0.281677 0.959509i \(-0.590891\pi\)
−0.281677 + 0.959509i \(0.590891\pi\)
\(80\) 0.230252 + 0.398809i 0.0257430 + 0.0445882i
\(81\) −3.01245 + 8.48087i −0.334717 + 0.942319i
\(82\) −0.472958 + 0.819187i −0.0522295 + 0.0904641i
\(83\) 3.32383 + 5.75705i 0.364838 + 0.631918i 0.988750 0.149577i \(-0.0477911\pi\)
−0.623912 + 0.781494i \(0.714458\pi\)
\(84\) −4.12062 2.00511i −0.449597 0.218776i
\(85\) 0.859728 1.48909i 0.0932506 0.161515i
\(86\) 4.66372 + 8.07779i 0.502901 + 0.871051i
\(87\) 15.5292 0.708209i 1.66490 0.0759280i
\(88\) 1.82383 3.15897i 0.194421 0.336747i
\(89\) −1.36333 + 2.36135i −0.144512 + 0.250303i −0.929191 0.369600i \(-0.879495\pi\)
0.784679 + 0.619903i \(0.212828\pi\)
\(90\) 0.578990 1.25433i 0.0610309 0.132218i
\(91\) 3.39397 + 1.84730i 0.355784 + 0.193649i
\(92\) −0.566537 0.981271i −0.0590656 0.102305i
\(93\) 0.410019 0.791385i 0.0425170 0.0820628i
\(94\) 2.32743 0.240056
\(95\) −1.86693 −0.191543
\(96\) −0.796790 + 1.53790i −0.0813220 + 0.156961i
\(97\) −5.59358 9.68836i −0.567942 0.983704i −0.996769 0.0803178i \(-0.974406\pi\)
0.428827 0.903386i \(-0.358927\pi\)
\(98\) −6.99115 + 0.351971i −0.706212 + 0.0355544i
\(99\) −10.8976 + 0.996040i −1.09525 + 0.100106i
\(100\) 2.39397 4.14647i 0.239397 0.414647i
\(101\) −6.87792 + 11.9129i −0.684378 + 1.18538i 0.289254 + 0.957253i \(0.406593\pi\)
−0.973632 + 0.228125i \(0.926740\pi\)
\(102\) 6.46050 0.294632i 0.639685 0.0291729i
\(103\) −5.58113 9.66679i −0.549925 0.952498i −0.998279 0.0586417i \(-0.981323\pi\)
0.448354 0.893856i \(-0.352010\pi\)
\(104\) 0.730252 1.26483i 0.0716071 0.124027i
\(105\) −0.149126 2.10502i −0.0145532 0.205429i
\(106\) 6.21780 + 10.7695i 0.603926 + 1.04603i
\(107\) −3.89037 + 6.73832i −0.376096 + 0.651418i −0.990490 0.137581i \(-0.956067\pi\)
0.614394 + 0.788999i \(0.289400\pi\)
\(108\) 5.14766 0.708209i 0.495334 0.0681474i
\(109\) −3.75729 6.50783i −0.359884 0.623337i 0.628058 0.778167i \(-0.283850\pi\)
−0.987941 + 0.154830i \(0.950517\pi\)
\(110\) 1.67977 0.160159
\(111\) −8.50214 13.2887i −0.806987 1.26131i
\(112\) 0.0665372 + 2.64491i 0.00628718 + 0.249921i
\(113\) 3.03064 5.24922i 0.285099 0.493805i −0.687534 0.726152i \(-0.741307\pi\)
0.972633 + 0.232346i \(0.0746403\pi\)
\(114\) −3.78434 5.91486i −0.354436 0.553978i
\(115\) 0.260893 0.451880i 0.0243284 0.0421380i
\(116\) −4.48755 7.77266i −0.416658 0.721673i
\(117\) −4.36333 + 0.398809i −0.403390 + 0.0368699i
\(118\) −12.8961 −1.18718
\(119\) 8.42840 5.15301i 0.772630 0.472376i
\(120\) −0.796790 + 0.0363376i −0.0727366 + 0.00331716i
\(121\) −1.15272 1.99658i −0.104793 0.181507i
\(122\) 12.0833 1.09397
\(123\) −0.882977 1.38008i −0.0796154 0.124438i
\(124\) −0.514589 −0.0462115
\(125\) 4.50739 0.403153
\(126\) 6.36693 4.73944i 0.567211 0.422223i
\(127\) 8.80992 0.781754 0.390877 0.920443i \(-0.372172\pi\)
0.390877 + 0.920443i \(0.372172\pi\)
\(128\) 1.00000 0.0883883
\(129\) −16.1388 + 0.736011i −1.42094 + 0.0648022i
\(130\) 0.672570 0.0589883
\(131\) −10.5687 18.3055i −0.923389 1.59936i −0.794131 0.607746i \(-0.792074\pi\)
−0.129258 0.991611i \(-0.541260\pi\)
\(132\) 3.40496 + 5.32190i 0.296364 + 0.463212i
\(133\) −9.42101 5.12774i −0.816905 0.444632i
\(134\) −2.32023 −0.200438
\(135\) 1.46770 + 1.88987i 0.126320 + 0.162654i
\(136\) −1.86693 3.23361i −0.160088 0.277280i
\(137\) 2.20321 3.81607i 0.188233 0.326029i −0.756428 0.654077i \(-0.773057\pi\)
0.944661 + 0.328048i \(0.106391\pi\)
\(138\) 1.96050 0.0894089i 0.166889 0.00761099i
\(139\) −1.01245 + 1.75362i −0.0858751 + 0.148740i −0.905764 0.423783i \(-0.860702\pi\)
0.819889 + 0.572523i \(0.194035\pi\)
\(140\) −1.03950 + 0.635534i −0.0878534 + 0.0537124i
\(141\) −1.85447 + 3.57935i −0.156175 + 0.301435i
\(142\) 1.67977 0.140963
\(143\) −2.66372 4.61369i −0.222751 0.385816i
\(144\) −1.73025 2.45076i −0.144188 0.204230i
\(145\) 2.06654 3.57935i 0.171617 0.297249i
\(146\) −6.62062 11.4673i −0.547927 0.949037i
\(147\) 5.02918 11.0321i 0.414800 0.909913i
\(148\) −4.55408 + 7.88791i −0.374343 + 0.648382i
\(149\) 4.58113 + 7.93474i 0.375300 + 0.650040i 0.990372 0.138432i \(-0.0442062\pi\)
−0.615071 + 0.788471i \(0.710873\pi\)
\(150\) 4.46936 + 6.98554i 0.364922 + 0.570367i
\(151\) 0.0519482 0.0899768i 0.00422748 0.00732221i −0.863904 0.503657i \(-0.831988\pi\)
0.868131 + 0.496334i \(0.165321\pi\)
\(152\) −2.02704 + 3.51094i −0.164415 + 0.284775i
\(153\) −4.69455 + 10.1703i −0.379532 + 0.822224i
\(154\) 8.47656 + 4.61369i 0.683060 + 0.371782i
\(155\) −0.118485 0.205223i −0.00951698 0.0164839i
\(156\) 1.36333 + 2.13086i 0.109154 + 0.170605i
\(157\) 20.9823 1.67457 0.837285 0.546767i \(-0.184142\pi\)
0.837285 + 0.546767i \(0.184142\pi\)
\(158\) −5.00720 −0.398351
\(159\) −21.5167 + 0.981271i −1.70639 + 0.0778199i
\(160\) 0.230252 + 0.398809i 0.0182031 + 0.0315286i
\(161\) 2.55768 1.56373i 0.201574 0.123239i
\(162\) −3.01245 + 8.48087i −0.236681 + 0.666320i
