Properties

Label 126.2.e.c.25.2
Level $126$
Weight $2$
Character 126.25
Analytic conductor $1.006$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(25,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 25.2
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 126.25
Dual form 126.2.e.c.121.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(0.933463 - 1.45899i) q^{3} +1.00000 q^{4} +(-0.296790 + 0.514055i) q^{5} +(-0.933463 + 1.45899i) q^{6} +(2.32383 - 1.26483i) q^{7} -1.00000 q^{8} +(-1.25729 - 2.72382i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(0.933463 - 1.45899i) q^{3} +1.00000 q^{4} +(-0.296790 + 0.514055i) q^{5} +(-0.933463 + 1.45899i) q^{6} +(2.32383 - 1.26483i) q^{7} -1.00000 q^{8} +(-1.25729 - 2.72382i) q^{9} +(0.296790 - 0.514055i) q^{10} +(0.296790 + 0.514055i) q^{11} +(0.933463 - 1.45899i) q^{12} +(-1.25729 - 2.17770i) q^{13} +(-2.32383 + 1.26483i) q^{14} +(0.472958 + 0.912864i) q^{15} +1.00000 q^{16} +(1.46050 - 2.52967i) q^{17} +(1.25729 + 2.72382i) q^{18} +(2.69076 + 4.66053i) q^{19} +(-0.296790 + 0.514055i) q^{20} +(0.323832 - 4.57112i) q^{21} +(-0.296790 - 0.514055i) q^{22} +(-2.23025 + 3.86291i) q^{23} +(-0.933463 + 1.45899i) q^{24} +(2.32383 + 4.02499i) q^{25} +(1.25729 + 2.17770i) q^{26} +(-5.14766 - 0.708209i) q^{27} +(2.32383 - 1.26483i) q^{28} +(-3.09718 + 5.36447i) q^{29} +(-0.472958 - 0.912864i) q^{30} -7.86693 q^{31} -1.00000 q^{32} +(1.02704 + 0.0468383i) q^{33} +(-1.46050 + 2.52967i) q^{34} +(-0.0394951 + 1.56997i) q^{35} +(-1.25729 - 2.72382i) q^{36} +(0.500000 + 0.866025i) q^{37} +(-2.69076 - 4.66053i) q^{38} +(-4.35087 - 0.198422i) q^{39} +(0.296790 - 0.514055i) q^{40} +(-0.136673 - 0.236725i) q^{41} +(-0.323832 + 4.57112i) q^{42} +(-5.58113 + 9.66679i) q^{43} +(0.296790 + 0.514055i) q^{44} +(1.77335 + 0.162084i) q^{45} +(2.23025 - 3.86291i) q^{46} +12.1623 q^{47} +(0.933463 - 1.45899i) q^{48} +(3.80039 - 5.87852i) q^{49} +(-2.32383 - 4.02499i) q^{50} +(-2.32743 - 4.49221i) q^{51} +(-1.25729 - 2.17770i) q^{52} +(4.02704 - 6.97504i) q^{53} +(5.14766 + 0.708209i) q^{54} -0.352336 q^{55} +(-2.32383 + 1.26483i) q^{56} +(9.31138 + 0.424646i) q^{57} +(3.09718 - 5.36447i) q^{58} +8.64766 q^{59} +(0.472958 + 0.912864i) q^{60} -6.64766 q^{61} +7.86693 q^{62} +(-6.36693 - 4.73944i) q^{63} +1.00000 q^{64} +1.49261 q^{65} +(-1.02704 - 0.0468383i) q^{66} -1.91381 q^{67} +(1.46050 - 2.52967i) q^{68} +(3.55408 + 6.85980i) q^{69} +(0.0394951 - 1.56997i) q^{70} -14.4107 q^{71} +(1.25729 + 2.72382i) q^{72} +(3.95691 - 6.85356i) q^{73} +(-0.500000 - 0.866025i) q^{74} +(8.04163 + 0.366739i) q^{75} +(2.69076 + 4.66053i) q^{76} +(1.33988 + 0.819187i) q^{77} +(4.35087 + 0.198422i) q^{78} -9.24844 q^{79} +(-0.296790 + 0.514055i) q^{80} +(-5.83842 + 6.84929i) q^{81} +(0.136673 + 0.236725i) q^{82} +(3.85087 - 6.66991i) q^{83} +(0.323832 - 4.57112i) q^{84} +(0.866926 + 1.50156i) q^{85} +(5.58113 - 9.66679i) q^{86} +(4.93560 + 9.52628i) q^{87} +(-0.296790 - 0.514055i) q^{88} +(-6.21780 - 10.7695i) q^{89} +(-1.77335 - 0.162084i) q^{90} +(-5.67617 - 3.47033i) q^{91} +(-2.23025 + 3.86291i) q^{92} +(-7.34348 + 11.4778i) q^{93} -12.1623 q^{94} -3.19436 q^{95} +(-0.933463 + 1.45899i) q^{96} +(5.86693 - 10.1618i) q^{97} +(-3.80039 + 5.87852i) q^{98} +(1.02704 - 1.45472i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 2 q^{3} + 6 q^{4} + q^{5} - 2 q^{6} + 2 q^{7} - 6 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{2} + 2 q^{3} + 6 q^{4} + q^{5} - 2 q^{6} + 2 q^{7} - 6 q^{8} + 8 q^{9} - q^{10} - q^{11} + 2 q^{12} + 8 q^{13} - 2 q^{14} + 12 q^{15} + 6 q^{16} - 4 q^{17} - 8 q^{18} - 3 q^{19} + q^{20} - 10 q^{21} + q^{22} - 7 q^{23} - 2 q^{24} + 2 q^{25} - 8 q^{26} - 7 q^{27} + 2 q^{28} - 5 q^{29} - 12 q^{30} - 40 q^{31} - 6 q^{32} - 3 q^{33} + 4 q^{34} - 13 q^{35} + 8 q^{36} + 3 q^{37} + 3 q^{38} - 5 q^{39} - q^{40} + 10 q^{42} - 6 q^{43} - q^{44} + 9 q^{45} + 7 q^{46} + 18 q^{47} + 2 q^{48} + 12 q^{49} - 2 q^{50} + 6 q^{51} + 8 q^{52} + 15 q^{53} + 7 q^{54} - 26 q^{55} - 2 q^{56} + 22 q^{57} + 5 q^{58} + 28 q^{59} + 12 q^{60} - 16 q^{61} + 40 q^{62} - 31 q^{63} + 6 q^{64} + 24 q^{65} + 3 q^{66} - 2 q^{67} - 4 q^{68} + 3 q^{69} + 13 q^{70} + 14 q^{71} - 8 q^{72} + 19 q^{73} - 3 q^{74} + 8 q^{75} - 3 q^{76} + 10 q^{77} + 5 q^{78} - 10 q^{79} + q^{80} + 8 q^{81} + 2 q^{83} - 10 q^{84} - 2 q^{85} + 6 q^{86} - 27 q^{87} + q^{88} - 9 q^{89} - 9 q^{90} - 46 q^{91} - 7 q^{92} - 38 q^{93} - 18 q^{94} + 8 q^{95} - 2 q^{96} + 28 q^{97} - 12 q^{98} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.933463 1.45899i 0.538935 0.842347i
\(4\) 1.00000 0.500000
\(5\) −0.296790 + 0.514055i −0.132728 + 0.229892i −0.924727 0.380630i \(-0.875707\pi\)
0.791999 + 0.610522i \(0.209040\pi\)
\(6\) −0.933463 + 1.45899i −0.381085 + 0.595630i
\(7\) 2.32383 1.26483i 0.878326 0.478062i
\(8\) −1.00000 −0.353553
\(9\) −1.25729 2.72382i −0.419098 0.907941i
\(10\) 0.296790 0.514055i 0.0938531 0.162558i
\(11\) 0.296790 + 0.514055i 0.0894855 + 0.154993i 0.907294 0.420497i \(-0.138144\pi\)
−0.817808 + 0.575491i \(0.804811\pi\)
\(12\) 0.933463 1.45899i 0.269467 0.421174i
\(13\) −1.25729 2.17770i −0.348711 0.603985i 0.637310 0.770608i \(-0.280047\pi\)
−0.986021 + 0.166623i \(0.946714\pi\)
\(14\) −2.32383 + 1.26483i −0.621070 + 0.338041i
\(15\) 0.472958 + 0.912864i 0.122117 + 0.235700i
\(16\) 1.00000 0.250000
\(17\) 1.46050 2.52967i 0.354224 0.613535i −0.632760 0.774348i \(-0.718078\pi\)
0.986985 + 0.160813i \(0.0514116\pi\)
\(18\) 1.25729 + 2.72382i 0.296347 + 0.642011i
\(19\) 2.69076 + 4.66053i 0.617302 + 1.06920i 0.989976 + 0.141236i \(0.0451077\pi\)
−0.372674 + 0.927962i \(0.621559\pi\)
\(20\) −0.296790 + 0.514055i −0.0663642 + 0.114946i
\(21\) 0.323832 4.57112i 0.0706659 0.997500i
\(22\) −0.296790 0.514055i −0.0632758 0.109597i
