Properties

Label 126.2.e.c.25.3
Level $126$
Weight $2$
Character 126.25
Analytic conductor $1.006$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(25,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 25.3
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 126.25
Dual form 126.2.e.c.121.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(1.71053 + 0.272169i) q^{3} +1.00000 q^{4} +(1.59097 - 2.75564i) q^{5} +(-1.71053 - 0.272169i) q^{6} +(-2.56238 + 0.658939i) q^{7} -1.00000 q^{8} +(2.85185 + 0.931107i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(1.71053 + 0.272169i) q^{3} +1.00000 q^{4} +(1.59097 - 2.75564i) q^{5} +(-1.71053 - 0.272169i) q^{6} +(-2.56238 + 0.658939i) q^{7} -1.00000 q^{8} +(2.85185 + 0.931107i) q^{9} +(-1.59097 + 2.75564i) q^{10} +(-1.59097 - 2.75564i) q^{11} +(1.71053 + 0.272169i) q^{12} +(2.85185 + 4.93955i) q^{13} +(2.56238 - 0.658939i) q^{14} +(3.47141 - 4.28061i) q^{15} +1.00000 q^{16} +(-0.760877 + 1.31788i) q^{17} +(-2.85185 - 0.931107i) q^{18} +(-0.641315 - 1.11079i) q^{19} +(1.59097 - 2.75564i) q^{20} +(-4.56238 + 0.429736i) q^{21} +(1.59097 + 2.75564i) q^{22} +(-1.11956 + 1.93914i) q^{23} +(-1.71053 - 0.272169i) q^{24} +(-2.56238 - 4.43818i) q^{25} +(-2.85185 - 4.93955i) q^{26} +(4.62476 + 2.36887i) q^{27} +(-2.56238 + 0.658939i) q^{28} +(-3.54063 + 6.13255i) q^{29} +(-3.47141 + 4.28061i) q^{30} -9.42107 q^{31} -1.00000 q^{32} +(-1.97141 - 5.14663i) q^{33} +(0.760877 - 1.31788i) q^{34} +(-2.26088 + 8.10936i) q^{35} +(2.85185 + 0.931107i) q^{36} +(0.500000 + 0.866025i) q^{37} +(0.641315 + 1.11079i) q^{38} +(3.53379 + 9.22544i) q^{39} +(-1.59097 + 2.75564i) q^{40} +(-2.80150 - 4.85235i) q^{41} +(4.56238 - 0.429736i) q^{42} +(3.41423 - 5.91362i) q^{43} +(-1.59097 - 2.75564i) q^{44} +(7.10301 - 6.37731i) q^{45} +(1.11956 - 1.93914i) q^{46} -5.82846 q^{47} +(1.71053 + 0.272169i) q^{48} +(6.13160 - 3.37690i) q^{49} +(2.56238 + 4.43818i) q^{50} +(-1.66019 + 2.04719i) q^{51} +(2.85185 + 4.93955i) q^{52} +(1.02859 - 1.78157i) q^{53} +(-4.62476 - 2.36887i) q^{54} -10.1248 q^{55} +(2.56238 - 0.658939i) q^{56} +(-0.794668 - 2.07459i) q^{57} +(3.54063 - 6.13255i) q^{58} -1.12476 q^{59} +(3.47141 - 4.28061i) q^{60} +3.12476 q^{61} +9.42107 q^{62} +(-7.92107 - 0.506659i) q^{63} +1.00000 q^{64} +18.1488 q^{65} +(1.97141 + 5.14663i) q^{66} +10.9669 q^{67} +(-0.760877 + 1.31788i) q^{68} +(-2.44282 + 3.01225i) q^{69} +(2.26088 - 8.10936i) q^{70} +8.69002 q^{71} +(-2.85185 - 0.931107i) q^{72} +(-2.48345 + 4.30146i) q^{73} +(-0.500000 - 0.866025i) q^{74} +(-3.17511 - 8.28905i) q^{75} +(-0.641315 - 1.11079i) q^{76} +(5.89248 + 6.01266i) q^{77} +(-3.53379 - 9.22544i) q^{78} -4.13844 q^{79} +(1.59097 - 2.75564i) q^{80} +(7.26608 + 5.31075i) q^{81} +(2.80150 + 4.85235i) q^{82} +(-4.03379 + 6.98673i) q^{83} +(-4.56238 + 0.429736i) q^{84} +(2.42107 + 4.19341i) q^{85} +(-3.41423 + 5.91362i) q^{86} +(-7.72545 + 9.52628i) q^{87} +(1.59097 + 2.75564i) q^{88} +(0.112725 + 0.195246i) q^{89} +(-7.10301 + 6.37731i) q^{90} +(-10.5624 - 10.7778i) q^{91} +(-1.11956 + 1.93914i) q^{92} +(-16.1150 - 2.56412i) q^{93} +5.82846 q^{94} -4.08126 q^{95} +(-1.71053 - 0.272169i) q^{96} +(7.42107 - 12.8537i) q^{97} +(-6.13160 + 3.37690i) q^{98} +(-1.97141 - 9.34004i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 2 q^{3} + 6 q^{4} + q^{5} - 2 q^{6} + 2 q^{7} - 6 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{2} + 2 q^{3} + 6 q^{4} + q^{5} - 2 q^{6} + 2 q^{7} - 6 q^{8} + 8 q^{9} - q^{10} - q^{11} + 2 q^{12} + 8 q^{13} - 2 q^{14} + 12 q^{15} + 6 q^{16} - 4 q^{17} - 8 q^{18} - 3 q^{19} + q^{20} - 10 q^{21} + q^{22} - 7 q^{23} - 2 q^{24} + 2 q^{25} - 8 q^{26} - 7 q^{27} + 2 q^{28} - 5 q^{29} - 12 q^{30} - 40 q^{31} - 6 q^{32} - 3 q^{33} + 4 q^{34} - 13 q^{35} + 8 q^{36} + 3 q^{37} + 3 q^{38} - 5 q^{39} - q^{40} + 10 q^{42} - 6 q^{43} - q^{44} + 9 q^{45} + 7 q^{46} + 18 q^{47} + 2 q^{48} + 12 q^{49} - 2 q^{50} + 6 q^{51} + 8 q^{52} + 15 q^{53} + 7 q^{54} - 26 q^{55} - 2 q^{56} + 22 q^{57} + 5 q^{58} + 28 q^{59} + 12 q^{60} - 16 q^{61} + 40 q^{62} - 31 q^{63} + 6 q^{64} + 24 q^{65} + 3 q^{66} - 2 q^{67} - 4 q^{68} + 3 q^{69} + 13 q^{70} + 14 q^{71} - 8 q^{72} + 19 q^{73} - 3 q^{74} + 8 q^{75} - 3 q^{76} + 10 q^{77} + 5 q^{78} - 10 q^{79} + q^{80} + 8 q^{81} + 2 q^{83} - 10 q^{84} - 2 q^{85} + 6 q^{86} - 27 q^{87} + q^{88} - 9 q^{89} - 9 q^{90} - 46 q^{91} - 7 q^{92} - 38 q^{93} - 18 q^{94} + 8 q^{95} - 2 q^{96} + 28 q^{97} - 12 q^{98} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.71053 + 0.272169i 0.987577 + 0.157137i
\(4\) 1.00000 0.500000
\(5\) 1.59097 2.75564i 0.711504 1.23236i −0.252788 0.967522i \(-0.581348\pi\)
0.964292 0.264840i \(-0.0853191\pi\)
\(6\) −1.71053 0.272169i −0.698322 0.111112i
\(7\) −2.56238 + 0.658939i −0.968489 + 0.249055i
\(8\) −1.00000 −0.353553
\(9\) 2.85185 + 0.931107i 0.950616 + 0.310369i
\(10\) −1.59097 + 2.75564i −0.503109 + 0.871411i
\(11\) −1.59097 2.75564i −0.479696 0.830858i 0.520033 0.854146i \(-0.325920\pi\)
−0.999729 + 0.0232884i \(0.992586\pi\)
\(12\) 1.71053 + 0.272169i 0.493788 + 0.0785683i
\(13\) 2.85185 + 4.93955i 0.790960 + 1.36998i 0.925373 + 0.379058i \(0.123752\pi\)
−0.134412 + 0.990925i \(0.542915\pi\)
\(14\) 2.56238 0.658939i 0.684825 0.176109i
\(15\) 3.47141 4.28061i 0.896314 1.10525i
\(16\) 1.00000 0.250000
\(17\) −0.760877 + 1.31788i −0.184540 + 0.319632i −0.943421 0.331596i \(-0.892413\pi\)
0.758882 + 0.651229i \(0.225746\pi\)
\(18\) −2.85185 0.931107i −0.672187 0.219464i
\(19\) −0.641315 1.11079i −0.147128 0.254833i 0.783037 0.621975i \(-0.213670\pi\)
−0.930165 + 0.367142i \(0.880336\pi\)
\(20\) 1.59097 2.75564i 0.355752 0.616181i
\(21\) −4.56238 + 0.429736i −0.995593 + 0.0937761i
\(22\) 1.59097 + 2.75564i 0.339196 + 0.587505i
\(23\) −1.11956 + 1.93914i −0.233445 + 0.404338i −0.958820 0.284016i \(-0.908333\pi\)
0.725375 + 0.688354i \(0.241666\pi\)
\(24\) −1.71053 0.272169i −0.349161 0.0555562i
\(25\) −2.56238 4.43818i −0.512476 0.887635i