\(163\) −11.5182 + 19.9501i −0.902174 + 1.56261i −0.0775078 + 0.996992i \(0.524696\pi\)
−0.824666 + 0.565620i \(0.808637\pi\)
\(164\) −0.472958 + 0.819187i −0.0369318 + 0.0639678i
\(165\) −1.33842 + 2.58331i −0.104196 + 0.201110i
\(166\) 3.32383 + 5.75705i 0.257979 + 0.446833i
\(167\) −5.31498 + 9.20581i −0.411285 + 0.712367i −0.995031 0.0995698i \(-0.968253\pi\)
0.583745 + 0.811937i \(0.301587\pi\)
\(168\) −4.12062 2.00511i −0.317913 0.154698i
\(169\) 5.43346 + 9.41103i 0.417959 + 0.723926i
\(170\) 0.859728 1.48909i 0.0659382 0.114208i
\(171\) 12.1118 1.10702i 0.926210 0.0846558i
\(172\) 4.66372 + 8.07779i 0.355605 + 0.615926i
\(173\) 2.93872 0.223427 0.111713 0.993740i \(-0.464366\pi\)
0.111713 + 0.993740i \(0.464366\pi\)
\(174\) 15.5292 0.708209i 1.17726 0.0536892i
\(175\) 11.1264 + 6.05594i 0.841073 + 0.457786i
\(176\) 1.82383 3.15897i 0.137476 0.238116i
\(177\) 10.2755 19.8329i 0.772353 1.49073i
\(178\) −1.36333 + 2.36135i −0.102186 + 0.176991i
\(179\) −4.58113 7.93474i −0.342409 0.593071i 0.642470 0.766311i \(-0.277910\pi\)
−0.984880 + 0.173240i \(0.944576\pi\)
\(180\) 0.578990 1.25433i 0.0431554 0.0934925i
\(181\) 22.4284 1.66709 0.833545 0.552452i \(-0.186308\pi\)
0.833545 + 0.552452i \(0.186308\pi\)
\(182\) 3.39397 + 1.84730i 0.251578 + 0.136931i
\(183\) −9.62782 + 18.5828i −0.711709 + 1.37368i
\(184\) −0.566537 0.981271i −0.0417657 0.0723403i
\(185\) −4.19436 −0.308375
\(186\) 0.410019 0.791385i 0.0300641 0.0580272i
\(187\) −13.6198 −0.995981
\(188\) 2.32743 0.169745
\(189\) 2.21566 + 13.5680i 0.161166 + 0.986927i
\(190\) −1.86693 −0.135441
\(191\) 2.48968 0.180147 0.0900736 0.995935i \(-0.471290\pi\)
0.0900736 + 0.995935i \(0.471290\pi\)
\(192\) −0.796790 + 1.53790i −0.0575033 + 0.110988i
\(193\) 4.48968 0.323174 0.161587 0.986858i \(-0.448339\pi\)
0.161587 + 0.986858i \(0.448339\pi\)
\(194\) −5.59358 9.68836i −0.401596 0.695584i
\(195\) −0.535897 + 1.03434i −0.0383763 + 0.0740708i
\(196\) −6.99115 + 0.351971i −0.499368 + 0.0251408i
\(197\) 12.7339 0.907249 0.453625 0.891193i \(-0.350131\pi\)
0.453625 + 0.891193i \(0.350131\pi\)
\(198\) −10.8976 + 0.996040i −0.774456 + 0.0707855i
\(199\) −1.47296 2.55124i −0.104415 0.180852i 0.809084 0.587693i \(-0.199964\pi\)
−0.913499 + 0.406841i \(0.866630\pi\)
\(200\) 2.39397 4.14647i 0.169279 0.293200i
\(201\) 1.84874 3.56828i 0.130400 0.251687i
\(202\) −6.87792 + 11.9129i −0.483928 + 0.838189i
\(203\) 20.2594 12.3863i 1.42193 0.869351i
\(204\) 6.46050 0.294632i 0.452326 0.0206283i
\(205\) −0.435599 −0.0304235
\(206\) −5.58113 9.66679i −0.388855 0.673517i
\(207\) −1.42461 + 3.08629i −0.0990171 + 0.214512i
\(208\) 0.730252 1.26483i 0.0506339 0.0877005i
\(209\) 7.39397 + 12.8067i 0.511451 + 0.885860i
\(210\) −0.149126 2.10502i −0.0102907 0.145260i
\(211\) −0.608168 + 1.05338i −0.0418680 + 0.0725176i −0.886200 0.463303i \(-0.846664\pi\)
0.844332 + 0.535820i \(0.179998\pi\)
\(212\) 6.21780 + 10.7695i 0.427040 + 0.739655i
\(213\) −1.33842 + 2.58331i −0.0917071 + 0.177005i
\(214\) −3.89037 + 6.73832i −0.265940 + 0.460622i
\(215\) −2.14766 + 3.71986i −0.146469 + 0.253693i
\(216\) 5.14766 0.708209i 0.350254 0.0481875i
\(217\) −0.0342393 1.36104i −0.00232432 0.0923937i
\(218\) −3.75729 6.50783i −0.254476 0.440766i
\(219\) 22.9107 1.04484i 1.54816 0.0706040i
\(220\) 1.67977 0.113250
\(221\) −5.45331 −0.366829
\(222\) −8.50214 13.2887i −0.570626 0.891880i
\(223\) −0.445916 0.772349i −0.0298607 0.0517203i 0.850709 0.525637i \(-0.176173\pi\)
−0.880570 + 0.473917i \(0.842840\pi\)
\(224\) 0.0665372 + 2.64491i 0.00444571 + 0.176721i
\(225\) −14.3042 + 1.30740i −0.953612 + 0.0871603i
\(226\) 3.03064 5.24922i 0.201595 0.349173i
\(227\) 7.32597 12.6889i 0.486242 0.842195i −0.513633 0.858010i \(-0.671701\pi\)
0.999875 + 0.0158147i \(0.00503418\pi\)
\(228\) −3.78434 5.91486i −0.250624 0.391721i
\(229\) 4.78794 + 8.29295i 0.316396 + 0.548013i 0.979733 0.200307i \(-0.0641939\pi\)
−0.663338 + 0.748320i \(0.730861\pi\)
\(230\) 0.260893 0.451880i 0.0172028 0.0297961i
\(231\) −13.8494 + 9.35993i −0.911224 + 0.615838i
\(232\) −4.48755 7.77266i −0.294622 0.510300i
\(233\) 7.21420 12.4954i 0.472618 0.818598i −0.526891 0.849933i \(-0.676642\pi\)
0.999509 + 0.0313345i \(0.00997571\pi\)
\(234\) −4.36333 + 0.398809i −0.285240 + 0.0260710i
\(235\) 0.535897 + 0.928200i 0.0349580 + 0.0605491i
\(236\) −12.8961 −0.839465
\(237\) 3.98968 7.70055i 0.259158 0.500205i
\(238\) 8.42840 5.15301i 0.546332 0.334020i
\(239\) −9.15486 + 15.8567i −0.592179 + 1.02568i 0.401760 + 0.915745i \(0.368399\pi\)
−0.993938 + 0.109938i \(0.964935\pi\)
\(240\) −0.796790 + 0.0363376i −0.0514326 + 0.00234558i
\(241\) −0.0466924 + 0.0808735i −0.00300772 + 0.00520952i −0.867525 0.497393i \(-0.834291\pi\)
0.864518 + 0.502602i \(0.167624\pi\)
\(242\) −1.15272 1.99658i −0.0741000 0.128345i
\(243\) −10.6424 11.3903i −0.682711 0.730689i