\(23\) −2.23025 + 3.86291i −0.465040 + 0.805473i −0.999203 0.0399086i \(-0.987293\pi\)
0.534164 + 0.845381i \(0.320627\pi\)
\(24\) −0.933463 + 1.45899i −0.190542 + 0.297815i
\(25\) 2.32383 + 4.02499i 0.464766 + 0.804999i
\(26\) 1.25729 + 2.17770i 0.246576 + 0.427082i
\(27\) −5.14766 0.708209i −0.990668 0.136295i
\(28\) 2.32383 1.26483i 0.439163 0.239031i
\(29\) −3.09718 + 5.36447i −0.575132 + 0.996157i 0.420896 + 0.907109i \(0.361716\pi\)
−0.996027 + 0.0890480i \(0.971618\pi\)
\(30\) −0.472958 0.912864i −0.0863499 0.166665i
\(31\) −7.86693 −1.41294 −0.706471 0.707742i \(-0.749714\pi\)
−0.706471 + 0.707742i \(0.749714\pi\)
\(32\) −1.00000 −0.176777
\(33\) 1.02704 + 0.0468383i 0.178785 + 0.00815350i
\(34\) −1.46050 + 2.52967i −0.250475 + 0.433835i
\(35\) −0.0394951 + 1.56997i −0.00667590 + 0.265373i
\(36\) −1.25729 2.72382i −0.209549 0.453970i
\(37\) 0.500000 + 0.866025i 0.0821995 + 0.142374i 0.904194 0.427121i \(-0.140472\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −2.69076 4.66053i −0.436498 0.756038i
\(39\) −4.35087 0.198422i −0.696697 0.0317729i
\(40\) 0.296790 0.514055i 0.0469266 0.0812792i
\(41\) −0.136673 0.236725i −0.0213448 0.0369702i 0.855156 0.518371i \(-0.173461\pi\)
−0.876500 + 0.481401i \(0.840128\pi\)
\(42\) −0.323832 + 4.57112i −0.0499683 + 0.705339i
\(43\) −5.58113 + 9.66679i −0.851114 + 1.47417i 0.0290902 + 0.999577i \(0.490739\pi\)
−0.880204 + 0.474596i \(0.842594\pi\)
\(44\) 0.296790 + 0.514055i 0.0447427 + 0.0774967i
\(45\) 1.77335 + 0.162084i 0.264355 + 0.0241621i
\(46\) 2.23025 3.86291i 0.328833 0.569555i
\(47\) 12.1623 1.77405 0.887023 0.461724i \(-0.152769\pi\)
0.887023 + 0.461724i \(0.152769\pi\)
\(48\) 0.933463 1.45899i 0.134734 0.210587i
\(49\) 3.80039 5.87852i 0.542913 0.839789i
\(50\) −2.32383 4.02499i −0.328639 0.569220i
\(51\) −2.32743 4.49221i −0.325905 0.629035i
\(52\) −1.25729 2.17770i −0.174355 0.301992i
\(53\) 4.02704 6.97504i 0.553157 0.958096i −0.444888 0.895586i \(-0.646756\pi\)
0.998044 0.0625092i \(-0.0199103\pi\)
\(54\) 5.14766 + 0.708209i 0.700508 + 0.0963750i
\(55\) −0.352336 −0.0475090
\(56\) −2.32383 + 1.26483i −0.310535 + 0.169021i
\(57\) 9.31138 + 0.424646i 1.23332 + 0.0562457i
\(58\) 3.09718 5.36447i 0.406679 0.704389i
\(59\) 8.64766 1.12583 0.562915 0.826515i \(-0.309680\pi\)
0.562915 + 0.826515i \(0.309680\pi\)
\(60\) 0.472958 + 0.912864i 0.0610586 + 0.117850i
\(61\) −6.64766 −0.851146 −0.425573 0.904924i \(-0.639927\pi\)
−0.425573 + 0.904924i \(0.639927\pi\)
\(62\) 7.86693 0.999101
\(63\) −6.36693 4.73944i −0.802157 0.597113i
\(64\) 1.00000 0.125000
\(65\) 1.49261 0.185135
\(66\) −1.02704 0.0468383i −0.126420 0.00576540i
\(67\) −1.91381 −0.233809 −0.116905 0.993143i \(-0.537297\pi\)
−0.116905 + 0.993143i \(0.537297\pi\)
\(68\) 1.46050 2.52967i 0.177112 0.306767i
\(69\) 3.55408 + 6.85980i 0.427861 + 0.825822i
\(70\) 0.0394951 1.56997i 0.00472057 0.187647i
\(71\) −14.4107 −1.71023 −0.855117 0.518435i \(-0.826515\pi\)
−0.855117 + 0.518435i \(0.826515\pi\)
\(72\) 1.25729 + 2.72382i 0.148174 + 0.321006i
\(73\) 3.95691 6.85356i 0.463121 0.802149i −0.535994 0.844222i \(-0.680063\pi\)
0.999115 + 0.0420732i \(0.0133963\pi\)
\(74\) −0.500000 0.866025i −0.0581238 0.100673i
\(75\) 8.04163 + 0.366739i 0.928568 + 0.0423474i
\(76\) 2.69076 + 4.66053i 0.308651 + 0.534599i
\(77\) 1.33988 + 0.819187i 0.152694 + 0.0933550i
\(78\) 4.35087 + 0.198422i 0.492639 + 0.0224668i
\(79\) −9.24844 −1.04053 −0.520265 0.854005i \(-0.674167\pi\)
−0.520265 + 0.854005i \(0.674167\pi\)
\(80\) −0.296790 + 0.514055i −0.0331821 + 0.0574731i
\(81\) −5.83842 + 6.84929i −0.648713 + 0.761033i
\(82\) 0.136673 + 0.236725i 0.0150930 + 0.0261419i
\(83\) 3.85087 6.66991i 0.422688 0.732118i −0.573513 0.819196i \(-0.694420\pi\)
0.996201 + 0.0870787i \(0.0277532\pi\)
\(84\) 0.323832 4.57112i 0.0353329 0.498750i
\(85\) 0.866926 + 1.50156i 0.0940313 + 0.162867i
\(86\) 5.58113 9.66679i 0.601828 1.04240i
\(87\) 4.93560 + 9.52628i 0.529152 + 1.02132i
\(88\) −0.296790 0.514055i −0.0316379 0.0547984i
\(89\) −6.21780 10.7695i −0.659085 1.14157i −0.980853 0.194751i \(-0.937610\pi\)
0.321767 0.946819i \(-0.395723\pi\)
\(90\) −1.77335 0.162084i −0.186927 0.0170852i
\(91\) −5.67617 3.47033i −0.595024 0.363790i
\(92\) −2.23025 + 3.86291i −0.232520 + 0.402736i
\(93\) −7.34348 + 11.4778i −0.761484 + 1.19019i
\(94\) −12.1623 −1.25444
\(95\) −3.19436 −0.327734
\(96\) −0.933463 + 1.45899i −0.0952711 + 0.148907i
\(97\) 5.86693 10.1618i 0.595696 1.03178i −0.397752 0.917493i \(-0.630210\pi\)
0.993448 0.114283i \(-0.0364570\pi\)
\(98\) −3.80039 + 5.87852i −0.383897 + 0.593821i
\(99\) 1.02704 1.45472i 0.103222 0.146205i
\(100\) 2.32383 + 4.02499i 0.232383 + 0.402499i
\(101\) 0.811379 + 1.40535i 0.0807352 + 0.139837i 0.903566 0.428449i \(-0.140940\pi\)
−0.822831 + 0.568287i \(0.807607\pi\)
\(102\) 2.32743 + 4.49221i 0.230450 + 0.444795i
\(103\) −3.19076 + 5.52655i −0.314395 + 0.544548i −0.979309 0.202372i \(-0.935135\pi\)
0.664914 + 0.746920i \(0.268468\pi\)
\(104\) 1.25729 + 2.17770i 0.123288 + 0.213541i
\(105\) 2.25370 + 1.52313i 0.219938 + 0.148642i
\(106\) −4.02704 + 6.97504i −0.391141 + 0.677476i
\(107\) 9.35447 + 16.2024i 0.904331 + 1.56635i 0.821813 + 0.569758i \(0.192963\pi\)
0.0825182 + 0.996590i \(0.473704\pi\)
\(108\) −5.14766 0.708209i −0.495334 0.0681474i
\(109\) −1.43346 + 2.48283i −0.137301 + 0.237812i −0.926474 0.376359i \(-0.877176\pi\)
0.789173 + 0.614171i \(0.210509\pi\)
\(110\) 0.352336 0.0335940
\(111\) 1.73025 + 0.0789082i 0.164228 + 0.00748964i
\(112\) 2.32383 1.26483i 0.219581 0.119516i
\(113\) −6.16012 10.6696i −0.579495 1.00371i −0.995537 0.0943695i \(-0.969916\pi\)
0.416042 0.909345i \(-0.363417\pi\)
\(114\) −9.31138 0.424646i −0.872091 0.0397717i
\(115\) −1.32383 2.29294i −0.123448 0.213818i