\(26\) −2.85185 4.93955i −0.559293 0.968725i
\(27\) 4.62476 + 2.36887i 0.890036 + 0.455890i
\(28\) −2.56238 + 0.658939i −0.484245 + 0.124528i
\(29\) −3.54063 + 6.13255i −0.657478 + 1.13879i 0.323788 + 0.946130i \(0.395043\pi\)
−0.981266 + 0.192656i \(0.938290\pi\)
\(30\) −3.47141 + 4.28061i −0.633790 + 0.781528i
\(31\) −9.42107 −1.69207 −0.846037 0.533125i \(-0.821018\pi\)
−0.846037 + 0.533125i \(0.821018\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.97141 5.14663i −0.343178 0.895914i
\(34\) 0.760877 1.31788i 0.130489 0.226014i
\(35\) −2.26088 + 8.10936i −0.382158 + 1.37073i
\(36\) 2.85185 + 0.931107i 0.475308 + 0.155185i
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0.641315 + 1.11079i 0.104035 + 0.180194i
\(39\) 3.53379 + 9.22544i 0.565860 + 1.47725i
\(40\) −1.59097 + 2.75564i −0.251555 + 0.435706i
\(41\) −2.80150 4.85235i −0.437522 0.757810i 0.559976 0.828509i \(-0.310810\pi\)
−0.997498 + 0.0706992i \(0.977477\pi\)
\(42\) 4.56238 0.429736i 0.703991 0.0663097i
\(43\) 3.41423 5.91362i 0.520665 0.901819i −0.479046 0.877790i \(-0.659017\pi\)
0.999711 0.0240288i \(-0.00764935\pi\)
\(44\) −1.59097 2.75564i −0.239848 0.415429i
\(45\) 7.10301 6.37731i 1.05885 0.950674i
\(46\) 1.11956 1.93914i 0.165070 0.285910i
\(47\) −5.82846 −0.850168 −0.425084 0.905154i \(-0.639755\pi\)
−0.425084 + 0.905154i \(0.639755\pi\)
\(48\) 1.71053 + 0.272169i 0.246894 + 0.0392842i
\(49\) 6.13160 3.37690i 0.875943 0.482415i
\(50\) 2.56238 + 4.43818i 0.362375 + 0.627653i
\(51\) −1.66019 + 2.04719i −0.232473 + 0.286663i
\(52\) 2.85185 + 4.93955i 0.395480 + 0.684992i
\(53\) 1.02859 1.78157i 0.141288 0.244717i −0.786694 0.617343i \(-0.788209\pi\)
0.927982 + 0.372626i \(0.121542\pi\)
\(54\) −4.62476 2.36887i −0.629351 0.322363i
\(55\) −10.1248 −1.36522
\(56\) 2.56238 0.658939i 0.342413 0.0880544i
\(57\) −0.794668 2.07459i −0.105256 0.274786i
\(58\) 3.54063 6.13255i 0.464907 0.805243i
\(59\) −1.12476 −0.146432 −0.0732159 0.997316i \(-0.523326\pi\)
−0.0732159 + 0.997316i \(0.523326\pi\)
\(60\) 3.47141 4.28061i 0.448157 0.552624i
\(61\) 3.12476 0.400085 0.200042 0.979787i \(-0.435892\pi\)
0.200042 + 0.979787i \(0.435892\pi\)
\(62\) 9.42107 1.19648
\(63\) −7.92107 0.506659i −0.997961 0.0638331i
\(64\) 1.00000 0.125000
\(65\) 18.1488 2.25109
\(66\) 1.97141 + 5.14663i 0.242664 + 0.633507i
\(67\) 10.9669 1.33982 0.669910 0.742442i \(-0.266333\pi\)
0.669910 + 0.742442i \(0.266333\pi\)
\(68\) −0.760877 + 1.31788i −0.0922699 + 0.159816i
\(69\) −2.44282 + 3.01225i −0.294081 + 0.362632i
\(70\) 2.26088 8.10936i 0.270226 0.969254i
\(71\) 8.69002 1.03132 0.515658 0.856794i \(-0.327548\pi\)
0.515658 + 0.856794i \(0.327548\pi\)
\(72\) −2.85185 0.931107i −0.336094 0.109732i
\(73\) −2.48345 + 4.30146i −0.290666 + 0.503448i −0.973967 0.226689i \(-0.927210\pi\)
0.683302 + 0.730136i \(0.260543\pi\)
\(74\) −0.500000 0.866025i −0.0581238 0.100673i
\(75\) −3.17511 8.28905i −0.366630 0.957137i
\(76\) −0.641315 1.11079i −0.0735639 0.127416i
\(77\) 5.89248 + 6.01266i 0.671510 + 0.685206i
\(78\) −3.53379 9.22544i −0.400123 1.04458i
\(79\) −4.13844 −0.465610 −0.232805 0.972523i \(-0.574790\pi\)
−0.232805 + 0.972523i \(0.574790\pi\)
\(80\) 1.59097 2.75564i 0.177876 0.308090i
\(81\) 7.26608 + 5.31075i 0.807342 + 0.590084i
\(82\) 2.80150 + 4.85235i 0.309374 + 0.535852i
\(83\) −4.03379 + 6.98673i −0.442766 + 0.766893i −0.997894 0.0648718i \(-0.979336\pi\)
0.555127 + 0.831765i \(0.312669\pi\)
\(84\) −4.56238 + 0.429736i −0.497797 + 0.0468881i
\(85\) 2.42107 + 4.19341i 0.262602 + 0.454839i
\(86\) −3.41423 + 5.91362i −0.368166 + 0.637682i
\(87\) −7.72545 + 9.52628i −0.828255 + 1.02132i
\(88\) 1.59097 + 2.75564i 0.169598 + 0.293753i
\(89\) 0.112725 + 0.195246i 0.0119488 + 0.0206960i 0.871938 0.489616i \(-0.162863\pi\)
−0.859989 + 0.510312i \(0.829530\pi\)
\(90\) −7.10301 + 6.37731i −0.748723 + 0.672228i
\(91\) −10.5624 10.7778i −1.10724 1.12982i
\(92\) −1.11956 + 1.93914i −0.116722 + 0.202169i
\(93\) −16.1150 2.56412i −1.67105 0.265887i
\(94\) 5.82846 0.601160
\(95\) −4.08126 −0.418728
\(96\) −1.71053 0.272169i −0.174581 0.0277781i
\(97\) 7.42107 12.8537i 0.753495 1.30509i −0.192624 0.981273i \(-0.561700\pi\)
0.946119 0.323819i \(-0.104967\pi\)
\(98\) −6.13160 + 3.37690i −0.619385 + 0.341119i
\(99\) −1.97141 9.34004i −0.198134 0.938710i
\(100\) −2.56238 4.43818i −0.256238 0.443818i
\(101\) −9.29467 16.0988i −0.924854 1.60189i −0.791796 0.610786i \(-0.790854\pi\)
−0.133058 0.991108i \(-0.542480\pi\)
\(102\) 1.66019 2.04719i 0.164383 0.202702i
\(103\) 0.141315 0.244765i 0.0139242 0.0241174i −0.858979 0.512010i \(-0.828901\pi\)
0.872904 + 0.487893i \(0.162234\pi\)
\(104\) −2.85185 4.93955i −0.279647 0.484362i
\(105\) −6.07442 + 13.2560i −0.592803 + 1.29365i
\(106\) −1.02859 + 1.78157i −0.0999055 + 0.173041i
\(107\) 5.68878 + 9.85326i 0.549955 + 0.952550i 0.998277 + 0.0586780i \(0.0186885\pi\)
−0.448322 + 0.893872i \(0.647978\pi\)
\(108\) 4.62476 + 2.36887i 0.445018 + 0.227945i
\(109\) −2.21053 + 3.82876i −0.211731 + 0.366728i −0.952256 0.305300i \(-0.901243\pi\)
0.740526 + 0.672028i \(0.234577\pi\)
\(110\) 10.1248 0.965358
\(111\) 0.619562 + 1.61745i 0.0588062 + 0.153522i
\(112\) −2.56238 + 0.658939i −0.242122 + 0.0622638i
\(113\) −1.60752 2.78431i −0.151223 0.261926i 0.780454 0.625213i \(-0.214988\pi\)
−0.931677 + 0.363287i \(0.881655\pi\)
\(114\) 0.794668 + 2.07459i 0.0744275 + 0.194303i
\(115\) 3.56238 + 6.17023i 0.332194 + 0.575377i
\(116\) −3.54063 + 6.13255i −0.328739 + 0.569393i
\(117\) 3.53379 + 16.7422i 0.326699 + 1.54782i
\(118\) 1.12476 0.103543
\(119\) 1.08126 3.87828i 0.0991186 0.355521i
\(120\) −3.47141 + 4.28061i −0.316895 + 0.390764i
\(121\) 0.437618 0.757977i 0.0397835 0.0689070i
\(122\) −3.12476 −0.282903
\(123\) −3.47141 9.06259i −0.313007 0.817146i
\(124\) −9.42107 −0.846037
\(125\) −0.396990 −0.0355079
\(126\) 7.92107 + 0.506659i 0.705665 + 0.0451368i
\(127\) 20.1053 1.78406 0.892030 0.451976i \(-0.149281\pi\)