\(244\) 12.0833 0.773552
\(245\) −1.75010 2.70709i −0.111810 0.172950i
\(246\) −0.882977 1.38008i −0.0562966 0.0879907i
\(247\) 2.96050 + 5.12774i 0.188372 + 0.326271i
\(248\) −0.514589 −0.0326764
\(249\) −11.5021 + 0.524555i −0.728918 + 0.0332424i
\(250\) 4.50739 0.285072
\(251\) −18.2733 −1.15340 −0.576702 0.816955i \(-0.695661\pi\)
−0.576702 + 0.816955i \(0.695661\pi\)
\(252\) 6.36693 4.73944i 0.401079 0.298556i
\(253\) −4.13307 −0.259844
\(254\) 8.80992 0.552783
\(255\) 1.60505 + 2.50867i 0.100512 + 0.157099i
\(256\) 1.00000 0.0625000
\(257\) 10.5256 + 18.2308i 0.656568 + 1.13721i 0.981498 + 0.191471i \(0.0613257\pi\)
−0.324931 + 0.945738i \(0.605341\pi\)
\(258\) −16.1388 + 0.736011i −1.00476 + 0.0458221i
\(259\) −21.1659 11.5203i −1.31518 0.715838i
\(260\) 0.672570 0.0417110
\(261\) −11.2843 + 24.4466i −0.698483 + 1.51320i
\(262\) −10.5687 18.3055i −0.652935 1.13092i
\(263\) 2.58259 4.47318i 0.159249 0.275828i −0.775349 0.631533i \(-0.782426\pi\)
0.934598 + 0.355705i \(0.115759\pi\)
\(264\) 3.40496 + 5.32190i 0.209561 + 0.327540i
\(265\) −2.86333 + 4.95943i −0.175893 + 0.304655i
\(266\) −9.42101 5.12774i −0.577639 0.314402i
\(267\) −2.54523 3.97816i −0.155766 0.243459i
\(268\) −2.32023 −0.141731
\(269\) 8.42840 + 14.5984i 0.513889 + 0.890081i 0.999870 + 0.0161123i \(0.00512891\pi\)
−0.485981 + 0.873969i \(0.661538\pi\)
\(270\) 1.46770 + 1.88987i 0.0893215 + 0.115014i
\(271\) 12.5562 21.7480i 0.762736 1.32110i −0.178699 0.983904i \(-0.557189\pi\)
0.941435 0.337194i \(-0.109478\pi\)
\(272\) −1.86693 3.23361i −0.113199 0.196066i
\(273\) −5.54523 + 3.74766i −0.335613 + 0.226819i
\(274\) 2.20321 3.81607i 0.133101 0.230537i
\(275\) −8.73239 15.1249i −0.526583 0.912068i
\(276\) 1.96050 0.0894089i 0.118009 0.00538178i
\(277\) −1.69076 + 2.92848i −0.101588 + 0.175955i −0.912339 0.409436i \(-0.865726\pi\)
0.810751 + 0.585391i \(0.199059\pi\)
\(278\) −1.01245 + 1.75362i −0.0607229 + 0.105175i
\(279\) 0.890369 + 1.26113i 0.0533050 + 0.0755022i
\(280\) −1.03950 + 0.635534i −0.0621217 + 0.0379804i
\(281\) −10.1388 17.5609i −0.604831 1.04760i −0.992078 0.125622i \(-0.959907\pi\)
0.387248 0.921976i \(-0.373426\pi\)
\(282\) −1.85447 + 3.57935i −0.110432 + 0.213147i
\(283\) 17.3494 1.03132 0.515658 0.856795i \(-0.327548\pi\)
0.515658 + 0.856795i \(0.327548\pi\)
\(284\) 1.67977 0.0996758
\(285\) 1.48755 2.87114i 0.0881147 0.170072i
\(286\) −2.66372 4.61369i −0.157509 0.272813i
\(287\) −2.19815 1.19643i −0.129753 0.0706228i
\(288\) −1.73025 2.45076i −0.101956 0.144412i
\(289\) 1.52918 2.64861i 0.0899517 0.155801i
\(290\) 2.06654 3.57935i 0.121351 0.210187i
\(291\) 19.3566 0.882759i 1.13470 0.0517483i
\(292\) −6.62062 11.4673i −0.387443 0.671070i
\(293\) −4.93560 + 8.54871i −0.288341 + 0.499421i −0.973414 0.229054i \(-0.926437\pi\)
0.685073 + 0.728474i \(0.259770\pi\)
\(294\) 5.02918 11.0321i 0.293308 0.643405i
\(295\) −2.96936 5.14308i −0.172883 0.299442i
\(296\) −4.55408 + 7.88791i −0.264701 + 0.458475i
\(297\) 7.15126 17.5530i 0.414958 1.01853i
\(298\) 4.58113 + 7.93474i 0.265378 + 0.459647i
\(299\) −1.65486 −0.0957031
\(300\) 4.46936 + 6.98554i 0.258039 + 0.403310i
\(301\) −21.0548 + 12.8726i −1.21358 + 0.741964i
\(302\) 0.0519482 0.0899768i 0.00298928 0.00517759i
\(303\) −12.8406 20.0696i −0.737671 1.15297i
\(304\) −2.02704 + 3.51094i −0.116259 + 0.201366i
\(305\) 2.78220 + 4.81891i 0.159308 + 0.275930i
\(306\) −4.69455 + 10.1703i −0.268370 + 0.581400i
\(307\) 7.78794 0.444481 0.222240 0.974992i \(-0.428663\pi\)
0.222240 + 0.974992i \(0.428663\pi\)
\(308\) 8.47656 + 4.61369i 0.482997 + 0.262889i
\(309\) 19.3135 0.880794i 1.09871 0.0501066i
\(310\) −0.118485 0.205223i −0.00672952 0.0116559i
\(311\) 15.4107 0.873860 0.436930 0.899495i \(-0.356066\pi\)
0.436930 + 0.899495i \(0.356066\pi\)
\(312\) 1.36333 + 2.13086i 0.0771832 + 0.120636i
\(313\) 8.49688 0.480272 0.240136 0.970739i \(-0.422808\pi\)
0.240136 + 0.970739i \(0.422808\pi\)
\(314\) 20.9823 1.18410
\(315\) 3.35613 + 1.44792i 0.189096 + 0.0815810i
\(316\) −5.00720 −0.281677
\(317\) −14.1052 −0.792229 −0.396115 0.918201i \(-0.629642\pi\)
−0.396115 + 0.918201i \(0.629642\pi\)
\(318\) −21.5167 + 0.981271i −1.20660 + 0.0550270i
\(319\) −32.7381 −1.83298
\(320\) 0.230252 + 0.398809i 0.0128715 + 0.0222941i
\(321\) −7.26303 11.3520i −0.405383 0.633607i
\(322\) 2.55768 1.56373i 0.142534 0.0871435i
\(323\) 15.1373 0.842264
\(324\) −3.01245 + 8.48087i −0.167359 + 0.471159i
\(325\) −3.49640 6.05594i −0.193945 0.335923i
\(326\) −11.5182 + 19.9501i −0.637933 + 1.10493i
\(327\) 13.0021 0.592963i 0.719020 0.0327909i
\(328\) −0.472958 + 0.819187i −0.0261147 + 0.0452320i
\(329\) 0.154861 + 6.15585i 0.00853775 + 0.339383i
\(330\) −1.33842 + 2.58331i −0.0736776 + 0.142206i
\(331\) 27.5438 1.51394 0.756971 0.653448i \(-0.226678\pi\)
0.756971 + 0.653448i \(0.226678\pi\)