\(116\) −3.09718 + 5.36447i −0.287566 + 0.498078i
\(117\) −4.35087 + 6.16266i −0.402238 + 0.569738i
\(118\) −8.64766 −0.796082
\(119\) 0.194356 7.72582i 0.0178166 0.708225i
\(120\) −0.472958 0.912864i −0.0431750 0.0833327i
\(121\) 5.32383 9.22115i 0.483985 0.838286i
\(122\) 6.64766 0.601851
\(123\) −0.472958 0.0215693i −0.0426452 0.00194484i
\(124\) −7.86693 −0.706471
\(125\) −5.72665 −0.512207
\(126\) 6.36693 + 4.73944i 0.567211 + 0.422223i
\(127\) 12.3346 1.09452 0.547261 0.836962i \(-0.315671\pi\)
0.547261 + 0.836962i \(0.315671\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 8.89397 + 17.1664i 0.783070 + 1.51142i
\(130\) −1.49261 −0.130910
\(131\) 0.593579 1.02811i 0.0518613 0.0898264i −0.838929 0.544240i \(-0.816818\pi\)
0.890791 + 0.454414i \(0.150151\pi\)
\(132\) 1.02704 + 0.0468383i 0.0893925 + 0.00407675i
\(133\) 12.1477 + 7.42692i 1.05334 + 0.643996i
\(134\) 1.91381 0.165328
\(135\) 1.89183 2.43599i 0.162823 0.209657i
\(136\) −1.46050 + 2.52967i −0.125237 + 0.216917i
\(137\) −1.26089 2.18393i −0.107725 0.186586i 0.807123 0.590383i \(-0.201023\pi\)
−0.914848 + 0.403797i \(0.867690\pi\)
\(138\) −3.55408 6.85980i −0.302544 0.583945i
\(139\) 2.45691 + 4.25549i 0.208392 + 0.360946i 0.951208 0.308550i \(-0.0998437\pi\)
−0.742816 + 0.669496i \(0.766510\pi\)
\(140\) −0.0394951 + 1.56997i −0.00333795 + 0.132686i
\(141\) 11.3530 17.7446i 0.956096 1.49436i
\(142\) 14.4107 1.20932
\(143\) 0.746304 1.29264i 0.0624091 0.108096i
\(144\) −1.25729 2.72382i −0.104775 0.226985i
\(145\) −1.83842 3.18424i −0.152673 0.264437i
\(146\) −3.95691 + 6.85356i −0.327476 + 0.567205i
\(147\) −5.02918 11.0321i −0.414800 0.909913i
\(148\) 0.500000 + 0.866025i 0.0410997 + 0.0711868i
\(149\) −9.02558 + 15.6328i −0.739404 + 1.28069i 0.213360 + 0.976974i \(0.431559\pi\)
−0.952764 + 0.303712i \(0.901774\pi\)
\(150\) −8.04163 0.366739i −0.656596 0.0299441i
\(151\) −0.823832 1.42692i −0.0670425 0.116121i 0.830556 0.556936i \(-0.188023\pi\)
−0.897598 + 0.440815i \(0.854690\pi\)
\(152\) −2.69076 4.66053i −0.218249 0.378019i
\(153\) −8.72665 0.797618i −0.705508 0.0644836i
\(154\) −1.33988 0.819187i −0.107971 0.0660120i
\(155\) 2.33482 4.04403i 0.187537 0.324824i
\(156\) −4.35087 0.198422i −0.348349 0.0158865i
\(157\) −6.60078 −0.526799 −0.263400 0.964687i \(-0.584844\pi\)
−0.263400 + 0.964687i \(0.584844\pi\)
\(158\) 9.24844 0.735766
\(159\) −6.41741 12.3863i −0.508934 0.982301i
\(160\) 0.296790 0.514055i 0.0234633 0.0406396i
\(161\) −0.296790 + 11.7977i −0.0233903 + 0.929785i
\(162\) 5.83842 6.84929i 0.458710 0.538131i
\(163\) −2.99115 5.18082i −0.234285 0.405793i 0.724780 0.688980i \(-0.241941\pi\)
−0.959065 + 0.283188i \(0.908608\pi\)
\(164\) −0.136673 0.236725i −0.0106724 0.0184851i
\(165\) −0.328893 + 0.514055i −0.0256043 + 0.0400191i
\(166\) −3.85087 + 6.66991i −0.298886 + 0.517685i
\(167\) 3.73025 + 6.46099i 0.288656 + 0.499966i 0.973489 0.228733i \(-0.0734584\pi\)
−0.684833 + 0.728700i \(0.740125\pi\)
\(168\) −0.323832 + 4.57112i −0.0249842 + 0.352670i
\(169\) 3.33842 5.78231i 0.256802 0.444793i
\(170\) −0.866926 1.50156i −0.0664902 0.115164i
\(171\) 9.31138 13.1888i 0.712059 1.00857i
\(172\) −5.58113 + 9.66679i −0.425557 + 0.737086i
\(173\) −25.6591 −1.95083 −0.975414 0.220381i \(-0.929270\pi\)
−0.975414 + 0.220381i \(0.929270\pi\)
\(174\) −4.93560 9.52628i −0.374167 0.722185i
\(175\) 10.4911 + 6.41415i 0.793056 + 0.484864i
\(176\) 0.296790 + 0.514055i 0.0223714 + 0.0387483i
\(177\) 8.07227 12.6168i 0.606749 0.948340i
\(178\) 6.21780 + 10.7695i 0.466044 + 0.807211i
\(179\) 7.51819 13.0219i 0.561936 0.973301i −0.435392 0.900241i \(-0.643390\pi\)
0.997328 0.0730602i \(-0.0232765\pi\)
\(180\) 1.77335 + 0.162084i 0.132177 + 0.0120810i
\(181\) −0.0861875 −0.00640627 −0.00320313 0.999995i \(-0.501020\pi\)
−0.00320313 + 0.999995i \(0.501020\pi\)
\(182\) 5.67617 + 3.47033i 0.420746 + 0.257238i
\(183\) −6.20535 + 9.69886i −0.458712 + 0.716961i
\(184\) 2.23025 3.86291i 0.164416 0.284778i
\(185\) −0.593579 −0.0436408
\(186\) 7.34348 11.4778i 0.538450 0.841590i
\(187\) 1.73385 0.126792
\(188\) 12.1623 0.887023
\(189\) −12.8581 + 4.86518i −0.935287 + 0.353890i
\(190\) 3.19436 0.231743
\(191\) 3.98229 0.288148 0.144074 0.989567i \(-0.453980\pi\)
0.144074 + 0.989567i \(0.453980\pi\)
\(192\) 0.933463 1.45899i 0.0673669 0.105293i
\(193\) 6.78074 0.488088 0.244044 0.969764i \(-0.421526\pi\)
0.244044 + 0.969764i \(0.421526\pi\)
\(194\) −5.86693 + 10.1618i −0.421221 + 0.729576i
\(195\) 1.39329 2.17770i 0.0997759 0.155948i
\(196\) 3.80039 5.87852i 0.271456 0.419895i
\(197\) 11.0584 0.787875 0.393938 0.919137i \(-0.371113\pi\)
0.393938 + 0.919137i \(0.371113\pi\)
\(198\) −1.02704 + 1.45472i −0.0729887 + 0.103383i
\(199\) 2.80924 4.86575i 0.199142 0.344924i −0.749109 0.662447i \(-0.769518\pi\)
0.948250 + 0.317523i \(0.102851\pi\)
\(200\) −2.32383 4.02499i −0.164320 0.284610i
\(201\) −1.78647 + 2.79223i −0.126008 + 0.196949i
\(202\) −0.811379 1.40535i −0.0570884 0.0988800i
\(203\) −0.412155 + 16.3835i −0.0289276 + 1.14990i
\(204\) −2.32743 4.49221i −0.162953 0.314518i
\(205\) 0.162253 0.0113322
\(206\) 3.19076 5.52655i 0.222311 0.385053i
\(207\) 13.3260 + 1.21800i 0.926219 + 0.0846566i
\(208\) −1.25729 2.17770i −0.0871777 0.150996i
\(209\) −1.59718 + 2.76639i −0.110479 + 0.191355i
\(210\) −2.25370 1.52313i −0.155520 0.105106i
\(211\) 9.66225 + 16.7355i 0.665177 + 1.15212i 0.979237 + 0.202717i \(0.0649772\pi\)
−0.314060 + 0.949403i \(0.601689\pi\)
\(212\) 4.02704 6.97504i 0.276578 0.479048i
\(213\) −13.4518 + 21.0250i −0.921705 + 1.44061i
\(214\) −9.35447 16.2024i −0.639459 1.10757i
\(215\) −3.31284 5.73801i −0.225934 0.391329i
\(216\) 5.14766 + 0.708209i 0.350254 + 0.0481875i
\(217\) −18.2814 + 9.95036i −1.24102 + 0.675474i
\(218\) 1.43346 2.48283i 0.0970863 0.168158i