0.892030 + 0.451976i \(0.149281\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 7.44966 9.18620i 0.655906 0.808800i
\(130\) −18.1488 −1.59176
\(131\) −3.18194 + 5.51129i −0.278008 + 0.481523i −0.970890 0.239528i \(-0.923007\pi\)
0.692882 + 0.721051i \(0.256341\pi\)
\(132\) −1.97141 5.14663i −0.171589 0.447957i
\(133\) 2.37524 + 2.42368i 0.205959 + 0.210160i
\(134\) −10.9669 −0.947396
\(135\) 13.8856 8.97539i 1.19509 0.772479i
\(136\) 0.760877 1.31788i 0.0652446 0.113007i
\(137\) −1.37072 2.37416i −0.117109 0.202838i 0.801512 0.597979i \(-0.204029\pi\)
−0.918621 + 0.395140i \(0.870696\pi\)
\(138\) 2.44282 3.01225i 0.207947 0.256420i
\(139\) −3.98345 6.89953i −0.337872 0.585211i 0.646161 0.763202i \(-0.276374\pi\)
−0.984032 + 0.177991i \(0.943040\pi\)
\(140\) −2.26088 + 8.10936i −0.191079 + 0.685366i
\(141\) −9.96978 1.58632i −0.839607 0.133593i
\(142\) −8.69002 −0.729251
\(143\) 9.07442 15.7174i 0.758841 1.31435i
\(144\) 2.85185 + 0.931107i 0.237654 + 0.0775923i
\(145\) 11.2661 + 19.5134i 0.935597 + 1.62050i
\(146\) 2.48345 4.30146i 0.205532 0.355991i
\(147\) 11.4074 4.10748i 0.940866 0.338779i
\(148\) 0.500000 + 0.866025i 0.0410997 + 0.0711868i
\(149\) 11.6300 20.1437i 0.952764 1.65024i 0.213360 0.976974i \(-0.431559\pi\)
0.739404 0.673262i \(-0.235107\pi\)
\(150\) 3.17511 + 8.28905i 0.259246 + 0.676798i
\(151\) 4.06238 + 7.03625i 0.330592 + 0.572602i 0.982628 0.185586i \(-0.0594183\pi\)
−0.652036 + 0.758188i \(0.726085\pi\)
\(152\) 0.641315 + 1.11079i 0.0520175 + 0.0900970i
\(153\) −3.39699 + 3.04993i −0.274630 + 0.246572i
\(154\) −5.89248 6.01266i −0.474829 0.484514i
\(155\) −14.9887 + 25.9611i −1.20392 + 2.08525i
\(156\) 3.53379 + 9.22544i 0.282930 + 0.738627i
\(157\) −11.2632 −0.898901 −0.449451 0.893305i \(-0.648380\pi\)
−0.449451 + 0.893305i \(0.648380\pi\)
\(158\) 4.13844 0.329236
\(159\) 2.24433 2.76748i 0.177987 0.219476i
\(160\) −1.59097 + 2.75564i −0.125777 + 0.217853i
\(161\) 1.59097 5.70653i 0.125386 0.449738i
\(162\) −7.26608 5.31075i −0.570877 0.417252i
\(163\) −1.99028 3.44727i −0.155891 0.270011i 0.777492 0.628893i \(-0.216492\pi\)
−0.933383 + 0.358881i \(0.883158\pi\)
\(164\) −2.80150 4.85235i −0.218761 0.378905i
\(165\) −17.3187 2.75564i −1.34826 0.214527i
\(166\) 4.03379 6.98673i 0.313083 0.542276i
\(167\) 2.61956 + 4.53721i 0.202708 + 0.351100i 0.949400 0.314070i \(-0.101693\pi\)
−0.746692 + 0.665170i \(0.768359\pi\)
\(168\) 4.56238 0.429736i 0.351995 0.0331549i
\(169\) −9.76608 + 16.9153i −0.751237 + 1.30118i
\(170\) −2.42107 4.19341i −0.185687 0.321620i
\(171\) −0.794668 3.76494i −0.0607698 0.287912i
\(172\) 3.41423 5.91362i 0.260333 0.450909i
\(173\) 2.55159 0.193994 0.0969968 0.995285i \(-0.469076\pi\)
0.0969968 + 0.995285i \(0.469076\pi\)
\(174\) 7.72545 9.52628i 0.585665 0.722185i
\(175\) 9.49028 + 9.68385i 0.717398 + 0.732030i
\(176\) −1.59097 2.75564i −0.119924 0.207714i
\(177\) −1.92395 0.306125i −0.144613 0.0230098i
\(178\) −0.112725 0.195246i −0.00844910 0.0146343i
\(179\) 3.51887 6.09487i 0.263013 0.455552i −0.704028 0.710172i \(-0.748617\pi\)
0.967041 + 0.254620i \(0.0819504\pi\)
\(180\) 7.10301 6.37731i 0.529427 0.475337i
\(181\) −12.9669 −0.963822 −0.481911 0.876220i \(-0.660057\pi\)
−0.481911 + 0.876220i \(0.660057\pi\)
\(182\) 10.5624 + 10.7778i 0.782936 + 0.798904i
\(183\) 5.34501 + 0.850463i 0.395115 + 0.0628680i
\(184\) 1.11956 1.93914i 0.0825352 0.142955i
\(185\) 3.18194 0.233941
\(186\) 16.1150 + 2.56412i 1.18161 + 0.188010i
\(187\) 4.84213 0.354092
\(188\) −5.82846 −0.425084
\(189\) −13.4114 3.02252i −0.975532 0.219856i
\(190\) 4.08126 0.296085
\(191\) 1.98057 0.143309 0.0716545 0.997430i \(-0.477172\pi\)
0.0716545 + 0.997430i \(0.477172\pi\)
\(192\) 1.71053 + 0.272169i 0.123447 + 0.0196421i
\(193\) −4.54583 −0.327216 −0.163608 0.986525i \(-0.552313\pi\)
−0.163608 + 0.986525i \(0.552313\pi\)
\(194\) −7.42107 + 12.8537i −0.532802 + 0.922839i
\(195\) 31.0442 + 4.93955i 2.22312 + 0.353728i
\(196\) 6.13160 3.37690i 0.437971 0.241207i
\(197\) −21.8148 −1.55424 −0.777120 0.629353i \(-0.783320\pi\)
−0.777120 + 0.629353i \(0.783320\pi\)
\(198\) 1.97141 + 9.34004i 0.140102 + 0.663768i
\(199\) 6.14132 10.6371i 0.435346 0.754042i −0.561978 0.827152i \(-0.689959\pi\)
0.997324 + 0.0731106i \(0.0232926\pi\)
\(200\) 2.56238 + 4.43818i 0.181188 + 0.313826i
\(201\) 18.7592 + 2.98485i 1.32317 + 0.210535i
\(202\) 9.29467 + 16.0988i 0.653971 + 1.13271i
\(203\) 5.03147 18.0470i 0.353140 1.26665i
\(204\) −1.66019 + 2.04719i −0.116237 + 0.143332i
\(205\) −17.8285 −1.24519
\(206\) −0.141315 + 0.244765i −0.00984589 + 0.0170536i
\(207\) −4.99837 + 4.48769i −0.347410 + 0.311916i
\(208\) 2.85185 + 4.93955i 0.197740 + 0.342496i
\(209\) −2.04063 + 3.53447i −0.141153 + 0.244485i
\(210\) 6.07442 13.2560i 0.419175 0.914751i
\(211\) −8.32846 14.4253i −0.573355 0.993080i −0.996218 0.0868863i \(-0.972308\pi\)
0.422863 0.906193i \(-0.361025\pi\)
\(212\) 1.02859 1.78157i 0.0706438 0.122359i
\(213\) 14.8646 + 2.36515i 1.01850 + 0.162058i
\(214\) −5.68878 9.85326i −0.388877 0.673555i
\(215\) −10.8639 18.8168i −0.740911 1.28330i
\(216\) −4.62476 2.36887i −0.314675 0.161181i
\(217\) 24.1404 6.20790i 1.63876 0.421420i
\(218\) 2.21053 3.82876i 0.149716 0.259316i
\(219\) −5.41874 + 6.68187i −0.366165 + 0.451519i
\(220\) −10.1248 −0.682611
\(221\) −8.67962 −0.583854
\(222\) −0.619562 1.61745i −0.0415823 0.108556i
\(223\) −5.32846 + 9.22916i −0.356820 + 0.618031i −0.987428 0.158071i \(-0.949472\pi\)
0.630608 + 0.776102i \(0.282806\pi\)
\(224\) 2.56238 0.658939i 0.171206 0.0440272i
\(225\) −3.17511 15.0429i −0.211674 1.00286i
\(226\) 1.60752 + 2.78431i 0.106931 + 0.185210i
\(227\) 7.25404 + 12.5644i 0.481468 + 0.833926i 0.999774 0.0212688i \(-0.00677059\pi\)
−0.518306 + 0.855195i \(0.673437\pi\)
\(228\) −0.794668 2.07459i −0.0526282 0.137393i
\(229\) −5.12476 + 8.87635i −0.338654 + 0.586566i −0.984180 0.177173i \(-0.943305\pi\)
0.645526 + 0.763738i \(0.276638\pi\)
\(230\) −3.56238 6.17023i −0.234896 0.406853i