\(332\) 3.32383 + 5.75705i 0.182419 + 0.315959i
\(333\) 27.2111 2.48710i 1.49116 0.136292i
\(334\) −5.31498 + 9.20581i −0.290823 + 0.503720i
\(335\) −0.534239 0.925330i −0.0291886 0.0505562i
\(336\) −4.12062 2.00511i −0.224798 0.109388i
\(337\) 0.748440 1.29634i 0.0407701 0.0706159i −0.844920 0.534892i \(-0.820352\pi\)
0.885690 + 0.464276i \(0.153686\pi\)
\(338\) 5.43346 + 9.41103i 0.295541 + 0.511893i
\(339\) 5.65798 + 8.84334i 0.307299 + 0.480304i
\(340\) 0.859728 1.48909i 0.0466253 0.0807574i
\(341\) −0.938524 + 1.62557i −0.0508239 + 0.0880296i
\(342\) 12.1118 1.10702i 0.654929 0.0598607i
\(343\) −1.39610 18.4676i −0.0753825 0.997155i
\(344\) 4.66372 + 8.07779i 0.251451 + 0.435525i
\(345\) 0.487068 + 0.761280i 0.0262229 + 0.0409859i
\(346\) 2.93872 0.157986
\(347\) −18.2881 −0.981758 −0.490879 0.871228i \(-0.663324\pi\)
−0.490879 + 0.871228i \(0.663324\pi\)
\(348\) 15.5292 0.708209i 0.832451 0.0379640i
\(349\) −3.90136 6.75735i −0.208835 0.361713i 0.742513 0.669832i \(-0.233634\pi\)
−0.951348 + 0.308119i \(0.900300\pi\)
\(350\) 11.1264 + 6.05594i 0.594729 + 0.323704i
\(351\) 2.86333 7.02811i 0.152833 0.375133i
\(352\) 1.82383 3.15897i 0.0972106 0.168374i
\(353\) −13.4626 + 23.3180i −0.716544 + 1.24109i 0.245817 + 0.969316i \(0.420944\pi\)
−0.962361 + 0.271774i \(0.912390\pi\)
\(354\) 10.2755 19.8329i 0.546136 1.05411i
\(355\) 0.386770 + 0.669906i 0.0205276 + 0.0355549i
\(356\) −1.36333 + 2.36135i −0.0722562 + 0.125151i
\(357\) 1.20914 + 17.0679i 0.0639945 + 0.903328i
\(358\) −4.58113 7.93474i −0.242120 0.419364i
\(359\) −3.13161 + 5.42411i −0.165280 + 0.286274i −0.936755 0.349987i \(-0.886186\pi\)
0.771475 + 0.636260i \(0.219519\pi\)
\(360\) 0.578990 1.25433i 0.0305155 0.0661092i
\(361\) 1.28220 + 2.22084i 0.0674842 + 0.116886i
\(362\) 22.4284 1.17881
\(363\) 3.98901 0.181919i 0.209369 0.00954827i
\(364\) 3.39397 + 1.84730i 0.177892 + 0.0968247i
\(365\) 3.04883 5.28073i 0.159583 0.276406i
\(366\) −9.62782 + 18.5828i −0.503254 + 0.971339i
\(367\) −14.6367 + 25.3515i −0.764028 + 1.32334i 0.176731 + 0.984259i \(0.443448\pi\)
−0.940759 + 0.339076i \(0.889886\pi\)
\(368\) −0.566537 0.981271i −0.0295328 0.0511523i
\(369\) 2.82597 0.258294i 0.147114 0.0134462i
\(370\) −4.19436 −0.218054
\(371\) −28.0708 + 17.1621i −1.45736 + 0.891013i
\(372\) 0.410019 0.791385i 0.0212585 0.0410314i
\(373\) −8.92986 15.4670i −0.462371 0.800850i 0.536708 0.843768i \(-0.319668\pi\)
−0.999079 + 0.0429184i \(0.986334\pi\)
\(374\) −13.6198 −0.704265
\(375\) −3.59144 + 6.93190i −0.185461 + 0.357962i
\(376\) 2.32743 0.120028
\(377\) −13.1082 −0.675105
\(378\) 2.21566 + 13.5680i 0.113961 + 0.697863i
\(379\) −22.4255 −1.15192 −0.575960 0.817478i \(-0.695371\pi\)
−0.575960 + 0.817478i \(0.695371\pi\)
\(380\) −1.86693 −0.0957713
\(381\) −7.01965 + 13.5487i −0.359628 + 0.694123i
\(382\) 2.48968 0.127383
\(383\) 7.07014 + 12.2458i 0.361267 + 0.625733i 0.988170 0.153365i \(-0.0490109\pi\)
−0.626903 + 0.779098i \(0.715678\pi\)
\(384\) −0.796790 + 1.53790i −0.0406610 + 0.0784805i
\(385\) 0.111767 + 4.44284i 0.00569618 + 0.226428i
\(386\) 4.48968 0.228519
\(387\) 11.7273 25.4063i 0.596134 1.29147i
\(388\) −5.59358 9.68836i −0.283971 0.491852i
\(389\) 11.5651 20.0313i 0.586373 1.01563i −0.408330 0.912834i \(-0.633889\pi\)
0.994703 0.102793i \(-0.0327779\pi\)
\(390\) −0.535897 + 1.03434i −0.0271362 + 0.0523760i
\(391\) −2.11537 + 3.66392i −0.106979 + 0.185292i
\(392\) −6.99115 + 0.351971i −0.353106 + 0.0177772i
\(393\) 36.5729 1.66791i 1.84486 0.0841350i
\(394\) 12.7339 0.641522
\(395\) −1.15292 1.99691i −0.0580097 0.100476i
\(396\) −10.8976 + 0.996040i −0.547623 + 0.0500529i
\(397\) −5.13307 + 8.89075i −0.257622 + 0.446214i −0.965604 0.260016i \(-0.916272\pi\)
0.707983 + 0.706230i \(0.249605\pi\)
\(398\) −1.47296 2.55124i −0.0738327 0.127882i
\(399\) 15.3925 10.4028i 0.770589 0.520792i
\(400\) 2.39397 4.14647i 0.119698 0.207324i
\(401\) −17.0167 29.4738i −0.849775 1.47185i −0.881409 0.472353i \(-0.843405\pi\)
0.0316345 0.999500i \(-0.489929\pi\)
\(402\) 1.84874 3.56828i 0.0922067 0.177970i
\(403\) −0.375780 + 0.650870i −0.0187189 + 0.0324221i
\(404\) −6.87792 + 11.9129i −0.342189 + 0.592689i
\(405\) −4.07587 + 0.751347i −0.202532 + 0.0373348i
\(406\) 20.2594 12.3863i 1.00546 0.614724i
\(407\) 16.6118 + 28.7724i 0.823415 + 1.42620i
\(408\) 6.46050 0.294632i 0.319843 0.0145864i
\(409\) −3.48968 −0.172554 −0.0862769 0.996271i \(-0.527497\pi\)
−0.0862769 + 0.996271i \(0.527497\pi\)
\(410\) −0.435599 −0.0215127
\(411\) 4.11323 + 6.42892i 0.202891 + 0.317115i
\(412\) −5.58113 9.66679i −0.274962 0.476249i
\(413\) −0.858071 34.1091i −0.0422229 1.67840i
\(414\) −1.42461 + 3.08629i −0.0700157 + 0.151683i
\(415\) −1.53064 + 2.65115i −0.0751362 + 0.130140i
\(416\) 0.730252 1.26483i 0.0358036 0.0620136i
\(417\) −1.89017 2.95431i −0.0925622 0.144673i
\(418\) 7.39397 + 12.8067i 0.361651 + 0.626398i