\(219\) −6.30564 12.1706i −0.426096 0.822415i
\(220\) −0.352336 −0.0237545
\(221\) −7.34514 −0.494088
\(222\) −1.73025 0.0789082i −0.116127 0.00529597i
\(223\) 12.6623 21.9317i 0.847927 1.46865i −0.0351275 0.999383i \(-0.511184\pi\)
0.883055 0.469270i \(-0.155483\pi\)
\(224\) −2.32383 + 1.26483i −0.155268 + 0.0845103i
\(225\) 8.04163 11.3903i 0.536109 0.759354i
\(226\) 6.16012 + 10.6696i 0.409765 + 0.709734i
\(227\) −2.40856 4.17174i −0.159862 0.276888i 0.774957 0.632014i \(-0.217771\pi\)
−0.934819 + 0.355126i \(0.884438\pi\)
\(228\) 9.31138 + 0.424646i 0.616661 + 0.0281229i
\(229\) 4.64766 8.04999i 0.307126 0.531958i −0.670606 0.741814i \(-0.733966\pi\)
0.977732 + 0.209855i \(0.0672993\pi\)
\(230\) 1.32383 + 2.29294i 0.0872909 + 0.151192i
\(231\) 2.44592 1.19019i 0.160929 0.0783090i
\(232\) 3.09718 5.36447i 0.203340 0.352195i
\(233\) 0.0971780 + 0.168317i 0.00636634 + 0.0110268i 0.869191 0.494476i \(-0.164640\pi\)
−0.862825 + 0.505503i \(0.831307\pi\)
\(234\) 4.35087 6.16266i 0.284426 0.402865i
\(235\) −3.60963 + 6.25206i −0.235466 + 0.407840i
\(236\) 8.64766 0.562915
\(237\) −8.63307 + 13.4934i −0.560778 + 0.876488i
\(238\) −0.194356 + 7.72582i −0.0125982 + 0.500791i
\(239\) −6.82743 11.8255i −0.441630 0.764925i 0.556181 0.831061i \(-0.312266\pi\)
−0.997811 + 0.0661361i \(0.978933\pi\)
\(240\) 0.472958 + 0.912864i 0.0305293 + 0.0589251i
\(241\) 6.50000 + 11.2583i 0.418702 + 0.725213i 0.995809 0.0914555i \(-0.0291519\pi\)
−0.577107 + 0.816668i \(0.695819\pi\)
\(242\) −5.32383 + 9.22115i −0.342229 + 0.592758i
\(243\) 4.54309 + 14.9118i 0.291440 + 0.956589i
\(244\) −6.64766 −0.425573
\(245\) 1.89397 + 3.69829i 0.121001 + 0.236275i
\(246\) 0.472958 + 0.0215693i 0.0301547 + 0.00137521i
\(247\) 6.76615 11.7193i 0.430520 0.745682i
\(248\) 7.86693 0.499550
\(249\) −6.13667 11.8445i −0.388896 0.750614i
\(250\) 5.72665 0.362185
\(251\) −19.5438 −1.23359 −0.616796 0.787123i \(-0.711570\pi\)
−0.616796 + 0.787123i \(0.711570\pi\)
\(252\) −6.36693 4.73944i −0.401079 0.298556i
\(253\) −2.64766 −0.166457
\(254\) −12.3346 −0.773943
\(255\) 3.00000 + 0.136815i 0.187867 + 0.00856770i
\(256\) 1.00000 0.0625000
\(257\) −4.16372 + 7.21177i −0.259725 + 0.449858i −0.966168 0.257912i \(-0.916965\pi\)
0.706443 + 0.707770i \(0.250299\pi\)
\(258\) −8.89397 17.1664i −0.553714 1.06873i
\(259\) 2.25729 + 1.38008i 0.140261 + 0.0857540i
\(260\) 1.49261 0.0925676
\(261\) 18.5059 + 1.69145i 1.14549 + 0.104698i
\(262\) −0.593579 + 1.02811i −0.0366715 + 0.0635168i
\(263\) 8.54523 + 14.8008i 0.526921 + 0.912655i 0.999508 + 0.0313704i \(0.00998713\pi\)
−0.472586 + 0.881284i \(0.656680\pi\)
\(264\) −1.02704 0.0468383i −0.0632101 0.00288270i
\(265\) 2.39037 + 4.14024i 0.146839 + 0.254333i
\(266\) −12.1477 7.42692i −0.744821 0.455374i
\(267\) −21.5167 0.981271i −1.31680 0.0600528i
\(268\) −1.91381 −0.116905
\(269\) −5.00720 + 8.67272i −0.305294 + 0.528785i −0.977327 0.211737i \(-0.932088\pi\)
0.672033 + 0.740522i \(0.265421\pi\)
\(270\) −1.89183 + 2.43599i −0.115133 + 0.148250i
\(271\) 5.10457 + 8.84137i 0.310081 + 0.537075i 0.978380 0.206818i \(-0.0663106\pi\)
−0.668299 + 0.743893i \(0.732977\pi\)
\(272\) 1.46050 2.52967i 0.0885561 0.153384i
\(273\) −10.3617 + 5.04204i −0.627117 + 0.305158i
\(274\) 1.26089 + 2.18393i 0.0761733 + 0.131936i
\(275\) −1.37938 + 2.38915i −0.0831797 + 0.144071i
\(276\) 3.55408 + 6.85980i 0.213931 + 0.412911i
\(277\) −9.67111 16.7508i −0.581081 1.00646i −0.995352 0.0963074i \(-0.969297\pi\)
0.414271 0.910154i \(-0.364037\pi\)
\(278\) −2.45691 4.25549i −0.147355 0.255227i
\(279\) 9.89104 + 21.4281i 0.592161 + 1.28287i
\(280\) 0.0394951 1.56997i 0.00236029 0.0938235i
\(281\) −6.40136 + 11.0875i −0.381873 + 0.661424i −0.991330 0.131396i \(-0.958054\pi\)
0.609457 + 0.792819i \(0.291388\pi\)
\(282\) −11.3530 + 17.7446i −0.676062 + 1.05667i
\(283\) −16.3523 −0.972046 −0.486023 0.873946i \(-0.661553\pi\)
−0.486023 + 0.873946i \(0.661553\pi\)
\(284\) −14.4107 −0.855117
\(285\) −2.98181 + 4.66053i −0.176627 + 0.276066i
\(286\) −0.746304 + 1.29264i −0.0441299 + 0.0764352i
\(287\) −0.617023 0.377240i −0.0364217 0.0222678i
\(288\) 1.25729 + 2.72382i 0.0740868 + 0.160503i
\(289\) 4.23385 + 7.33325i 0.249050 + 0.431367i
\(290\) 1.83842 + 3.18424i 0.107956 + 0.186985i
\(291\) −9.34941 18.0455i −0.548072 1.05784i
\(292\) 3.95691 6.85356i 0.231560 0.401074i
\(293\) −10.3889 17.9941i −0.606926 1.05123i −0.991744 0.128235i \(-0.959069\pi\)
0.384817 0.922993i \(-0.374264\pi\)
\(294\) 5.02918 + 11.0321i 0.293308 + 0.643405i
\(295\) −2.56654 + 4.44537i −0.149430 + 0.258820i
\(296\) −0.500000 0.866025i −0.0290619 0.0503367i
\(297\) −1.16372 2.85637i −0.0675256 0.165743i
\(298\) 9.02558 15.6328i 0.522838 0.905582i
\(299\) 11.2163 0.648658
\(300\) 8.04163 + 0.366739i 0.464284 + 0.0211737i
\(301\) −0.742705 + 29.5232i −0.0428088 + 1.70169i
\(302\) 0.823832 + 1.42692i 0.0474062 + 0.0821099i
\(303\) 2.80778 + 0.128049i 0.161303 + 0.00735622i
\(304\) 2.69076 + 4.66053i 0.154326 + 0.267300i
\(305\) 1.97296 3.41726i 0.112971 0.195672i
\(306\) 8.72665 + 0.797618i 0.498870 + 0.0455968i
\(307\) −22.6768 −1.29424 −0.647118 0.762390i \(-0.724026\pi\)
−0.647118 + 0.762390i \(0.724026\pi\)
\(308\) 1.33988 + 0.819187i 0.0763469 + 0.0466775i
\(309\) 5.08472 + 9.81411i 0.289260 + 0.558305i
\(310\) −2.33482 + 4.04403i −0.132609 + 0.229686i
\(311\) −6.51459 −0.369408 −0.184704 0.982794i \(-0.559133\pi\)
−0.184704 + 0.982794i \(0.559133\pi\)
\(312\) 4.35087 + 0.198422i 0.246320 + 0.0112334i
\(313\) 0.266149 0.0150436 0.00752181 0.999972i \(-0.497606\pi\)
0.00752181 + 0.999972i \(0.497606\pi\)
\(314\) 6.60078 0.372503
\(315\) 4.32597 1.86633i 0.243741 0.105156i
\(316\) −9.24844 −0.520265
\(317\) 15.7237 0.883133 0.441566 0.897229i \(-0.354423\pi\)