\(231\) 8.44282 + 11.8886i 0.555497 + 0.782212i
\(232\) 3.54063 6.13255i 0.232454 0.402622i
\(233\) 0.540628 + 0.936396i 0.0354177 + 0.0613453i 0.883191 0.469014i \(-0.155390\pi\)
−0.847773 + 0.530359i \(0.822057\pi\)
\(234\) −3.53379 16.7422i −0.231011 1.09447i
\(235\) −9.27292 + 16.0612i −0.604898 + 1.04771i
\(236\) −1.12476 −0.0732159
\(237\) −7.07893 1.12635i −0.459826 0.0731645i
\(238\) −1.08126 + 3.87828i −0.0700874 + 0.251391i
\(239\) −6.16019 10.6698i −0.398470 0.690170i 0.595068 0.803676i \(-0.297125\pi\)
−0.993537 + 0.113506i \(0.963792\pi\)
\(240\) 3.47141 4.28061i 0.224079 0.276312i
\(241\) 6.50000 + 11.2583i 0.418702 + 0.725213i 0.995809 0.0914555i \(-0.0291519\pi\)
−0.577107 + 0.816668i \(0.695819\pi\)
\(242\) −0.437618 + 0.757977i −0.0281312 + 0.0487246i
\(243\) 10.9834 + 11.0618i 0.704589 + 0.709616i
\(244\) 3.12476 0.200042
\(245\) 0.449657 22.2691i 0.0287275 1.42272i
\(246\) 3.47141 + 9.06259i 0.221329 + 0.577809i
\(247\) 3.65787 6.33561i 0.232744 0.403125i
\(248\) 9.42107 0.598238
\(249\) −8.80150 + 10.8532i −0.557773 + 0.687791i
\(250\) 0.396990 0.0251079
\(251\) 5.11109 0.322609 0.161305 0.986905i \(-0.448430\pi\)
0.161305 + 0.986905i \(0.448430\pi\)
\(252\) −7.92107 0.506659i −0.498980 0.0319165i
\(253\) 7.12476 0.447930
\(254\) −20.1053 −1.26152
\(255\) 3.00000 + 7.83191i 0.187867 + 0.490453i
\(256\) 1.00000 0.0625000
\(257\) −3.83009 + 6.63392i −0.238915 + 0.413813i −0.960403 0.278614i \(-0.910125\pi\)
0.721488 + 0.692427i \(0.243458\pi\)
\(258\) −7.44966 + 9.18620i −0.463795 + 0.571908i
\(259\) −1.85185 1.88962i −0.115068 0.117415i
\(260\) 18.1488 1.12554
\(261\) −15.8074 + 14.1924i −0.978453 + 0.878487i
\(262\) 3.18194 5.51129i 0.196581 0.340488i
\(263\) 1.54746 + 2.68029i 0.0954208 + 0.165274i 0.909784 0.415082i \(-0.136247\pi\)
−0.814363 + 0.580355i \(0.802914\pi\)
\(264\) 1.97141 + 5.14663i 0.121332 + 0.316753i
\(265\) −3.27292 5.66886i −0.201054 0.348235i
\(266\) −2.37524 2.42368i −0.145635 0.148605i
\(267\) 0.139680 + 0.364654i 0.00854830 + 0.0223165i
\(268\) 10.9669 0.669910
\(269\) −13.4451 + 23.2877i −0.819765 + 1.41987i 0.0860906 + 0.996287i \(0.472563\pi\)
−0.905855 + 0.423587i \(0.860771\pi\)
\(270\) −13.8856 + 8.97539i −0.845053 + 0.546225i
\(271\) −11.1082 19.2400i −0.674776 1.16875i −0.976534 0.215362i \(-0.930907\pi\)
0.301759 0.953384i \(-0.402426\pi\)
\(272\) −0.760877 + 1.31788i −0.0461349 + 0.0799080i
\(273\) −15.1339 21.3106i −0.915947 1.28977i
\(274\) 1.37072 + 2.37416i 0.0828084 + 0.143428i
\(275\) −8.15335 + 14.1220i −0.491666 + 0.851590i
\(276\) −2.44282 + 3.01225i −0.147040 + 0.181316i
\(277\) 7.31875 + 12.6764i 0.439741 + 0.761653i 0.997669 0.0682357i \(-0.0217370\pi\)
−0.557928 + 0.829889i \(0.688404\pi\)
\(278\) 3.98345 + 6.89953i 0.238911 + 0.413807i
\(279\) −26.8675 8.77202i −1.60851 0.525167i
\(280\) 2.26088 8.10936i 0.135113 0.484627i
\(281\) 11.6992 20.2636i 0.697915 1.20882i −0.271273 0.962502i \(-0.587445\pi\)
0.969188 0.246322i \(-0.0792219\pi\)
\(282\) 9.96978 + 1.58632i 0.593691 + 0.0944642i
\(283\) −26.1248 −1.55296 −0.776478 0.630144i \(-0.782996\pi\)
−0.776478 + 0.630144i \(0.782996\pi\)
\(284\) 8.69002 0.515658
\(285\) −6.98113 1.11079i −0.413526 0.0657975i
\(286\) −9.07442 + 15.7174i −0.536582 + 0.929387i
\(287\) 10.3759 + 10.5876i 0.612471 + 0.624963i
\(288\) −2.85185 0.931107i −0.168047 0.0548660i
\(289\) 7.34213 + 12.7169i 0.431890 + 0.748056i
\(290\) −11.2661 19.5134i −0.661567 1.14587i
\(291\) 16.1923 19.9668i 0.949212 1.17048i
\(292\) −2.48345 + 4.30146i −0.145333 + 0.251724i
\(293\) 12.9315 + 22.3980i 0.755465 + 1.30850i 0.945143 + 0.326657i \(0.105922\pi\)
−0.189678 + 0.981846i \(0.560745\pi\)
\(294\) −11.4074 + 4.10748i −0.665293 + 0.239553i
\(295\) −1.78947 + 3.09945i −0.104187 + 0.180457i
\(296\) −0.500000 0.866025i −0.0290619 0.0503367i
\(297\) −0.830095 16.5130i −0.0481670 0.958182i
\(298\) −11.6300 + 20.1437i −0.673706 + 1.16689i
\(299\) −12.7713 −0.738582
\(300\) −3.17511 8.28905i −0.183315 0.478568i
\(301\) −4.85185 + 17.4027i −0.279656 + 1.00308i
\(302\) −4.06238 7.03625i −0.233764 0.404891i
\(303\) −11.5172 30.0673i −0.661648 1.72732i
\(304\) −0.641315 1.11079i −0.0367819 0.0637082i
\(305\) 4.97141 8.61073i 0.284662 0.493049i
\(306\) 3.39699 3.04993i 0.194193 0.174353i
\(307\) 3.53216 0.201591 0.100795 0.994907i \(-0.467861\pi\)
0.100795 + 0.994907i \(0.467861\pi\)
\(308\) 5.89248 + 6.01266i 0.335755 + 0.342603i
\(309\) 0.308342 0.380217i 0.0175409 0.0216298i
\(310\) 14.9887 25.9611i 0.851298 1.47449i
\(311\) 1.70370 0.0966078 0.0483039 0.998833i \(-0.484618\pi\)
0.0483039 + 0.998833i \(0.484618\pi\)
\(312\) −3.53379 9.22544i −0.200062 0.522288i
\(313\) −2.84213 −0.160647 −0.0803234 0.996769i \(-0.525595\pi\)
−0.0803234 + 0.996769i \(0.525595\pi\)
\(314\) 11.2632 0.635619
\(315\) −13.9984 + 21.0216i −0.788719 + 1.18443i
\(316\) −4.13844 −0.232805
\(317\) −24.9201 −1.39965 −0.699827 0.714313i \(-0.746739\pi\)
−0.699827 + 0.714313i \(0.746739\pi\)
\(318\) −2.24433 + 2.76748i −0.125855 + 0.155193i
\(319\) 22.5322 1.26156
\(320\) 1.59097 2.75564i 0.0889380 0.154045i
\(321\) 7.04910 + 18.4026i 0.393442 + 1.02713i
\(322\) −1.59097 + 5.70653i −0.0886614 + 0.318013i
\(323\) 1.95185 0.108604
\(324\) 7.26608 + 5.31075i 0.403671 + 0.295042i
\(325\) 14.6150 25.3140i 0.810697 1.40417i
\(326\) 1.99028 + 3.44727i 0.110232 + 0.190927i
\(327\) −4.82326 + 5.94758i −0.266727 + 0.328902i
\(328\) 2.80150 + 4.85235i 0.154687 + 0.267926i
\(329\) 14.9347 3.84060i 0.823379 0.211739i
\(330\) 17.3187 + 2.75564i 0.953366 + 0.151693i
\(331\) −7.17154 −0.394183 −0.197092 0.980385i \(-0.563150\pi\)
−0.197092 + 0.980385i \(0.563150\pi\)
\(332\) −4.03379 + 6.98673i −0.221383 + 0.383447i
\(333\) 0.619562 + 2.93533i 0.0339518 + 0.160855i
\(334\) −2.61956 4.53721i −0.143336 0.248265i
\(335\) 17.4480 30.2209i 0.953287 1.65114i
\(336\) −4.56238 + 0.429736i −0.248898 + 0.0234440i
\(337\) −10.9211 18.9158i −0.594908 1.03041i −0.993560 0.113309i \(-0.963855\pi\)