\(419\) 14.4897 25.0969i 0.707867 1.22606i −0.257779 0.966204i \(-0.582991\pi\)
0.965647 0.259858i \(-0.0836759\pi\)
\(420\) −0.149126 2.10502i −0.00727661 0.102715i
\(421\) −1.06128 1.83819i −0.0517237 0.0895881i 0.839004 0.544125i \(-0.183138\pi\)
−0.890728 + 0.454537i \(0.849805\pi\)
\(422\) −0.608168 + 1.05338i −0.0296052 + 0.0512777i
\(423\) −4.02704 5.70397i −0.195801 0.277337i
\(424\) 6.21780 + 10.7695i 0.301963 + 0.523015i
\(425\) −17.8774 −0.867183
\(426\) −1.33842 + 2.58331i −0.0648467 + 0.125162i
\(427\) 0.803987 + 31.9592i 0.0389077 + 1.54661i
\(428\) −3.89037 + 6.73832i −0.188048 + 0.325709i
\(429\) 9.21780 0.420378i 0.445040 0.0202960i
\(430\) −2.14766 + 3.71986i −0.103570 + 0.179388i
\(431\) 10.9356 + 18.9410i 0.526749 + 0.912356i 0.999514 + 0.0311679i \(0.00992265\pi\)
−0.472765 + 0.881189i \(0.656744\pi\)
\(432\) 5.14766 0.708209i 0.247667 0.0340737i
\(433\) −13.0512 −0.627199 −0.313599 0.949555i \(-0.601535\pi\)
−0.313599 + 0.949555i \(0.601535\pi\)
\(434\) −0.0342393 1.36104i −0.00164354 0.0653322i
\(435\) 3.85807 + 6.03011i 0.184980 + 0.289122i
\(436\) −3.75729 6.50783i −0.179942 0.311668i
\(437\) 4.59358 0.219741
\(438\) 22.9107 1.04484i 1.09472 0.0499245i
\(439\) 4.86400 0.232146 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(440\) 1.67977 0.0800797
\(441\) 12.9590 + 16.5246i 0.617097 + 0.786887i
\(442\) −5.45331 −0.259387
\(443\) −11.5395 −0.548258 −0.274129 0.961693i \(-0.588390\pi\)
−0.274129 + 0.961693i \(0.588390\pi\)
\(444\) −8.50214 13.2887i −0.403494 0.630654i
\(445\) −1.25564 −0.0595229
\(446\) −0.445916 0.772349i −0.0211147 0.0365718i
\(447\) −15.8530 + 0.722977i −0.749822 + 0.0341957i
\(448\) 0.0665372 + 2.64491i 0.00314359 + 0.124960i
\(449\) −26.4251 −1.24708 −0.623538 0.781793i \(-0.714306\pi\)
−0.623538 + 0.781793i \(0.714306\pi\)
\(450\) −14.3042 + 1.30740i −0.674306 + 0.0616317i
\(451\) 1.72519 + 2.98812i 0.0812361 + 0.140705i
\(452\) 3.03064 5.24922i 0.142549 0.246903i
\(453\) 0.0969833 + 0.151584i 0.00455667 + 0.00712201i
\(454\) 7.32597 12.6889i 0.343825 0.595522i
\(455\) 0.0447509 + 1.77889i 0.00209796 + 0.0833956i
\(456\) −3.78434 5.91486i −0.177218 0.276989i
\(457\) −3.73812 −0.174862 −0.0874310 0.996171i \(-0.527866\pi\)
−0.0874310 + 0.996171i \(0.527866\pi\)
\(458\) 4.78794 + 8.29295i 0.223726 + 0.387504i
\(459\) −11.9004 15.3234i −0.555462 0.715233i
\(460\) 0.260893 0.451880i 0.0121642 0.0210690i
\(461\) −7.90496 13.6918i −0.368171 0.637690i 0.621109 0.783724i \(-0.286682\pi\)
−0.989280 + 0.146034i \(0.953349\pi\)
\(462\) −13.8494 + 9.35993i −0.644333 + 0.435463i
\(463\) 19.1965 33.2493i 0.892137 1.54523i 0.0548278 0.998496i \(-0.482539\pi\)
0.837309 0.546730i \(-0.184128\pi\)
\(464\) −4.48755 7.77266i −0.208329 0.360837i
\(465\) 0.410019 0.0186989i 0.0190142 0.000867143i
\(466\) 7.21420 12.4954i 0.334191 0.578836i
\(467\) 3.15652 5.46725i 0.146066 0.252994i −0.783704 0.621134i \(-0.786672\pi\)
0.929770 + 0.368140i \(0.120005\pi\)
\(468\) −4.36333 + 0.398809i −0.201695 + 0.0184349i
\(469\) −0.154382 6.13682i −0.00712869 0.283372i
\(470\) 0.535897 + 0.928200i 0.0247191 + 0.0428147i
\(471\) −16.7185 + 32.2686i −0.770347 + 1.48686i
\(472\) −12.8961 −0.593591
\(473\) 34.0233 1.56439
\(474\) 3.98968 7.70055i 0.183252 0.353698i
\(475\) 9.70535 + 16.8102i 0.445312 + 0.771303i
\(476\) 8.42840 5.15301i 0.386315 0.236188i
\(477\) 15.6352 33.8724i 0.715887 1.55091i
\(478\) −9.15486 + 15.8567i −0.418734 + 0.725268i
\(479\) 10.2068 17.6787i 0.466361 0.807761i −0.532901 0.846178i \(-0.678898\pi\)
0.999262 + 0.0384168i \(0.0122314\pi\)
\(480\) −0.796790 + 0.0363376i −0.0363683 + 0.00165858i
\(481\) 6.65126 + 11.5203i 0.303271 + 0.525282i
\(482\) −0.0466924 + 0.0808735i −0.00212678 + 0.00368369i
\(483\) 0.366926 + 5.17942i 0.0166957 + 0.235672i
\(484\) −1.15272 1.99658i −0.0523966 0.0907535i
\(485\) 2.57587 4.46154i 0.116964 0.202588i
\(486\) −10.6424 11.3903i −0.482749 0.516675i
\(487\) 6.18190 + 10.7074i 0.280129 + 0.485197i 0.971416 0.237383i \(-0.0762895\pi\)
−0.691287 + 0.722580i \(0.742956\pi\)
\(488\) 12.0833 0.546984
\(489\) −21.5036 33.6098i −0.972426 1.51989i
\(490\) −1.75010 2.70709i −0.0790613 0.122294i
\(491\) 0.207004 0.358541i 0.00934194 0.0161807i −0.861317 0.508069i \(-0.830360\pi\)
0.870659 + 0.491888i \(0.163693\pi\)
\(492\) −0.882977 1.38008i −0.0398077 0.0622188i
\(493\) −16.7558 + 29.0220i −0.754645 + 1.30708i
\(494\) 2.96050 + 5.12774i 0.133199 + 0.230708i
\(495\) −2.90642 4.11671i −0.130634 0.185032i
\(496\) −0.514589 −0.0231057
\(497\) 0.111767 + 4.44284i 0.00501344 + 0.199289i
\(498\) −11.5021 + 0.524555i −0.515423 + 0.0235059i
\(499\) 0.461967 + 0.800151i 0.0206805 + 0.0358197i 0.876180 0.481983i \(-0.160083\pi\)
−0.855500 + 0.517803i \(0.826750\pi\)
\(500\) 4.50739 0.201577
\(501\) −9.92267 15.5090i −0.443312 0.692890i
\(502\) −18.2733 −0.815579