0.441566 + 0.897229i \(0.354423\pi\)
\(318\) 6.41741 + 12.3863i 0.359871 + 0.694592i
\(319\) −3.67684 −0.205864
\(320\) −0.296790 + 0.514055i −0.0165910 + 0.0287365i
\(321\) 32.3712 + 1.47629i 1.80678 + 0.0823985i
\(322\) 0.296790 11.7977i 0.0165394 0.657458i
\(323\) 15.7195 0.874654
\(324\) −5.83842 + 6.84929i −0.324357 + 0.380516i
\(325\) 5.84348 10.1212i 0.324138 0.561424i
\(326\) 2.99115 + 5.18082i 0.165664 + 0.286939i
\(327\) 2.28434 + 4.40904i 0.126324 + 0.243820i
\(328\) 0.136673 + 0.236725i 0.00754651 + 0.0130709i
\(329\) 28.2630 15.3832i 1.55819 0.848105i
\(330\) 0.328893 0.514055i 0.0181050 0.0282978i
\(331\) −25.1623 −1.38304 −0.691521 0.722356i \(-0.743059\pi\)
−0.691521 + 0.722356i \(0.743059\pi\)
\(332\) 3.85087 6.66991i 0.211344 0.366059i
\(333\) 1.73025 2.45076i 0.0948172 0.134301i
\(334\) −3.73025 6.46099i −0.204110 0.353529i
\(335\) 0.568000 0.983804i 0.0310331 0.0537510i
\(336\) 0.323832 4.57112i 0.0176665 0.249375i
\(337\) −9.36693 16.2240i −0.510249 0.883777i −0.999929 0.0118752i \(-0.996220\pi\)
0.489681 0.871902i \(-0.337113\pi\)
\(338\) −3.33842 + 5.78231i −0.181586 + 0.314516i
\(339\) −21.3171 0.972168i −1.15779 0.0528009i
\(340\) 0.866926 + 1.50156i 0.0470156 + 0.0814335i
\(341\) −2.33482 4.04403i −0.126438 0.218997i
\(342\) −9.31138 + 13.1888i −0.503502 + 0.713169i
\(343\) 1.39610 18.4676i 0.0753825 0.997155i
\(344\) 5.58113 9.66679i 0.300914 0.521199i
\(345\) −4.58113 0.208922i −0.246640 0.0112480i
\(346\) 25.6591 1.37944
\(347\) 22.5438 1.21021 0.605106 0.796145i \(-0.293131\pi\)
0.605106 + 0.796145i \(0.293131\pi\)
\(348\) 4.93560 + 9.52628i 0.264576 + 0.510662i
\(349\) 1.89543 3.28298i 0.101460 0.175734i −0.810826 0.585287i \(-0.800982\pi\)
0.912286 + 0.409553i \(0.134315\pi\)
\(350\) −10.4911 6.41415i −0.560775 0.342851i
\(351\) 4.92986 + 12.1005i 0.263137 + 0.645876i
\(352\) −0.296790 0.514055i −0.0158189 0.0273992i
\(353\) −3.41741 5.91913i −0.181890 0.315043i 0.760634 0.649181i \(-0.224888\pi\)
−0.942524 + 0.334138i \(0.891555\pi\)
\(354\) −8.07227 + 12.6168i −0.429036 + 0.670578i
\(355\) 4.27694 7.40789i 0.226997 0.393170i
\(356\) −6.21780 10.7695i −0.329543 0.570785i
\(357\) −11.0905 7.49533i −0.586969 0.396695i
\(358\) −7.51819 + 13.0219i −0.397349 + 0.688228i
\(359\) −6.32237 10.9507i −0.333682 0.577954i 0.649549 0.760320i \(-0.274958\pi\)
−0.983231 + 0.182366i \(0.941624\pi\)
\(360\) −1.77335 0.162084i −0.0934636 0.00854259i
\(361\) −4.98035 + 8.62622i −0.262124 + 0.454012i
\(362\) 0.0861875 0.00452991
\(363\) −8.48395 16.3750i −0.445292 0.859465i
\(364\) −5.67617 3.47033i −0.297512 0.181895i
\(365\) 2.34874 + 4.06813i 0.122939 + 0.212936i
\(366\) 6.20535 9.69886i 0.324359 0.506968i
\(367\) −3.27188 5.66707i −0.170791 0.295819i 0.767906 0.640563i \(-0.221299\pi\)
−0.938697 + 0.344744i \(0.887966\pi\)
\(368\) −2.23025 + 3.86291i −0.116260 + 0.201368i
\(369\) −0.472958 + 0.669906i −0.0246212 + 0.0348739i
\(370\) 0.593579 0.0308587
\(371\) 0.535897 21.3024i 0.0278224 1.10596i
\(372\) −7.34348 + 11.4778i −0.380742 + 0.595094i
\(373\) −4.71420 + 8.16524i −0.244092 + 0.422780i −0.961876 0.273486i \(-0.911823\pi\)
0.717784 + 0.696266i \(0.245157\pi\)
\(374\) −1.73385 −0.0896553
\(375\) −5.34562 + 8.35512i −0.276047 + 0.431457i
\(376\) −12.1623 −0.627220
\(377\) 15.5763 0.802218
\(378\) 12.8581 4.86518i 0.661348 0.250238i
\(379\) −7.27762 −0.373826 −0.186913 0.982376i \(-0.559848\pi\)
−0.186913 + 0.982376i \(0.559848\pi\)
\(380\) −3.19436 −0.163867
\(381\) 11.5139 17.9961i 0.589876 0.921967i
\(382\) −3.98229 −0.203752
\(383\) 12.0416 20.8567i 0.615299 1.06573i −0.375033 0.927011i \(-0.622369\pi\)
0.990332 0.138717i \(-0.0442979\pi\)
\(384\) −0.933463 + 1.45899i −0.0476356 + 0.0744537i
\(385\) −0.818771 + 0.445647i −0.0417284 + 0.0227123i
\(386\) −6.78074 −0.345130
\(387\) 33.3478 + 3.04799i 1.69516 + 0.154938i
\(388\) 5.86693 10.1618i 0.297848 0.515888i
\(389\) 8.14913 + 14.1147i 0.413177 + 0.715644i 0.995235 0.0975035i \(-0.0310857\pi\)
−0.582058 + 0.813147i \(0.697752\pi\)
\(390\) −1.39329 + 2.17770i −0.0705522 + 0.110272i
\(391\) 6.51459 + 11.2836i 0.329457 + 0.570636i
\(392\) −3.80039 + 5.87852i −0.191949 + 0.296910i
\(393\) −0.945916 1.82573i −0.0477151 0.0920958i
\(394\) −11.0584 −0.557112
\(395\) 2.74484 4.75420i 0.138108 0.239210i
\(396\) 1.02704 1.45472i 0.0516108 0.0731025i
\(397\) −6.08619 10.5416i −0.305457 0.529067i 0.671906 0.740636i \(-0.265476\pi\)
−0.977363 + 0.211569i \(0.932143\pi\)
\(398\) −2.80924 + 4.86575i −0.140815 + 0.243898i
\(399\) 22.1752 10.7905i 1.11015 0.540203i
\(400\) 2.32383 + 4.02499i 0.116192 + 0.201250i
\(401\) 16.6804 28.8914i 0.832981 1.44277i −0.0626819 0.998034i \(-0.519965\pi\)
0.895663 0.444733i \(-0.146701\pi\)
\(402\) 1.78647 2.79223i 0.0891012 0.139264i
\(403\) 9.89104 + 17.1318i 0.492708 + 0.853395i
\(404\) 0.811379 + 1.40535i 0.0403676 + 0.0699187i
\(405\) −1.78813 5.03407i −0.0888529 0.250145i
\(406\) 0.412155 16.3835i 0.0204549 0.813102i
\(407\) −0.296790 + 0.514055i −0.0147113 + 0.0254808i
\(408\) 2.32743 + 4.49221i 0.115225 + 0.222398i
\(409\) −5.78074 −0.285839 −0.142920 0.989734i \(-0.545649\pi\)
−0.142920 + 0.989734i \(0.545649\pi\)
\(410\) −0.162253 −0.00801309
\(411\) −4.36333 0.198990i −0.215227 0.00981544i
\(412\) −3.19076 + 5.52655i −0.157197 + 0.272274i
\(413\) 20.0957 10.9379i 0.988846 0.538217i
\(414\) −13.3260 1.21800i −0.654936 0.0598612i
\(415\) 2.28580 + 3.95912i 0.112205 + 0.194346i
\(416\) 1.25729 + 2.17770i 0.0616439 + 0.106770i
\(417\) 8.50214 + 0.387740i 0.416351 + 0.0189877i
\(418\) 1.59718 2.76639i 0.0781205 0.135309i
\(419\) 15.4356 + 26.7352i 0.754078 + 1.30610i 0.945831 + 0.324659i \(0.105249\pi\)
−0.191753 + 0.981443i \(0.561417\pi\)
\(420\) 2.25370 + 1.52313i 0.109969 + 0.0743211i