0.398651 0.917103i \(-0.369478\pi\)
\(338\) 9.76608 16.9153i 0.531205 0.920073i
\(339\) −1.99192 5.20018i −0.108186 0.282435i
\(340\) 2.42107 + 4.19341i 0.131301 + 0.227420i
\(341\) 14.9887 + 25.9611i 0.811681 + 1.40587i
\(342\) 0.794668 + 3.76494i 0.0429707 + 0.203585i
\(343\) −13.4863 + 12.6933i −0.728193 + 0.685372i
\(344\) −3.41423 + 5.91362i −0.184083 + 0.318841i
\(345\) 4.41423 + 11.5239i 0.237654 + 0.620428i
\(346\) −2.55159 −0.137174
\(347\) −2.11109 −0.113329 −0.0566646 0.998393i \(-0.518047\pi\)
−0.0566646 + 0.998393i \(0.518047\pi\)
\(348\) −7.72545 + 9.52628i −0.414128 + 0.510662i
\(349\) 18.1082 31.3643i 0.969310 1.67889i 0.271751 0.962368i \(-0.412397\pi\)
0.697559 0.716527i \(-0.254269\pi\)
\(350\) −9.49028 9.68385i −0.507277 0.517623i
\(351\) 1.48796 + 29.5999i 0.0794215 + 1.57993i
\(352\) 1.59097 + 2.75564i 0.0847991 + 0.146876i
\(353\) 5.24433 + 9.08344i 0.279127 + 0.483463i 0.971168 0.238396i \(-0.0766215\pi\)
−0.692041 + 0.721858i \(0.743288\pi\)
\(354\) 1.92395 + 0.306125i 0.102257 + 0.0162704i
\(355\) 13.8256 23.9466i 0.733786 1.27095i
\(356\) 0.112725 + 0.195246i 0.00597442 + 0.0103480i
\(357\) 2.90507 6.33963i 0.153753 0.335529i
\(358\) −3.51887 + 6.09487i −0.185978 + 0.322124i
\(359\) 16.2209 + 28.0955i 0.856108 + 1.48282i 0.875613 + 0.483013i \(0.160458\pi\)
−0.0195047 + 0.999810i \(0.506209\pi\)
\(360\) −7.10301 + 6.37731i −0.374361 + 0.336114i
\(361\) 8.67743 15.0297i 0.456707 0.791039i
\(362\) 12.9669 0.681525
\(363\) 0.954858 1.17744i 0.0501171 0.0617995i
\(364\) −10.5624 10.7778i −0.553619 0.564911i
\(365\) 7.90219 + 13.6870i 0.413620 + 0.716410i
\(366\) −5.34501 0.850463i −0.279388 0.0444544i
\(367\) 9.05555 + 15.6847i 0.472696 + 0.818733i 0.999512 0.0312465i \(-0.00994768\pi\)
−0.526816 + 0.849979i \(0.676614\pi\)
\(368\) −1.11956 + 1.93914i −0.0583612 + 0.101085i
\(369\) −3.47141 16.4467i −0.180714 0.856179i
\(370\) −3.18194 −0.165421
\(371\) −1.46169 + 5.24284i −0.0758874 + 0.272195i
\(372\) −16.1150 2.56412i −0.835526 0.132943i
\(373\) 5.83530 10.1070i 0.302140 0.523322i −0.674480 0.738293i \(-0.735632\pi\)
0.976621 + 0.214971i \(0.0689656\pi\)
\(374\) −4.84213 −0.250381
\(375\) −0.679065 0.108048i −0.0350668 0.00557959i
\(376\) 5.82846 0.300580
\(377\) −40.3893 −2.08016
\(378\) 13.4114 + 3.02252i 0.689805 + 0.155462i
\(379\) 14.2690 0.732947 0.366474 0.930428i \(-0.380565\pi\)
0.366474 + 0.930428i \(0.380565\pi\)
\(380\) −4.08126 −0.209364
\(381\) 34.3908 + 5.47204i 1.76190 + 0.280341i
\(382\) −1.98057 −0.101335
\(383\) 0.824893 1.42876i 0.0421501 0.0730061i −0.844181 0.536059i \(-0.819913\pi\)
0.886331 + 0.463053i \(0.153246\pi\)
\(384\) −1.71053 0.272169i −0.0872903 0.0138891i
\(385\) 25.9435 6.67160i 1.32220 0.340016i
\(386\) 4.54583 0.231377
\(387\) 15.2431 13.6857i 0.774849 0.695685i
\(388\) 7.42107 12.8537i 0.376748 0.652546i
\(389\) 16.0338 + 27.7713i 0.812946 + 1.40806i 0.910794 + 0.412862i \(0.135471\pi\)
−0.0978483 + 0.995201i \(0.531196\pi\)
\(390\) −31.0442 4.93955i −1.57198 0.250124i
\(391\) −1.70370 2.95089i −0.0861596 0.149233i
\(392\) −6.13160 + 3.37690i −0.309693 + 0.170559i
\(393\) −6.94282 + 8.56122i −0.350219 + 0.431856i
\(394\) 21.8148 1.09901
\(395\) −6.58414 + 11.4041i −0.331284 + 0.573800i
\(396\) −1.97141 9.34004i −0.0990671 0.469355i
\(397\) −18.9669 32.8516i −0.951921 1.64878i −0.741261 0.671217i \(-0.765772\pi\)
−0.210660 0.977559i \(-0.567561\pi\)
\(398\) −6.14132 + 10.6371i −0.307836 + 0.533188i
\(399\) 3.40327 + 4.79225i 0.170377 + 0.239913i
\(400\) −2.56238 4.43818i −0.128119 0.221909i
\(401\) −5.30959 + 9.19647i −0.265148 + 0.459250i −0.967602 0.252479i \(-0.918754\pi\)
0.702454 + 0.711729i \(0.252087\pi\)
\(402\) −18.7592 2.98485i −0.935626 0.148871i
\(403\) −26.8675 46.5358i −1.33836 2.31811i
\(404\) −9.29467 16.0988i −0.462427 0.800947i
\(405\) 26.1947 11.5735i 1.30162 0.575090i
\(406\) −5.03147 + 18.0470i −0.249708 + 0.895657i
\(407\) 1.59097 2.75564i 0.0788615 0.136592i
\(408\) 1.66019 2.04719i 0.0821916 0.101351i
\(409\) 5.54583 0.274224 0.137112 0.990556i \(-0.456218\pi\)
0.137112 + 0.990556i \(0.456218\pi\)
\(410\) 17.8285 0.880485
\(411\) −1.69850 4.43415i −0.0837806 0.218721i
\(412\) 0.141315 0.244765i 0.00696209 0.0120587i
\(413\) 2.88207 0.741150i 0.141818 0.0364696i
\(414\) 4.99837 4.48769i 0.245656 0.220558i
\(415\) 12.8353 + 22.2314i 0.630060 + 1.09130i
\(416\) −2.85185 4.93955i −0.139823 0.242181i
\(417\) −4.93598 12.8861i −0.241716 0.631033i
\(418\) 2.04063 3.53447i 0.0998104 0.172877i
\(419\) 2.77455 + 4.80566i 0.135546 + 0.234772i 0.925806 0.378000i \(-0.123388\pi\)
−0.790260 + 0.612772i \(0.790055\pi\)
\(420\) −6.07442 + 13.2560i −0.296401 + 0.646826i
\(421\) −3.42107 + 5.92546i −0.166733 + 0.288789i −0.937269 0.348606i \(-0.886655\pi\)
0.770537 + 0.637396i \(0.219988\pi\)
\(422\) 8.32846 + 14.4253i 0.405423 + 0.702213i
\(423\) −16.6219 5.42692i −0.808184 0.263866i
\(424\) −1.02859 + 1.78157i −0.0499527 + 0.0865207i
\(425\) 7.79863 0.378289
\(426\) −14.8646 2.36515i −0.720191 0.114592i
\(427\) −8.00684 + 2.05903i −0.387478 + 0.0996433i
\(428\) 5.68878 + 9.85326i 0.274978 + 0.476275i
\(429\) 19.7999 24.4153i 0.955947 1.17878i
\(430\) 10.8639 + 18.8168i 0.523903 + 0.907427i
\(431\) 16.5539 28.6722i 0.797374 1.38109i −0.123947 0.992289i \(-0.539555\pi\)
0.921321 0.388803i \(-0.127111\pi\)
\(432\) 4.62476 + 2.36887i 0.222509 + 0.113972i
\(433\) −12.1111 −0.582022 −0.291011 0.956720i \(-0.593992\pi\)
−0.291011 + 0.956720i \(0.593992\pi\)
\(434\) −24.1404 + 6.20790i −1.15877 + 0.297989i
\(435\) 13.9601 + 36.4446i 0.669334 + 1.74739i
\(436\) −2.21053 + 3.82876i −0.105865 + 0.183364i
\(437\) 2.87197 0.137385
\(438\) 5.41874 6.68187i 0.258918 0.319272i
\(439\) −8.83422 −0.421634 −0.210817 0.977526i \(-0.567612\pi\)
−0.210817 + 0.977526i \(0.567612\pi\)
\(440\) 10.1248 0.482679
\(441\) 20.6307 3.92124i 0.982412 0.186726i
\(442\) 8.67962 0.412847
\(443\) 17.5185 0.832328 0.416164 0.909290i \(-0.363374\pi\)