\(503\) −23.8142 −1.06182 −0.530911 0.847428i \(-0.678150\pi\)
−0.530911 + 0.847428i \(0.678150\pi\)
\(504\) 6.36693 4.73944i 0.283605 0.211111i
\(505\) −6.33463 −0.281887
\(506\) −4.13307 −0.183738
\(507\) −18.8025 + 0.857490i −0.835049 + 0.0380825i
\(508\) 8.80992 0.390877
\(509\) 15.3171 + 26.5300i 0.678919 + 1.17592i 0.975307 + 0.220855i \(0.0708846\pi\)
−0.296388 + 0.955068i \(0.595782\pi\)
\(510\) 1.60505 + 2.50867i 0.0710728 + 0.111086i
\(511\) 29.8894 18.2740i 1.32223 0.808393i
\(512\) 1.00000 0.0441942
\(513\) −7.94805 + 19.5087i −0.350915 + 0.861330i
\(514\) 10.5256 + 18.2308i 0.464263 + 0.804128i
\(515\) 2.57014 4.45161i 0.113254 0.196161i
\(516\) −16.1388 + 0.736011i −0.710471 + 0.0324011i
\(517\) 4.24484 7.35228i 0.186688 0.323353i
\(518\) −21.1659 11.5203i −0.929974 0.506174i
\(519\) −2.34154 + 4.51945i −0.102782 + 0.198382i
\(520\) 0.672570 0.0294941
\(521\) −13.4518 23.2993i −0.589336 1.02076i −0.994320 0.106436i \(-0.966056\pi\)
0.404984 0.914324i \(-0.367277\pi\)
\(522\) −11.2843 + 24.4466i −0.493902 + 1.07000i
\(523\) −7.85301 + 13.6018i −0.343388 + 0.594766i −0.985060 0.172214i \(-0.944908\pi\)
0.641671 + 0.766980i \(0.278241\pi\)
\(524\) −10.5687 18.3055i −0.461695 0.799679i
\(525\) −18.1788 + 12.2859i −0.793387 + 0.536199i
\(526\) 2.58259 4.47318i 0.112606 0.195040i
\(527\) 0.960699 + 1.66398i 0.0418487 + 0.0724841i
\(528\) 3.40496 + 5.32190i 0.148182 + 0.231606i
\(529\) 10.8581 18.8067i 0.472090 0.817684i
\(530\) −2.86333 + 4.95943i −0.124375 + 0.215424i
\(531\) 22.3135 + 31.6053i 0.968324 + 1.37155i
\(532\) −9.42101 5.12774i −0.408453 0.222316i
\(533\) 0.690757 + 1.19643i 0.0299200 + 0.0518230i
\(534\) −2.54523 3.97816i −0.110143 0.172152i
\(535\) −3.58307 −0.154910
\(536\) −2.32023 −0.100219
\(537\) 15.8530 0.722977i 0.684108 0.0311988i
\(538\) 8.42840 + 14.5984i 0.363374 + 0.629383i
\(539\) −11.6388 + 22.7267i −0.501319 + 0.978910i
\(540\) 1.46770 + 1.88987i 0.0631598 + 0.0813269i
\(541\) −2.05934 + 3.56688i −0.0885379 + 0.153352i −0.906893 0.421360i \(-0.861553\pi\)
0.818355 + 0.574713i \(0.194886\pi\)
\(542\) 12.5562 21.7480i 0.539336 0.934157i
\(543\) −17.8707 + 34.4926i −0.766906 + 1.48022i
\(544\) −1.86693 3.23361i −0.0800438 0.138640i
\(545\) 1.73025 2.99689i 0.0741159 0.128372i
\(546\) −5.54523 + 3.74766i −0.237314 + 0.160385i
\(547\) −11.8602 20.5425i −0.507106 0.878333i −0.999966 0.00822465i \(-0.997382\pi\)
0.492860 0.870108i \(-0.335951\pi\)
\(548\) 2.20321 3.81607i 0.0941165 0.163015i
\(549\) −20.9071 29.6132i −0.892293 1.26386i
\(550\) −8.73239 15.1249i −0.372350 0.644930i
\(551\) 36.3858 1.55009
\(552\) 1.96050 0.0894089i 0.0834446 0.00380550i
\(553\) −0.333165 13.2436i −0.0141676 0.563176i
\(554\) −1.69076 + 2.92848i −0.0718334 + 0.124419i
\(555\) 3.34202 6.45049i 0.141861 0.273808i
\(556\) −1.01245 + 1.75362i −0.0429376 + 0.0743701i
\(557\) −21.0313 36.4273i −0.891125 1.54347i −0.838528 0.544859i \(-0.816583\pi\)
−0.0525975 0.998616i \(-0.516750\pi\)
\(558\) 0.890369 + 1.26113i 0.0376923 + 0.0533881i
\(559\) 13.6228 0.576181
\(560\) −1.03950 + 0.635534i −0.0439267 + 0.0268562i
\(561\) 10.8521 20.9459i 0.458178 0.884336i
\(562\) −10.1388 17.5609i −0.427680 0.740763i
\(563\) 11.8243 0.498335 0.249168 0.968460i \(-0.419843\pi\)
0.249168 + 0.968460i \(0.419843\pi\)
\(564\) −1.85447 + 3.57935i −0.0780874 + 0.150718i
\(565\) 2.79125 0.117429
\(566\) 17.3494 0.729250
\(567\) −22.6316 7.40339i −0.950438 0.310913i
\(568\) 1.67977 0.0704815
\(569\) 14.2016 0.595360 0.297680 0.954666i \(-0.403787\pi\)
0.297680 + 0.954666i \(0.403787\pi\)
\(570\) 1.48755 2.87114i 0.0623065 0.120259i
\(571\) 11.9574 0.500401 0.250200 0.968194i \(-0.419503\pi\)
0.250200 + 0.968194i \(0.419503\pi\)
\(572\) −2.66372 4.61369i −0.111376 0.192908i
\(573\) −1.98375 + 3.82888i −0.0828725 + 0.159954i
\(574\) −2.19815 1.19643i −0.0917490 0.0499379i
\(575\) −5.42509 −0.226242
\(576\) −1.73025 2.45076i −0.0720939 0.102115i
\(577\) 21.3135 + 36.9161i 0.887293 + 1.53684i 0.843062 + 0.537816i \(0.180750\pi\)
0.0442307 + 0.999021i \(0.485916\pi\)
\(578\) 1.52918 2.64861i 0.0636054 0.110168i
\(579\) −3.57733 + 6.90467i −0.148669 + 0.286948i
\(580\) 2.06654 3.57935i 0.0858083 0.148624i
\(581\) −15.0057 + 9.17431i −0.622543 + 0.380614i
\(582\) 19.3566 0.882759i 0.802357 0.0365915i
\(583\) 45.3609 1.87866
\(584\) −6.62062 11.4673i −0.273963 0.474518i
\(585\) −1.16372 1.64831i −0.0481137 0.0681491i
\(586\) −4.93560 + 8.54871i −0.203888 + 0.353144i
\(587\) 20.5328 + 35.5638i 0.847478 + 1.46788i 0.883451 + 0.468523i \(0.155214\pi\)
−0.0359730 + 0.999353i \(0.511453\pi\)
\(588\) 5.02918 11.0321i 0.207400 0.454956i
\(589\) 1.04309 1.80669i 0.0429799 0.0744434i
\(590\) −2.96936 5.14308i −0.122247 0.211737i
\(591\) −10.1462 + 19.5833i −0.417359 + 0.805551i
\(592\) −4.55408 + 7.88791i −0.187172 + 0.324191i
\(593\) 16.1008 27.8874i 0.661180 1.14520i −0.319126 0.947712i \(-0.603389\pi\)