\(421\) −1.86693 + 3.23361i −0.0909884 + 0.157597i −0.907927 0.419128i \(-0.862336\pi\)
0.816939 + 0.576724i \(0.195669\pi\)
\(422\) −9.66225 16.7355i −0.470351 0.814672i
\(423\) −15.2915 33.1278i −0.743500 1.61073i
\(424\) −4.02704 + 6.97504i −0.195570 + 0.338738i
\(425\) 13.5759 0.658526
\(426\) 13.4518 21.0250i 0.651744 1.01867i
\(427\) −15.4481 + 8.40819i −0.747584 + 0.406901i
\(428\) 9.35447 + 16.2024i 0.452165 + 0.783174i
\(429\) −1.18929 2.29548i −0.0574197 0.110827i
\(430\) 3.31284 + 5.73801i 0.159759 + 0.276711i
\(431\) −14.0979 + 24.4182i −0.679070 + 1.17618i 0.296192 + 0.955128i \(0.404283\pi\)
−0.975261 + 0.221055i \(0.929050\pi\)
\(432\) −5.14766 0.708209i −0.247667 0.0340737i
\(433\) 12.5438 0.602815 0.301407 0.953495i \(-0.402544\pi\)
0.301407 + 0.953495i \(0.402544\pi\)
\(434\) 18.2814 9.95036i 0.877536 0.477632i
\(435\) −6.36186 0.290133i −0.305028 0.0139108i
\(436\) −1.43346 + 2.48283i −0.0686504 + 0.118906i
\(437\) −24.0043 −1.14828
\(438\) 6.30564 + 12.1706i 0.301295 + 0.581535i
\(439\) 26.0406 1.24285 0.621426 0.783473i \(-0.286554\pi\)
0.621426 + 0.783473i \(0.286554\pi\)
\(440\) 0.352336 0.0167970
\(441\) −20.7903 2.96055i −0.990013 0.140978i
\(442\) 7.34514 0.349373
\(443\) −23.5729 −1.11998 −0.559992 0.828498i \(-0.689196\pi\)
−0.559992 + 0.828498i \(0.689196\pi\)
\(444\) 1.73025 + 0.0789082i 0.0821141 + 0.00374482i
\(445\) 7.38151 0.349917
\(446\) −12.6623 + 21.9317i −0.599575 + 1.03849i
\(447\) 14.3830 + 27.7608i 0.680291 + 1.31304i
\(448\) 2.32383 1.26483i 0.109791 0.0597578i
\(449\) 13.6870 0.645928 0.322964 0.946411i \(-0.395321\pi\)
0.322964 + 0.946411i \(0.395321\pi\)
\(450\) −8.04163 + 11.3903i −0.379086 + 0.536944i
\(451\) 0.0811263 0.140515i 0.00382009 0.00661659i
\(452\) −6.16012 10.6696i −0.289748 0.501857i
\(453\) −2.85087 0.130014i −0.133946 0.00610860i
\(454\) 2.40856 + 4.17174i 0.113039 + 0.195790i
\(455\) 3.46857 1.88790i 0.162609 0.0885062i
\(456\) −9.31138 0.424646i −0.436045 0.0198859i
\(457\) −22.3523 −1.04560 −0.522799 0.852456i \(-0.675112\pi\)
−0.522799 + 0.852456i \(0.675112\pi\)
\(458\) −4.64766 + 8.04999i −0.217171 + 0.376151i
\(459\) −9.30972 + 11.9875i −0.434541 + 0.559530i
\(460\) −1.32383 2.29294i −0.0617240 0.106909i
\(461\) −3.98755 + 6.90663i −0.185719 + 0.321674i −0.943818 0.330464i \(-0.892795\pi\)
0.758100 + 0.652138i \(0.226128\pi\)
\(462\) −2.44592 + 1.19019i −0.113794 + 0.0553728i
\(463\) −14.3676 24.8854i −0.667719 1.15652i −0.978540 0.206055i \(-0.933937\pi\)
0.310821 0.950468i \(-0.399396\pi\)
\(464\) −3.09718 + 5.36447i −0.143783 + 0.249039i
\(465\) −3.72072 7.18143i −0.172544 0.333031i
\(466\) −0.0971780 0.168317i −0.00450168 0.00779714i
\(467\) 16.7829 + 29.0688i 0.776619 + 1.34514i 0.933880 + 0.357586i \(0.116400\pi\)
−0.157261 + 0.987557i \(0.550267\pi\)
\(468\) −4.35087 + 6.16266i −0.201119 + 0.284869i
\(469\) −4.44738 + 2.42066i −0.205361 + 0.111775i
\(470\) 3.60963 6.25206i 0.166500 0.288386i
\(471\) −6.16158 + 9.63046i −0.283911 + 0.443748i
\(472\) −8.64766 −0.398041
\(473\) −6.62568 −0.304649
\(474\) 8.63307 13.4934i 0.396530 0.619771i
\(475\) −12.5057 + 21.6606i −0.573802 + 0.993855i
\(476\) 0.194356 7.72582i 0.00890829 0.354112i
\(477\) −24.0620 2.19927i −1.10172 0.100698i
\(478\) 6.82743 + 11.8255i 0.312279 + 0.540884i
\(479\) −0.183560 0.317935i −0.00838707 0.0145268i 0.861801 0.507246i \(-0.169336\pi\)
−0.870188 + 0.492719i \(0.836003\pi\)
\(480\) −0.472958 0.912864i −0.0215875 0.0416663i
\(481\) 1.25729 2.17770i 0.0573277 0.0992945i
\(482\) −6.50000 11.2583i −0.296067 0.512803i
\(483\) 16.9356 + 11.4457i 0.770596 + 0.520797i
\(484\) 5.32383 9.22115i 0.241992 0.419143i
\(485\) 3.48249 + 6.03184i 0.158132 + 0.273892i
\(486\) −4.54309 14.9118i −0.206079 0.676411i
\(487\) −14.9538 + 25.9007i −0.677621 + 1.17367i 0.298075 + 0.954543i \(0.403656\pi\)
−0.975695 + 0.219131i \(0.929678\pi\)
\(488\) 6.64766 0.300926
\(489\) −10.3509 0.472052i −0.468083 0.0213469i
\(490\) −1.89397 3.69829i −0.0855607 0.167072i
\(491\) −0.255158 0.441947i −0.0115151 0.0199448i 0.860210 0.509939i \(-0.170332\pi\)
−0.871726 + 0.489994i \(0.836999\pi\)
\(492\) −0.472958 0.0215693i −0.0213226 0.000972418i
\(493\) 9.04689 + 15.6697i 0.407451 + 0.705726i
\(494\) −6.76615 + 11.7193i −0.304423 + 0.527277i
\(495\) 0.442991 + 0.959702i 0.0199110 + 0.0431354i
\(496\) −7.86693 −0.353235
\(497\) −33.4880 + 18.2271i −1.50214 + 0.817599i
\(498\) 6.13667 + 11.8445i 0.274991 + 0.530764i
\(499\) 9.50953 16.4710i 0.425705 0.737343i −0.570781 0.821102i \(-0.693359\pi\)
0.996486 + 0.0837597i \(0.0266928\pi\)
\(500\) −5.72665 −0.256104
\(501\) 12.9086 + 0.588695i 0.576712 + 0.0263010i
\(502\) 19.5438 0.872281
\(503\) −37.7807 −1.68456 −0.842280 0.539040i \(-0.818787\pi\)
−0.842280 + 0.539040i \(0.818787\pi\)
\(504\) 6.36693 + 4.73944i 0.283605 + 0.211111i
\(505\) −0.963235 −0.0428634
\(506\) 2.64766 0.117703
\(507\) −5.32004 10.2683i −0.236271 0.456031i
\(508\) 12.3346 0.547261
\(509\) 5.60817 9.71363i 0.248578 0.430549i −0.714554 0.699581i \(-0.753370\pi\)
0.963131 + 0.269031i \(0.0867035\pi\)
\(510\) −3.00000 0.136815i −0.132842 0.00605828i
\(511\) 0.526563 20.9314i 0.0232938 0.925949i
\(512\) −1.00000 −0.0441942
\(513\) −10.5505 25.8965i −0.465815 1.14336i
\(514\) 4.16372 7.21177i 0.183654 0.318097i
\(515\) −1.89397 3.28045i −0.0834582 0.144554i
\(516\) 8.89397 + 17.1664i 0.391535 + 0.755708i
\(517\) 3.60963 + 6.25206i 0.158751 + 0.274965i
\(518\) −2.25729 1.38008i −0.0991798 0.0606372i
\(519\) −23.9518 + 37.4364i −1.05137 + 1.64327i
\(520\) −1.49261 −0.0654552
\(521\) −13.7360 + 23.7914i −0.601785 + 1.04232i 0.390766 + 0.920490i \(0.372210\pi\)
−0.992551 + 0.121831i \(0.961123\pi\)
\(522\) −18.5059 1.69145i −0.809983 0.0740326i
\(523\) 11.0919 + 19.2118i 0.485016 + 0.840072i 0.999852 0.0172166i \(-0.00548048\pi\)