0.416164 + 0.909290i \(0.363374\pi\)
\(444\) 0.619562 + 1.61745i 0.0294031 + 0.0767608i
\(445\) 0.717370 0.0340066
\(446\) 5.32846 9.22916i 0.252310 0.437014i
\(447\) 25.3759 31.2911i 1.20024 1.48002i
\(448\) −2.56238 + 0.658939i −0.121061 + 0.0311319i
\(449\) 31.2301 1.47384 0.736920 0.675980i \(-0.236280\pi\)
0.736920 + 0.675980i \(0.236280\pi\)
\(450\) 3.17511 + 15.0429i 0.149676 + 0.709127i
\(451\) −8.91423 + 15.4399i −0.419755 + 0.727036i
\(452\) −1.60752 2.78431i −0.0756115 0.130963i
\(453\) 5.03379 + 13.1414i 0.236508 + 0.617437i
\(454\) −7.25404 12.5644i −0.340449 0.589675i
\(455\) −46.5043 + 11.9590i −2.18015 + 0.560645i
\(456\) 0.794668 + 2.07459i 0.0372138 + 0.0971516i
\(457\) −32.1248 −1.50273 −0.751367 0.659885i \(-0.770605\pi\)
−0.751367 + 0.659885i \(0.770605\pi\)
\(458\) 5.12476 8.87635i 0.239464 0.414765i
\(459\) −6.64076 + 4.29245i −0.309964 + 0.200354i
\(460\) 3.56238 + 6.17023i 0.166097 + 0.287688i
\(461\) 1.23229 2.13438i 0.0573933 0.0994081i −0.835901 0.548880i \(-0.815054\pi\)
0.893295 + 0.449472i \(0.148388\pi\)
\(462\) −8.44282 11.8886i −0.392796 0.553108i
\(463\) 15.1735 + 26.2812i 0.705171 + 1.22139i 0.966630 + 0.256177i \(0.0824631\pi\)
−0.261459 + 0.965215i \(0.584204\pi\)
\(464\) −3.54063 + 6.13255i −0.164370 + 0.284696i
\(465\) −32.7044 + 40.3279i −1.51663 + 1.87016i
\(466\) −0.540628 0.936396i −0.0250441 0.0433777i
\(467\) −7.98181 13.8249i −0.369354 0.639740i 0.620110 0.784515i \(-0.287088\pi\)
−0.989465 + 0.144774i \(0.953754\pi\)
\(468\) 3.53379 + 16.7422i 0.163350 + 0.773909i
\(469\) −28.1014 + 7.22651i −1.29760 + 0.333689i
\(470\) 9.27292 16.0612i 0.427728 0.740846i
\(471\) −19.2661 3.06549i −0.887734 0.141250i
\(472\) 1.12476 0.0517714
\(473\) −21.7278 −0.999044
\(474\) 7.07893 + 1.12635i 0.325146 + 0.0517351i
\(475\) −3.28659 + 5.69254i −0.150799 + 0.261192i
\(476\) 1.08126 3.87828i 0.0495593 0.177760i
\(477\) 4.59222 4.12304i 0.210263 0.188781i
\(478\) 6.16019 + 10.6698i 0.281761 + 0.488024i
\(479\) 11.5865 + 20.0683i 0.529399 + 0.916946i 0.999412 + 0.0342863i \(0.0109158\pi\)
−0.470013 + 0.882659i \(0.655751\pi\)
\(480\) −3.47141 + 4.28061i −0.158447 + 0.195382i
\(481\) −2.85185 + 4.93955i −0.130033 + 0.225224i
\(482\) −6.50000 11.2583i −0.296067 0.512803i
\(483\) 4.27455 9.32820i 0.194499 0.424448i
\(484\) 0.437618 0.757977i 0.0198917 0.0344535i
\(485\) −23.6134 40.8996i −1.07223 1.85716i
\(486\) −10.9834 11.0618i −0.498219 0.501774i
\(487\) 1.70658 2.95588i 0.0773323 0.133943i −0.824766 0.565474i \(-0.808693\pi\)
0.902098 + 0.431531i \(0.142026\pi\)
\(488\) −3.12476 −0.141451
\(489\) −2.46621 6.43837i −0.111526 0.291153i
\(490\) −0.449657 + 22.2691i −0.0203134 + 1.00601i
\(491\) −9.58414 16.6002i −0.432526 0.749157i 0.564564 0.825389i \(-0.309044\pi\)
−0.997090 + 0.0762323i \(0.975711\pi\)
\(492\) −3.47141 9.06259i −0.156503 0.408573i
\(493\) −5.38796 9.33223i −0.242662 0.420302i
\(494\) −3.65787 + 6.33561i −0.164575 + 0.285053i
\(495\) −28.8743 9.42724i −1.29780 0.423723i
\(496\) −9.42107 −0.423018
\(497\) −22.2672 + 5.72619i −0.998819 + 0.256855i
\(498\) 8.80150 10.8532i 0.394405 0.486342i
\(499\) −20.5848 + 35.6540i −0.921503 + 1.59609i −0.124413 + 0.992231i \(0.539705\pi\)
−0.797090 + 0.603860i \(0.793629\pi\)
\(500\) −0.396990 −0.0177539
\(501\) 3.24596 + 8.47402i 0.145019 + 0.378591i
\(502\) −5.11109 −0.228119
\(503\) −26.4542 −1.17953 −0.589767 0.807574i \(-0.700780\pi\)
−0.589767 + 0.807574i \(0.700780\pi\)
\(504\) 7.92107 + 0.506659i 0.352832 + 0.0225684i
\(505\) −59.1502 −2.63215
\(506\) −7.12476 −0.316734
\(507\) −21.3090 + 26.2762i −0.946367 + 1.16697i
\(508\) 20.1053 0.892030
\(509\) −6.38564 + 11.0603i −0.283039 + 0.490237i −0.972132 0.234436i \(-0.924676\pi\)
0.689093 + 0.724673i \(0.258009\pi\)
\(510\) −3.00000 7.83191i −0.132842 0.346803i
\(511\) 3.52915 12.6584i 0.156120 0.559975i
\(512\) −1.00000 −0.0441942
\(513\) −0.334608 6.65634i −0.0147733 0.293884i
\(514\) 3.83009 6.63392i 0.168938 0.292610i
\(515\) −0.449657 0.778828i −0.0198142 0.0343193i
\(516\) 7.44966 9.18620i 0.327953 0.404400i
\(517\) 9.27292 + 16.0612i 0.407822 + 0.706369i
\(518\) 1.85185 + 1.88962i 0.0813655 + 0.0830251i
\(519\) 4.36458 + 0.694462i 0.191584 + 0.0304835i
\(520\) −18.1488 −0.795879
\(521\) −3.40615 + 5.89962i −0.149226 + 0.258467i −0.930942 0.365168i \(-0.881012\pi\)
0.781716 + 0.623635i \(0.214345\pi\)
\(522\) 15.8074 14.1924i 0.691871 0.621184i
\(523\) 14.7535 + 25.5538i 0.645125 + 1.11739i 0.984273 + 0.176656i \(0.0565280\pi\)
−0.339148 + 0.940733i \(0.610139\pi\)
\(524\) −3.18194 + 5.51129i −0.139004 + 0.240762i
\(525\) 13.5978 + 19.1475i 0.593457 + 0.835665i
\(526\) −1.54746 2.68029i −0.0674727 0.116866i
\(527\) 7.16827 12.4158i 0.312255 0.540841i
\(528\) −1.97141 5.14663i −0.0857946 0.223978i
\(529\) 8.99316 + 15.5766i 0.391007 + 0.677244i
\(530\) 3.27292 + 5.66886i 0.142166 + 0.246239i
\(531\) −3.20765 1.04728i −0.139200 0.0454479i
\(532\) 2.37524 + 2.42368i 0.102980 + 0.105080i
\(533\) 15.9789 27.6763i 0.692125 1.19879i
\(534\) −0.139680 0.364654i −0.00604456 0.0157801i
\(535\) 36.2028 1.56518
\(536\) −10.9669 −0.473698
\(537\) 7.67799 9.46775i 0.331330 0.408564i
\(538\) 13.4451 23.2877i 0.579661 1.00400i
\(539\) −19.0607 11.5239i −0.821004 0.496371i
\(540\) 13.8856 8.97539i 0.597543 0.386239i
\(541\) 14.7008 + 25.4626i 0.632038 + 1.09472i 0.987135 + 0.159892i \(0.0511145\pi\)
−0.355097 + 0.934829i \(0.615552\pi\)
\(542\) 11.1082 + 19.2400i 0.477139 + 0.826428i
\(543\) −22.1803 3.52918i −0.951848 0.151452i
\(544\) 0.760877 1.31788i 0.0326223 0.0565035i
\(545\) 7.03379 + 12.1829i 0.301295 + 0.521857i
\(546\) 15.1339 + 21.3106i 0.647672 + 0.912007i
\(547\) 17.6150 30.5102i 0.753165 1.30452i −0.193116 0.981176i \(-0.561859\pi\)
0.946281 0.323344i \(-0.104807\pi\)
\(548\) −1.37072 2.37416i −0.0585544 0.101419i
\(549\) 8.91135 + 2.90949i 0.380327 + 0.124174i
\(550\) 8.15335 14.1220i 0.347660 0.602165i
\(551\) 9.08263 0.386933