0.980306 0.197485i \(-0.0632772\pi\)
\(594\) 7.15126 17.5530i 0.293420 0.720207i
\(595\) 3.99573 + 2.17483i 0.163809 + 0.0891592i
\(596\) 4.58113 + 7.93474i 0.187650 + 0.325020i
\(597\) 5.09718 0.232457i 0.208614 0.00951383i
\(598\) −1.65486 −0.0676723
\(599\) 19.0718 0.779252 0.389626 0.920973i \(-0.372604\pi\)
0.389626 + 0.920973i \(0.372604\pi\)
\(600\) 4.46936 + 6.98554i 0.182461 + 0.285184i
\(601\) 4.27188 + 7.39912i 0.174254 + 0.301816i 0.939903 0.341442i \(-0.110915\pi\)
−0.765649 + 0.643259i \(0.777582\pi\)
\(602\) −21.0548 + 12.8726i −0.858128 + 0.524648i
\(603\) 4.01459 + 5.68634i 0.163487 + 0.231565i
\(604\) 0.0519482 0.0899768i 0.00211374 0.00366111i
\(605\) 0.530835 0.919434i 0.0215815 0.0373803i
\(606\) −12.8406 20.0696i −0.521612 0.815272i
\(607\) −19.0057 32.9189i −0.771419 1.33614i −0.936785 0.349905i \(-0.886214\pi\)
0.165366 0.986232i \(-0.447119\pi\)
\(608\) −2.02704 + 3.51094i −0.0822074 + 0.142387i
\(609\) 2.90642 + 41.0262i 0.117774 + 1.66247i
\(610\) 2.78220 + 4.81891i 0.112648 + 0.195112i
\(611\) 1.69961 2.94381i 0.0687589 0.119094i
\(612\) −4.69455 + 10.1703i −0.189766 + 0.411112i
\(613\) 11.3296 + 19.6234i 0.457597 + 0.792581i 0.998833 0.0482894i \(-0.0153770\pi\)
−0.541237 + 0.840870i \(0.682044\pi\)
\(614\) 7.78794 0.314295
\(615\) 0.347081 0.669906i 0.0139956 0.0270132i
\(616\) 8.47656 + 4.61369i 0.341530 + 0.185891i
\(617\) −10.1388 + 17.5609i −0.408173 + 0.706977i −0.994685 0.102964i \(-0.967167\pi\)
0.586512 + 0.809941i \(0.300501\pi\)
\(618\) 19.3135 0.880794i 0.776904 0.0354307i
\(619\) −1.03064 + 1.78512i −0.0414249 + 0.0717501i −0.885994 0.463696i \(-0.846523\pi\)
0.844570 + 0.535446i \(0.179856\pi\)
\(620\) −0.118485 0.205223i −0.00475849 0.00824194i
\(621\) −3.61129 4.65003i −0.144916 0.186599i
\(622\) 15.4107 0.617912
\(623\) −6.33628 3.44877i −0.253858 0.138172i
\(624\) 1.36333 + 2.13086i 0.0545768 + 0.0853027i
\(625\) −10.9320 18.9348i −0.437280 0.757391i
\(626\) 8.49688 0.339604
\(627\) −25.5869 + 1.16689i −1.02184 + 0.0466011i
\(628\) 20.9823 0.837285
\(629\) 34.0085 1.35601
\(630\) 3.35613 + 1.44792i 0.133711 + 0.0576865i
\(631\) 1.63715 0.0651740 0.0325870 0.999469i \(-0.489625\pi\)
0.0325870 + 0.999469i \(0.489625\pi\)
\(632\) −5.00720 −0.199176
\(633\) −1.13541 1.77462i −0.0451283 0.0705349i
\(634\) −14.1052 −0.560191
\(635\) 2.02850 + 3.51347i 0.0804988 + 0.139428i
\(636\) −21.5167 + 0.981271i −0.853194 + 0.0389099i
\(637\) −4.66012 + 9.09967i −0.184641 + 0.360542i
\(638\) −32.7381 −1.29611
\(639\) −2.90642 4.11671i −0.114976 0.162854i
\(640\) 0.230252 + 0.398809i 0.00910153 + 0.0157643i
\(641\) −10.9662 + 18.9941i −0.433140 + 0.750221i −0.997142 0.0755526i \(-0.975928\pi\)
0.564001 + 0.825774i \(0.309261\pi\)
\(642\) −7.26303 11.3520i −0.286649 0.448028i
\(643\) −14.1819 + 24.5638i −0.559280 + 0.968701i 0.438277 + 0.898840i \(0.355589\pi\)
−0.997557 + 0.0698609i \(0.977744\pi\)
\(644\) 2.55768 1.56373i 0.100787 0.0616197i
\(645\) −4.00953 6.26683i −0.157875 0.246756i
\(646\) 15.1373 0.595571
\(647\) 17.3904 + 30.1210i 0.683686 + 1.18418i 0.973848 + 0.227201i \(0.0729575\pi\)
−0.290162 + 0.956978i \(0.593709\pi\)
\(648\) −3.01245 + 8.48087i −0.118340 + 0.333160i
\(649\) −23.5203 + 40.7384i −0.923253 + 1.59912i
\(650\) −3.49640 6.05594i −0.137140 0.237534i
\(651\) 2.12043 + 1.03181i 0.0831061 + 0.0404398i
\(652\) −11.5182 + 19.9501i −0.451087 + 0.781306i
\(653\) 1.59931 + 2.77009i 0.0625860 + 0.108402i 0.895621 0.444819i \(-0.146732\pi\)
−0.833035 + 0.553221i \(0.813399\pi\)
\(654\) 13.0021 0.592963i 0.508424 0.0231867i
\(655\) 4.86693 8.42976i 0.190167 0.329378i
\(656\) −0.472958 + 0.819187i −0.0184659 + 0.0319839i
\(657\) −16.6481 + 36.0668i −0.649506 + 1.40710i
\(658\) 0.154861 + 6.15585i 0.00603710 + 0.239980i
\(659\) 5.30418 + 9.18711i 0.206622 + 0.357879i 0.950648 0.310271i \(-0.100420\pi\)
−0.744027 + 0.668150i \(0.767086\pi\)
\(660\) −1.33842 + 2.58331i −0.0520980 + 0.100555i
\(661\) 10.1301 0.394017 0.197009 0.980402i \(-0.436877\pi\)
0.197009 + 0.980402i \(0.436877\pi\)
\(662\) 27.5438 1.07052
\(663\) 4.34514 8.38662i 0.168751 0.325709i
\(664\) 3.32383 + 5.75705i 0.128990 + 0.223417i
\(665\) −0.124220 4.93786i −0.00481705 0.191482i
\(666\) 27.2111 2.48710i 1.05441 0.0963731i
\(667\) −5.08472 + 8.80700i −0.196881 + 0.341008i
\(668\) −5.31498 + 9.20581i −0.205643 + 0.356184i
\(669\) 1.54309 0.0703729i 0.0596595 0.00272077i
\(670\) −0.534239 0.925330i −0.0206395 0.0357486i
\(671\) 22.0378 38.1707i 0.850761 1.47356i
\(672\) −4.12062 2.00511i −0.158956 0.0773489i
\(673\) 1.60817 + 2.78543i 0.0619903 + 0.107370i 0.895355 0.445353i \(-0.146922\pi\)
−0.833365 + 0.552724i \(0.813589\pi\)
\(674\) 0.748440 1.29634i 0.0288288 0.0499330i
\(675\) 9.38677 23.0401i 0.361297 0.886813i
\(676\) 5.43346 + 9.41103i 0.208979 + 0.361963i