−0.514836 + 0.857289i \(0.672147\pi\)
\(524\) 0.593579 1.02811i 0.0259306 0.0449132i
\(525\) 19.1513 9.31909i 0.835830 0.406718i
\(526\) −8.54523 14.8008i −0.372590 0.645344i
\(527\) −11.4897 + 19.9007i −0.500498 + 0.866889i
\(528\) 1.02704 + 0.0468383i 0.0446963 + 0.00203838i
\(529\) 1.55195 + 2.68805i 0.0674760 + 0.116872i
\(530\) −2.39037 4.14024i −0.103831 0.179841i
\(531\) −10.8727 23.5547i −0.471833 1.02219i
\(532\) 12.1477 + 7.42692i 0.526668 + 0.321998i
\(533\) −0.343677 + 0.595265i −0.0148863 + 0.0257838i
\(534\) 21.5167 + 0.981271i 0.931120 + 0.0424638i
\(535\) −11.1052 −0.480122
\(536\) 1.91381 0.0826641
\(537\) −11.9808 23.1244i −0.517011 0.997891i
\(538\) 5.00720 8.67272i 0.215876 0.373908i
\(539\) 4.14980 + 0.208922i 0.178745 + 0.00899893i
\(540\) 1.89183 2.43599i 0.0814115 0.104828i
\(541\) 14.9246 + 25.8502i 0.641659 + 1.11139i 0.985062 + 0.172198i \(0.0550869\pi\)
−0.343403 + 0.939188i \(0.611580\pi\)
\(542\) −5.10457 8.84137i −0.219260 0.379770i
\(543\) −0.0804528 + 0.125747i −0.00345256 + 0.00539630i
\(544\) −1.46050 + 2.52967i −0.0626186 + 0.108459i
\(545\) −0.850874 1.47376i −0.0364474 0.0631288i
\(546\) 10.3617 5.04204i 0.443439 0.215779i
\(547\) 8.84348 15.3174i 0.378120 0.654923i −0.612669 0.790340i \(-0.709904\pi\)
0.990789 + 0.135417i \(0.0432373\pi\)
\(548\) −1.26089 2.18393i −0.0538627 0.0932929i
\(549\) 8.35807 + 18.1071i 0.356714 + 0.772790i
\(550\) 1.37938 2.38915i 0.0588169 0.101874i
\(551\) −33.3350 −1.42012
\(552\) −3.55408 6.85980i −0.151272 0.291972i
\(553\) −21.4918 + 11.6977i −0.913925 + 0.497439i
\(554\) 9.67111 + 16.7508i 0.410886 + 0.711675i
\(555\) −0.554084 + 0.866025i −0.0235196 + 0.0367607i
\(556\) 2.45691 + 4.25549i 0.104196 + 0.180473i
\(557\) 15.0651 26.0935i 0.638328 1.10562i −0.347472 0.937690i \(-0.612960\pi\)
0.985800 0.167926i \(-0.0537069\pi\)
\(558\) −9.89104 21.4281i −0.418721 0.907124i
\(559\) 28.0685 1.18717
\(560\) −0.0394951 + 1.56997i −0.00166897 + 0.0663432i
\(561\) 1.61849 2.52967i 0.0683325 0.106803i
\(562\) 6.40136 11.0875i 0.270025 0.467697i
\(563\) 4.09766 0.172696 0.0863478 0.996265i \(-0.472480\pi\)
0.0863478 + 0.996265i \(0.472480\pi\)
\(564\) 11.3530 17.7446i 0.478048 0.747182i
\(565\) 7.31304 0.307662
\(566\) 16.3523 0.687340
\(567\) −4.90428 + 23.3012i −0.205961 + 0.978560i
\(568\) 14.4107 0.604659
\(569\) 6.23697 0.261467 0.130734 0.991418i \(-0.458267\pi\)
0.130734 + 0.991418i \(0.458267\pi\)
\(570\) 2.98181 4.66053i 0.124894 0.195208i
\(571\) 35.6021 1.48990 0.744951 0.667119i \(-0.232473\pi\)
0.744951 + 0.667119i \(0.232473\pi\)
\(572\) 0.746304 1.29264i 0.0312045 0.0540479i
\(573\) 3.71732 5.81012i 0.155293 0.242721i
\(574\) 0.617023 + 0.377240i 0.0257540 + 0.0157457i
\(575\) −20.7309 −0.864539
\(576\) −1.25729 2.72382i −0.0523873 0.113493i
\(577\) 23.1388 40.0776i 0.963281 1.66845i 0.249118 0.968473i \(-0.419859\pi\)
0.714164 0.699979i \(-0.246807\pi\)
\(578\) −4.23385 7.33325i −0.176105 0.305023i
\(579\) 6.32957 9.89302i 0.263048 0.411140i
\(580\) −1.83842 3.18424i −0.0763363 0.132218i
\(581\) 0.512453 20.3705i 0.0212601 0.845109i
\(582\) 9.34941 + 18.0455i 0.387546 + 0.748008i
\(583\) 4.78074 0.197998
\(584\) −3.95691 + 6.85356i −0.163738 + 0.283602i
\(585\) −1.87665 4.06560i −0.0775898 0.168092i
\(586\) 10.3889 + 17.9941i 0.429162 + 0.743330i
\(587\) 1.13161 1.96001i 0.0467066 0.0808982i −0.841727 0.539903i \(-0.818461\pi\)
0.888434 + 0.459005i \(0.151794\pi\)
\(588\) −5.02918 11.0321i −0.207400 0.454956i
\(589\) −21.1680 36.6640i −0.872212 1.51072i
\(590\) 2.56654 4.44537i 0.105663 0.183013i
\(591\) 10.3226 16.1340i 0.424614 0.663665i
\(592\) 0.500000 + 0.866025i 0.0205499 + 0.0355934i
\(593\) 23.0979 + 40.0067i 0.948515 + 1.64288i 0.748555 + 0.663072i \(0.230748\pi\)
0.199960 + 0.979804i \(0.435919\pi\)
\(594\) 1.16372 + 2.85637i 0.0477478 + 0.117198i
\(595\) 3.91381 + 2.39285i 0.160451 + 0.0980974i
\(596\) −9.02558 + 15.6328i −0.369702 + 0.640343i
\(597\) −4.47675 8.64065i −0.183221 0.353638i
\(598\) −11.2163 −0.458670
\(599\) −16.7807 −0.685642 −0.342821 0.939401i \(-0.611382\pi\)
−0.342821 + 0.939401i \(0.611382\pi\)
\(600\) −8.04163 0.366739i −0.328298 0.0149721i
\(601\) −5.69961 + 9.87202i −0.232492 + 0.402688i −0.958541 0.284955i \(-0.908021\pi\)
0.726049 + 0.687643i \(0.241355\pi\)
\(602\) 0.742705 29.5232i 0.0302704 1.20328i
\(603\) 2.40623 + 5.21289i 0.0979891 + 0.212285i
\(604\) −0.823832 1.42692i −0.0335212 0.0580605i
\(605\) 3.16012 + 5.47348i 0.128477 + 0.222529i
\(606\) −2.80778 0.128049i −0.114058 0.00520163i
\(607\) 7.21420 12.4954i 0.292815 0.507171i −0.681659 0.731670i \(-0.738741\pi\)
0.974474 + 0.224499i \(0.0720745\pi\)
\(608\) −2.69076 4.66053i −0.109125 0.189009i
\(609\) 23.5187 + 15.8948i 0.953024 + 0.644088i
\(610\) −1.97296 + 3.41726i −0.0798827 + 0.138361i
\(611\) −15.2915 26.4857i −0.618629 1.07150i
\(612\) −8.72665 0.797618i −0.352754 0.0322418i
\(613\) 12.2053 21.1403i 0.492969 0.853848i −0.506998 0.861947i \(-0.669245\pi\)
0.999967 + 0.00809942i \(0.00257815\pi\)
\(614\) 22.6768 0.915163
\(615\) 0.151457 0.236725i 0.00610733 0.00954566i
\(616\) −1.33988 0.819187i −0.0539854 0.0330060i
\(617\) 24.4698 + 42.3830i 0.985119 + 1.70628i 0.641408 + 0.767200i \(0.278350\pi\)
0.343710 + 0.939076i \(0.388316\pi\)
\(618\) −5.08472 9.81411i −0.204538 0.394781i
\(619\) 22.3296 + 38.6759i 0.897501 + 1.55452i 0.830678 + 0.556753i \(0.187953\pi\)
0.0668227 + 0.997765i \(0.478714\pi\)
\(620\) 2.33482 4.04403i 0.0937687 0.162412i
\(621\) 14.2163 18.3055i 0.570482 0.734574i
\(622\) 6.51459 0.261211
\(623\) −28.0708 17.1621i −1.12463 0.687586i
\(624\) −4.35087 0.198422i −0.174174 0.00794323i
\(625\) −9.91955 + 17.1812i −0.396782 + 0.687246i
\(626\) −0.266149 −0.0106375
\(627\) 2.54523 + 4.91259i 0.101647 + 0.196190i