\(552\) 2.44282 3.01225i 0.103973 0.128210i
\(553\) 10.6043 2.72698i 0.450939 0.115963i
\(554\) −7.31875 12.6764i −0.310944 0.538570i
\(555\) 5.44282 + 0.866025i 0.231035 + 0.0367607i
\(556\) −3.98345 6.89953i −0.168936 0.292605i
\(557\) −3.36909 + 5.83543i −0.142753 + 0.247255i −0.928532 0.371252i \(-0.878929\pi\)
0.785779 + 0.618507i \(0.212262\pi\)
\(558\) 26.8675 + 8.77202i 1.13739 + 0.371349i
\(559\) 38.9475 1.64730
\(560\) −2.26088 + 8.10936i −0.0955395 + 0.342683i
\(561\) 8.28263 + 1.31788i 0.349693 + 0.0556408i
\(562\) −11.6992 + 20.2636i −0.493500 + 0.854768i
\(563\) −1.45993 −0.0615286 −0.0307643 0.999527i \(-0.509794\pi\)
−0.0307643 + 0.999527i \(0.509794\pi\)
\(564\) −9.96978 1.58632i −0.419803 0.0667963i
\(565\) −10.2301 −0.430383
\(566\) 26.1248 1.09811
\(567\) −22.1179 8.82028i −0.928866 0.370417i
\(568\) −8.69002 −0.364625
\(569\) 19.5653 0.820218 0.410109 0.912036i \(-0.365491\pi\)
0.410109 + 0.912036i \(0.365491\pi\)
\(570\) 6.98113 + 1.11079i 0.292407 + 0.0465259i
\(571\) −21.9259 −0.917569 −0.458785 0.888547i \(-0.651715\pi\)
−0.458785 + 0.888547i \(0.651715\pi\)
\(572\) 9.07442 15.7174i 0.379421 0.657176i
\(573\) 3.38783 + 0.539049i 0.141529 + 0.0225191i
\(574\) −10.3759 10.5876i −0.433083 0.441916i
\(575\) 11.4750 0.478540
\(576\) 2.85185 + 0.931107i 0.118827 + 0.0387961i
\(577\) 12.3655 21.4177i 0.514783 0.891631i −0.485069 0.874476i \(-0.661206\pi\)
0.999853 0.0171554i \(-0.00546099\pi\)
\(578\) −7.34213 12.7169i −0.305392 0.528955i
\(579\) −7.77579 1.23723i −0.323151 0.0514176i
\(580\) 11.2661 + 19.5134i 0.467798 + 0.810251i
\(581\) 5.73229 20.5607i 0.237815 0.853001i
\(582\) −16.1923 + 19.9668i −0.671194 + 0.827652i
\(583\) −6.54583 −0.271101
\(584\) 2.48345 4.30146i 0.102766 0.177996i
\(585\) 51.7577 + 16.8985i 2.13992 + 0.698668i
\(586\) −12.9315 22.3980i −0.534194 0.925251i
\(587\) −18.0796 + 31.3148i −0.746226 + 1.29250i 0.203394 + 0.979097i \(0.434803\pi\)
−0.949620 + 0.313404i \(0.898531\pi\)
\(588\) 11.4074 4.10748i 0.470433 0.169390i
\(589\) 6.04187 + 10.4648i 0.248951 + 0.431196i
\(590\) 1.78947 3.09945i 0.0736712 0.127602i
\(591\) −37.3149 5.93730i −1.53493 0.244228i
\(592\) 0.500000 + 0.866025i 0.0205499 + 0.0355934i
\(593\) −7.55391 13.0838i −0.310202 0.537285i 0.668204 0.743978i \(-0.267063\pi\)
−0.978406 + 0.206693i \(0.933730\pi\)
\(594\) 0.830095 + 16.5130i 0.0340592 + 0.677537i
\(595\) −8.96690 9.14978i −0.367607 0.375105i
\(596\) 11.6300 20.1437i 0.476382 0.825118i
\(597\) 13.4000 16.5236i 0.548426 0.676265i
\(598\) 12.7713 0.522256
\(599\) −5.45417 −0.222851 −0.111426 0.993773i \(-0.535542\pi\)
−0.111426 + 0.993773i \(0.535542\pi\)
\(600\) 3.17511 + 8.28905i 0.129623 + 0.338399i
\(601\) −3.36840 + 5.83424i −0.137400 + 0.237984i −0.926512 0.376266i \(-0.877208\pi\)
0.789112 + 0.614250i \(0.210541\pi\)
\(602\) 4.85185 17.4027i 0.197747 0.709282i
\(603\) 31.2759 + 10.2114i 1.27365 + 0.415839i
\(604\) 4.06238 + 7.03625i 0.165296 + 0.286301i
\(605\) −1.39248 2.41184i −0.0566122 0.0980553i
\(606\) 11.5172 + 30.0673i 0.467856 + 1.22140i
\(607\) −3.33530 + 5.77690i −0.135376 + 0.234477i −0.925741 0.378159i \(-0.876557\pi\)
0.790365 + 0.612636i \(0.209891\pi\)
\(608\) 0.641315 + 1.11079i 0.0260088 + 0.0450485i
\(609\) 13.5183 29.5006i 0.547790 1.19542i
\(610\) −4.97141 + 8.61073i −0.201287 + 0.348638i
\(611\) −16.6219 28.7899i −0.672449 1.16472i
\(612\) −3.39699 + 3.04993i −0.137315 + 0.123286i
\(613\) 0.654988 1.13447i 0.0264547 0.0458209i −0.852495 0.522735i \(-0.824912\pi\)
0.878950 + 0.476915i \(0.158245\pi\)
\(614\) −3.53216 −0.142546
\(615\) −30.4962 4.85235i −1.22972 0.195666i
\(616\) −5.89248 6.01266i −0.237415 0.242257i
\(617\) 17.2483 + 29.8749i 0.694390 + 1.20272i 0.970386 + 0.241560i \(0.0776589\pi\)
−0.275996 + 0.961159i \(0.589008\pi\)
\(618\) −0.308342 + 0.380217i −0.0124033 + 0.0152946i
\(619\) 8.22421 + 14.2447i 0.330559 + 0.572545i 0.982622 0.185620i \(-0.0594295\pi\)
−0.652063 + 0.758165i \(0.726096\pi\)
\(620\) −14.9887 + 25.9611i −0.601959 + 1.04262i
\(621\) −9.77128 + 6.31595i −0.392108 + 0.253450i
\(622\) −1.70370 −0.0683120
\(623\) −0.417500 0.426015i −0.0167268 0.0170679i
\(624\) 3.53379 + 9.22544i 0.141465 + 0.369313i
\(625\) 12.1803 21.0969i 0.487212 0.843877i
\(626\) 2.84213 0.113594
\(627\) −4.45254 + 5.49044i −0.177817 + 0.219267i
\(628\) −11.2632 −0.449451
\(629\) −1.52175 −0.0606763
\(630\) 13.9984 21.0216i 0.557708 0.837519i
\(631\) −30.0118 −1.19475 −0.597375 0.801962i \(-0.703790\pi\)
−0.597375 + 0.801962i \(0.703790\pi\)
\(632\) 4.13844 0.164618
\(633\) −10.3200 26.9417i −0.410183 1.07084i
\(634\) 24.9201 0.989704
\(635\) 31.9870 55.4031i 1.26937 2.19861i
\(636\) 2.24433 2.76748i 0.0889933 0.109738i
\(637\) 34.1668 + 20.6569i 1.35374 + 0.818456i
\(638\) −22.5322 −0.892057
\(639\) 24.7826 + 8.09134i 0.980386 + 0.320089i
\(640\) −1.59097 + 2.75564i −0.0628887 + 0.108926i
\(641\) −13.9497 24.1615i −0.550978 0.954322i −0.998204 0.0599014i \(-0.980921\pi\)
0.447226 0.894421i \(-0.352412\pi\)
\(642\) −7.04910 18.4026i −0.278206 0.726294i
\(643\) 14.2524 + 24.6859i 0.562060 + 0.973516i 0.997317 + 0.0732100i \(0.0233243\pi\)
−0.435257 + 0.900306i \(0.643342\pi\)
\(644\) 1.59097 5.70653i 0.0626931 0.224869i
\(645\) −13.4617 35.1436i −0.530054 1.38378i
\(646\) −1.95185 −0.0767944
\(647\) 8.35705 14.4748i 0.328550 0.569065i −0.653675 0.756776i \(-0.726774\pi\)
0.982224 + 0.187711i \(0.0601069\pi\)
\(648\) −7.26608 5.31075i −0.285439 0.208626i
\(649\) 1.78947 + 3.09945i 0.0702427 + 0.121664i
\(650\) −14.6150 + 25.3140i −0.573249 + 0.992897i
\(651\) 42.9825 4.04857i 1.68462 0.158676i
\(652\) −1.99028 3.44727i −0.0779456 0.135006i
\(653\) −19.0825 + 33.0519i −0.746756 + 1.29342i 0.202614 + 0.979259i \(0.435056\pi\)
−0.949370 + 0.314161i \(0.898277\pi\)
\(654\) 4.82326 5.94758i 0.188604 0.232569i
\(655\) 10.1248 + 17.5366i 0.395607 + 0.685212i
\(656\) −2.80150 4.85235i −0.109380 0.189452i
\(657\) −11.0875 + 9.95475i −0.432566 + 0.388372i