\(677\) −29.3638 −1.12854 −0.564271 0.825589i \(-0.690843\pi\)
−0.564271 + 0.825589i \(0.690843\pi\)
\(678\) 5.65798 + 8.84334i 0.217293 + 0.339626i
\(679\) 25.2527 15.4392i 0.969110 0.592501i
\(680\) 0.859728 1.48909i 0.0329691 0.0571041i
\(681\) 13.6770 + 21.3770i 0.524105 + 0.819169i
\(682\) −0.938524 + 1.62557i −0.0359379 + 0.0622463i
\(683\) 12.6278 + 21.8720i 0.483190 + 0.836910i 0.999814 0.0193029i \(-0.00614468\pi\)
−0.516624 + 0.856213i \(0.672811\pi\)
\(684\) 12.1118 1.10702i 0.463105 0.0423279i
\(685\) 2.02918 0.0775309
\(686\) −1.39610 18.4676i −0.0533035 0.705095i
\(687\) −16.5687 + 0.755615i −0.632134 + 0.0288285i
\(688\) 4.66372 + 8.07779i 0.177802 + 0.307963i
\(689\) 18.1623 0.691927
\(690\) 0.487068 + 0.761280i 0.0185424 + 0.0289814i
\(691\) −15.3638 −0.584467 −0.292233 0.956347i \(-0.594398\pi\)
−0.292233 + 0.956347i \(0.594398\pi\)
\(692\) 2.93872 0.111713
\(693\) −3.35953 28.7569i −0.127618 1.09238i
\(694\) −18.2881 −0.694208
\(695\) −0.932479 −0.0353709
\(696\) 15.5292 0.708209i 0.588632 0.0268446i
\(697\) 3.53191 0.133781
\(698\) −3.90136 6.75735i −0.147669 0.255770i
\(699\) 13.4684 + 21.0509i 0.509421 + 0.796217i
\(700\) 11.1264 + 6.05594i 0.420537 + 0.228893i
\(701\) −13.3700 −0.504980 −0.252490 0.967600i \(-0.581249\pi\)
−0.252490 + 0.967600i \(0.581249\pi\)
\(702\) 2.86333 7.02811i 0.108069 0.265259i
\(703\) −18.4626 31.9782i −0.696332 1.20608i
\(704\) 1.82383 3.15897i 0.0687382 0.119058i
\(705\) −1.85447 + 0.0845733i −0.0698435 + 0.00318522i
\(706\) −13.4626 + 23.3180i −0.506673 + 0.877584i
\(707\) −31.9662 17.3988i −1.20221 0.654351i
\(708\) 10.2755 19.8329i 0.386176 0.745365i
\(709\) −1.12588 −0.0422832 −0.0211416 0.999776i \(-0.506730\pi\)
−0.0211416 + 0.999776i \(0.506730\pi\)
\(710\) 0.386770 + 0.669906i 0.0145152 + 0.0251411i
\(711\) 8.66372 + 12.2714i 0.324915 + 0.460215i
\(712\) −1.36333 + 2.36135i −0.0510928 + 0.0884954i
\(713\) 0.291534 + 0.504951i 0.0109180 + 0.0189106i
\(714\) 1.20914 + 17.0679i 0.0452509 + 0.638749i
\(715\) 1.22665 2.12463i 0.0458743 0.0794565i
\(716\) −4.58113 7.93474i −0.171205 0.296535i
\(717\) −17.0914 26.7137i −0.638292 0.997640i
\(718\) −3.13161 + 5.42411i −0.116871 + 0.202426i
\(719\) 9.13667 15.8252i 0.340740 0.590180i −0.643830 0.765169i \(-0.722656\pi\)
0.984570 + 0.174989i \(0.0559889\pi\)
\(720\) 0.578990 1.25433i 0.0215777 0.0467463i
\(721\) 25.1965 15.4048i 0.938366 0.573705i
\(722\) 1.28220 + 2.22084i 0.0477186 + 0.0826510i
\(723\) −0.0871712 0.136247i −0.00324193 0.00506709i
\(724\) 22.4284 0.833545
\(725\) −42.9722 −1.59595
\(726\) 3.98901 0.181919i 0.148046 0.00675165i
\(727\) −14.8478 25.7171i −0.550673 0.953793i −0.998226 0.0595359i \(-0.981038\pi\)
0.447553 0.894257i \(-0.352295\pi\)
\(728\) 3.39397 + 1.84730i 0.125789 + 0.0684654i
\(729\) 25.9969 7.29124i 0.962847 0.270046i
\(730\) 3.04883 5.28073i 0.112842 0.195448i
\(731\) 17.4136 30.1613i 0.644066 1.11555i
\(732\) −9.62782 + 18.5828i −0.355854 + 0.686840i
\(733\) −9.61390 16.6518i −0.355098 0.615047i 0.632037 0.774938i \(-0.282219\pi\)
−0.987135 + 0.159891i \(0.948886\pi\)
\(734\) −14.6367 + 25.3515i −0.540249 + 0.935740i
\(735\) 5.55768 0.534488i 0.204998 0.0197149i
\(736\) −0.566537 0.981271i −0.0208828 0.0361701i
\(737\) −4.23171 + 7.32955i −0.155877 + 0.269987i
\(738\) 2.82597 0.258294i 0.104025 0.00950793i
\(739\) −15.1336 26.2121i −0.556697 0.964227i −0.997769 0.0667556i \(-0.978735\pi\)
0.441073 0.897471i \(-0.354598\pi\)
\(740\) −4.19436 −0.154188
\(741\) −10.2448 + 0.467216i −0.376354 + 0.0171636i
\(742\) −28.0708 + 17.1621i −1.03051 + 0.630041i
\(743\) −11.8815 + 20.5794i −0.435890 + 0.754984i −0.997368 0.0725076i \(-0.976900\pi\)
0.561477 + 0.827492i \(0.310233\pi\)
\(744\) 0.410019 0.791385i 0.0150320 0.0290136i
\(745\) −2.10963 + 3.65399i −0.0772909 + 0.133872i
\(746\) −8.92986 15.4670i −0.326946 0.566286i
\(747\) 8.35807 18.1071i 0.305806 0.662503i
\(748\) −13.6198 −0.497990
\(749\) −18.0811 9.84134i −0.660670 0.359595i
\(750\) −3.59144 + 6.93190i −0.131141 + 0.253117i
\(751\) −6.33415 10.9711i −0.231136 0.400340i 0.727006 0.686631i \(-0.240911\pi\)
−0.958143 + 0.286291i \(0.907578\pi\)
\(752\) 2.32743 0.0848727
\(753\) 14.5600 28.1025i 0.530596 1.02411i
\(754\) −13.1082 −0.477371
\(755\) 0.0478448 0.00174125
\(756\) 2.21566 + 13.5680i 0.0805829 + 0.493464i
\(757\) −29.0799 −1.05693 −0.528464 0.848955i \(-0.677232\pi\)
−0.528464 + 0.848955i \(0.677232\pi\)
\(758\) −22.4255 −0.814530
\(759\) 3.29319 6.35624i 0.119535 0.230717i
\(760\) −1.86693 −0.0677205
\(761\) −14.6015 25.2905i −0.529302 0.916778i −0.999416 0.0341724i \(-0.989120\pi\)
0.470114 0.882606i \(-0.344213\pi\)
\(762\) −7.01965 + 13.5487i −0.254295 + 0.490819i
\(763\) 16.9626 10.3707i 0.614089 0.375446i
\(764\) 2.48968 0.0900736
\(765\) −5.13696 + 0.469519i −0.185727 + 0.0169755i
\(766\) 7.07014 + 12.2458i 0.255454 + 0.442460i
\(767\) −9.41741 +