\(658\) −14.9347 + 3.84060i −0.582217 + 0.149722i
\(659\) 4.37072 7.57031i 0.170259 0.294898i −0.768251 0.640148i \(-0.778873\pi\)
0.938510 + 0.345251i \(0.112206\pi\)
\(660\) −17.3187 2.75564i −0.674131 0.107263i
\(661\) −20.0837 −0.781167 −0.390584 0.920567i \(-0.627727\pi\)
−0.390584 + 0.920567i \(0.627727\pi\)
\(662\) 7.17154 0.278730
\(663\) −14.8468 2.36232i −0.576601 0.0917449i
\(664\) 4.03379 6.98673i 0.156541 0.271138i
\(665\) 10.4577 2.68930i 0.405534 0.104286i
\(666\) −0.619562 2.93533i −0.0240075 0.113742i
\(667\) −7.92790 13.7315i −0.306970 0.531687i
\(668\) 2.61956 + 4.53721i 0.101354 + 0.175550i
\(669\) −11.6264 + 14.3366i −0.449503 + 0.554283i
\(670\) −17.4480 + 30.2209i −0.674076 + 1.16753i
\(671\) −4.97141 8.61073i −0.191919 0.332414i
\(672\) 4.56238 0.429736i 0.175998 0.0165774i
\(673\) −17.0264 + 29.4906i −0.656319 + 1.13678i 0.325242 + 0.945631i \(0.394554\pi\)
−0.981561 + 0.191148i \(0.938779\pi\)
\(674\) 10.9211 + 18.9158i 0.420664 + 0.728611i
\(675\) −1.33693 26.5955i −0.0514585 1.02366i
\(676\) −9.76608 + 16.9153i −0.375618 + 0.650590i
\(677\) −0.717370 −0.0275708 −0.0137854 0.999905i \(-0.504388\pi\)
−0.0137854 + 0.999905i \(0.504388\pi\)
\(678\) 1.99192 + 5.20018i 0.0764992 + 0.199712i
\(679\) −10.5458 + 37.8260i −0.404712 + 1.45163i
\(680\) −2.42107 4.19341i −0.0928437 0.160810i
\(681\) 8.98865 + 23.4661i 0.344446 + 0.899223i
\(682\) −14.9887 25.9611i −0.573945 0.994102i
\(683\) −10.5270 + 18.2332i −0.402803 + 0.697675i −0.994063 0.108806i \(-0.965297\pi\)
0.591260 + 0.806481i \(0.298631\pi\)
\(684\) −0.794668 3.76494i −0.0303849 0.143956i
\(685\) −8.72313 −0.333294
\(686\) 13.4863 12.6933i 0.514910 0.484631i
\(687\) −11.1819 + 13.7885i −0.426618 + 0.526064i
\(688\) 3.41423 5.91362i 0.130166 0.225455i
\(689\) 11.7335 0.447012
\(690\) −4.41423 11.5239i −0.168047 0.438709i
\(691\) 5.84789 0.222464 0.111232 0.993794i \(-0.464520\pi\)
0.111232 + 0.993794i \(0.464520\pi\)
\(692\) 2.55159 0.0969968
\(693\) 11.2060 + 22.6337i 0.425681 + 0.859784i
\(694\) 2.11109 0.0801359
\(695\) −25.3502 −0.961588
\(696\) 7.72545 9.52628i 0.292832 0.361093i
\(697\) 8.52640 0.322960
\(698\) −18.1082 + 31.3643i −0.685406 + 1.18716i
\(699\) 0.669905 + 1.74888i 0.0253381 + 0.0661486i
\(700\) 9.49028 + 9.68385i 0.358699 + 0.366015i
\(701\) 10.2711 0.387935 0.193967 0.981008i \(-0.437864\pi\)
0.193967 + 0.981008i \(0.437864\pi\)
\(702\) −1.48796 29.5999i −0.0561595 1.11718i
\(703\) 0.641315 1.11079i 0.0241877 0.0418942i
\(704\) −1.59097 2.75564i −0.0599620 0.103857i
\(705\) −20.2330 + 24.9494i −0.762018 + 0.939647i
\(706\) −5.24433 9.08344i −0.197373 0.341860i
\(707\) 34.4246 + 35.1268i 1.29467 + 1.32108i
\(708\) −1.92395 0.306125i −0.0723063 0.0115049i
\(709\) 43.4854 1.63313 0.816564 0.577255i \(-0.195876\pi\)
0.816564 + 0.577255i \(0.195876\pi\)
\(710\) −13.8256 + 23.9466i −0.518865 + 0.898700i
\(711\) −11.8022 3.85333i −0.442617 0.144511i
\(712\) −0.112725 0.195246i −0.00422455 0.00731714i
\(713\) 10.5475 18.2687i 0.395006 0.684170i
\(714\) −2.90507 + 6.33963i −0.108720 + 0.237255i
\(715\) −28.8743 50.0117i −1.07984 1.87033i
\(716\) 3.51887 6.09487i 0.131507 0.227776i
\(717\) −7.63323 19.9276i −0.285068 0.744210i
\(718\) −16.2209 28.0955i −0.605360 1.04851i
\(719\) 25.4412 + 44.0654i 0.948796 + 1.64336i 0.747966 + 0.663737i \(0.231031\pi\)
0.200830 + 0.979626i \(0.435636\pi\)
\(720\) 7.10301 6.37731i 0.264714 0.237668i
\(721\) −0.200818 + 0.720299i −0.00747886 + 0.0268253i
\(722\) −8.67743 + 15.0297i −0.322941 + 0.559349i
\(723\) 8.05430 + 21.0268i 0.299543 + 0.781997i
\(724\) −12.9669 −0.481911
\(725\) 36.2898 1.34777
\(726\) −0.954858 + 1.17744i −0.0354381 + 0.0436989i
\(727\) 6.07210 10.5172i 0.225202 0.390061i −0.731178 0.682186i \(-0.761029\pi\)
0.956380 + 0.292126i \(0.0943626\pi\)
\(728\) 10.5624 + 10.7778i 0.391468 + 0.399452i
\(729\) 15.7769 + 21.9110i 0.584329 + 0.811517i
\(730\) −7.90219 13.6870i −0.292473 0.506579i
\(731\) 5.19562 + 8.99907i 0.192167 + 0.332843i
\(732\) 5.34501 + 0.850463i 0.197557 + 0.0314340i
\(733\) 23.0848 39.9841i 0.852657 1.47685i −0.0261440 0.999658i \(-0.508323\pi\)
0.878801 0.477188i \(-0.158344\pi\)
\(734\) −9.05555 15.6847i −0.334246 0.578932i
\(735\) 6.83009 37.9696i 0.251932 1.40053i
\(736\) 1.11956 1.93914i 0.0412676 0.0714776i
\(737\) −17.4480 30.2209i −0.642706 1.11320i
\(738\) 3.47141 + 16.4467i 0.127784 + 0.605410i
\(739\) −2.49604 + 4.32327i −0.0918184 + 0.159034i −0.908276 0.418371i \(-0.862601\pi\)
0.816458 + 0.577405i \(0.195935\pi\)
\(740\) 3.18194 0.116971
\(741\) 7.98126 9.84172i 0.293199 0.361545i
\(742\) 1.46169 5.24284i 0.0536605 0.192471i
\(743\) −15.7060 27.2036i −0.576198 0.998004i −0.995910 0.0903470i \(-0.971202\pi\)
0.419712 0.907657i \(-0.362131\pi\)
\(744\) 16.1150 + 2.56412i 0.590806 + 0.0940052i
\(745\) −37.0059 64.0961i −1.35579 2.34830i
\(746\) −5.83530 + 10.1070i −0.213645 + 0.370045i
\(747\) −18.0092 + 16.1692i −0.658921 + 0.591600i
\(748\) 4.84213 0.177046
\(749\) −21.0695 21.4992i −0.769863 0.785565i
\(750\) 0.679065 + 0.108048i 0.0247959 + 0.00394536i
\(751\) −1.64815 + 2.85468i −0.0601419 + 0.104169i −0.894529 0.447010i \(-0.852489\pi\)
0.834387 + 0.551179i \(0.185822\pi\)
\(752\) −5.82846 −0.212542
\(753\) 8.74269 + 1.39108i 0.318601 + 0.0506937i
\(754\) 40.3893 1.47089
\(755\) 25.8525 0.940870
\(756\) −13.4114 3.02252i −0.487766 0.109928i
\(757\) −10.1384 −0.368488 −0.184244 0.982881i \(-0.558984\pi\)
−0.184244 + 0.982881i \(0.558984\pi\)
\(758\) −14.2690 −0.518272
\(759\) 12.1871 + 1.93914i 0.442365 + 0.0703862i
\(760\) 4.08126 0.148043
\(761\) −7.03379 + 12.1829i −0.254975 + 0.441629i −0.964889 0.262659i \(-0.915400\pi\)
0.709914 + 0.704288i \(0.248734\pi\)
\(762\) −34.3908 5.47204i −1.24585 0.198231i
\(763\) 3.14132 11.2673i 0.113723 0.407905i
\(764\) 1.98057 0.0716545
\(765\) 3.00000 + 14.2132i 0.108465 + 0.513881i
\(766\) −0.824893 + 1.42876i −0.0298046 + 0.0516231i
\(767\) −3.20765 5.55582i −0.115822 0.200609i