\(628\) −6.60078 −0.263400
\(629\) 2.92101 0.116468
\(630\) −4.32597 + 1.86633i −0.172351 + 0.0743565i
\(631\) 33.2852 1.32506 0.662532 0.749034i \(-0.269482\pi\)
0.662532 + 0.749034i \(0.269482\pi\)
\(632\) 9.24844 0.367883
\(633\) 33.4363 + 1.52486i 1.32897 + 0.0606079i
\(634\) −15.7237 −0.624469
\(635\) −3.66079 + 6.34067i −0.145274 + 0.251622i
\(636\) −6.41741 12.3863i −0.254467 0.491151i
\(637\) −17.5799 0.885061i −0.696539 0.0350674i
\(638\) 3.67684 0.145568
\(639\) 18.1185 + 39.2522i 0.716756 + 1.55279i
\(640\) 0.296790 0.514055i 0.0117316 0.0203198i
\(641\) −15.3940 26.6631i −0.608025 1.05313i −0.991566 0.129606i \(-0.958629\pi\)
0.383540 0.923524i \(-0.374705\pi\)
\(642\) −32.3712 1.47629i −1.27759 0.0582645i
\(643\) −13.7345 23.7889i −0.541637 0.938142i −0.998810 0.0487649i \(-0.984471\pi\)
0.457174 0.889378i \(-0.348862\pi\)
\(644\) −0.296790 + 11.7977i −0.0116952 + 0.464893i
\(645\) −11.4641 0.522821i −0.451399 0.0205861i
\(646\) −15.7195 −0.618474
\(647\) −6.63521 + 11.4925i −0.260857 + 0.451818i −0.966470 0.256780i \(-0.917338\pi\)
0.705613 + 0.708598i \(0.250672\pi\)
\(648\) 5.83842 6.84929i 0.229355 0.269066i
\(649\) 2.56654 + 4.44537i 0.100745 + 0.174496i
\(650\) −5.84348 + 10.1212i −0.229200 + 0.396986i
\(651\) −2.54756 + 35.9607i −0.0998468 + 1.40941i
\(652\) −2.99115 5.18082i −0.117142 0.202896i
\(653\) 8.57081 14.8451i 0.335402 0.580933i −0.648160 0.761504i \(-0.724461\pi\)
0.983562 + 0.180571i \(0.0577946\pi\)
\(654\) −2.28434 4.40904i −0.0893246 0.172407i
\(655\) 0.352336 + 0.610265i 0.0137669 + 0.0238450i
\(656\) −0.136673 0.236725i −0.00533619 0.00924255i
\(657\) −23.6429 2.16096i −0.922397 0.0843072i
\(658\) −28.2630 + 15.3832i −1.10181 + 0.599701i
\(659\) 4.26089 7.38008i 0.165981 0.287487i −0.771022 0.636808i \(-0.780254\pi\)
0.937003 + 0.349321i \(0.113588\pi\)
\(660\) −0.328893 + 0.514055i −0.0128021 + 0.0200096i
\(661\) 34.3360 1.33551 0.667757 0.744379i \(-0.267254\pi\)
0.667757 + 0.744379i \(0.267254\pi\)
\(662\) 25.1623 0.977959
\(663\) −6.85641 + 10.7165i −0.266281 + 0.416193i
\(664\) −3.85087 + 6.66991i −0.149443 + 0.258843i
\(665\) −7.42315 + 4.04033i −0.287857 + 0.156677i
\(666\) −1.73025 + 2.45076i −0.0670459 + 0.0949650i
\(667\) −13.8150 23.9282i −0.534918 0.926505i
\(668\) 3.73025 + 6.46099i 0.144328 + 0.249983i
\(669\) −20.1783 38.9465i −0.780138 1.50576i
\(670\) −0.568000 + 0.983804i −0.0219437 + 0.0380077i
\(671\) −1.97296 3.41726i −0.0761652 0.131922i
\(672\) −0.323832 + 4.57112i −0.0124921 + 0.176335i
\(673\) −7.70155 + 13.3395i −0.296873 + 0.514199i −0.975419 0.220359i \(-0.929277\pi\)
0.678546 + 0.734558i \(0.262610\pi\)
\(674\) 9.36693 + 16.2240i 0.360800 + 0.624925i
\(675\) −9.11177 22.3651i −0.350712 0.860832i
\(676\) 3.33842 5.78231i 0.128401 0.222397i
\(677\) −7.38151 −0.283695 −0.141847 0.989889i \(-0.545304\pi\)
−0.141847 + 0.989889i \(0.545304\pi\)
\(678\) 21.3171 + 0.972168i 0.818679 + 0.0373359i
\(679\) 0.780738 31.0350i 0.0299620 1.19102i
\(680\) −0.866926 1.50156i −0.0332451 0.0575822i
\(681\) −8.33482 0.380110i −0.319391 0.0145658i
\(682\) 2.33482 + 4.04403i 0.0894050 + 0.154854i
\(683\) 4.79893 8.31198i 0.183626 0.318049i −0.759487 0.650523i \(-0.774550\pi\)
0.943113 + 0.332474i \(0.107883\pi\)
\(684\) 9.31138 13.1888i 0.356029 0.504286i
\(685\) 1.49688 0.0571929
\(686\) −1.39610 + 18.4676i −0.0533035 + 0.705095i
\(687\) −7.40642 14.2953i −0.282573 0.545398i
\(688\) −5.58113 + 9.66679i −0.212778 + 0.368543i
\(689\) −20.2527 −0.771567
\(690\) 4.58113 + 0.208922i 0.174400 + 0.00795354i
\(691\) −14.1445 −0.538084 −0.269042 0.963128i \(-0.586707\pi\)
−0.269042 + 0.963128i \(0.586707\pi\)
\(692\) −25.6591 −0.975414
\(693\) 0.546692 4.67956i 0.0207671 0.177762i
\(694\) −22.5438 −0.855750
\(695\) −2.91674 −0.110638
\(696\) −4.93560 9.52628i −0.187083 0.361093i
\(697\) −0.798447 −0.0302433
\(698\) −1.89543 + 3.28298i −0.0717431 + 0.124263i
\(699\) 0.336285 + 0.0153363i 0.0127195 + 0.000580072i
\(700\) 10.4911 + 6.41415i 0.396528 + 0.242432i
\(701\) 37.3753 1.41164 0.705822 0.708389i \(-0.250578\pi\)
0.705822 + 0.708389i \(0.250578\pi\)
\(702\) −4.92986 12.1005i −0.186066 0.456703i
\(703\) −2.69076 + 4.66053i −0.101484 + 0.175775i
\(704\) 0.296790 + 0.514055i 0.0111857 + 0.0193742i
\(705\) 5.75223 + 11.1025i 0.216642 + 0.418144i
\(706\) 3.41741 + 5.91913i 0.128616 + 0.222769i
\(707\) 3.66304 + 2.23954i 0.137763 + 0.0842264i
\(708\) 8.07227 12.6168i 0.303375 0.474170i
\(709\) −10.4868 −0.393838 −0.196919 0.980420i \(-0.563094\pi\)
−0.196919 + 0.980420i \(0.563094\pi\)
\(710\) −4.27694 + 7.40789i −0.160511 + 0.278013i
\(711\) 11.6280 + 25.1911i 0.436085 + 0.944741i
\(712\) 6.21780 + 10.7695i 0.233022 + 0.403606i
\(713\) 17.5452 30.3892i 0.657074 1.13809i
\(714\) 11.0905 + 7.49533i 0.415050 + 0.280506i
\(715\) 0.442991 + 0.767282i 0.0165669 + 0.0286947i
\(716\) 7.51819 13.0219i 0.280968 0.486651i
\(717\) −23.6264 1.07748i −0.882342 0.0402393i
\(718\) 6.32237 + 10.9507i 0.235949 + 0.408675i
\(719\) 1.11995 + 1.93981i 0.0417670 + 0.0723426i 0.886153 0.463392i \(-0.153368\pi\)
−0.844386 + 0.535735i \(0.820035\pi\)
\(720\) 1.77335 + 0.162084i 0.0660887 + 0.00604052i
\(721\) −0.424608 + 16.8786i −0.0158132 + 0.628590i
\(722\) 4.98035 8.62622i 0.185349 0.321035i
\(723\) 22.4933 + 1.02581i 0.836534 + 0.0381502i
\(724\) −0.0861875 −0.00320313
\(725\) −28.7893 −1.06921
\(726\) 8.48395 + 16.3750i 0.314869 + 0.607733i
\(727\) 0.185023 0.320469i 0.00686211 0.0118855i −0.862574 0.505931i \(-0.831149\pi\)
0.869436 + 0.494045i \(0.164482\pi\)
\(728\) 5.67617 + 3.47033i 0.210373 + 0.128619i
\(729\) 25.9969 + 7.29124i 0.962847 + 0.270046i
\(730\) −2.34874 4.06813i −0.0869307 0.150568i
\(731\) 16.3025 + 28.2368i 0.602971 + 1.04438i
\(732\) −6.20535 + 9.69886i −0.229356 + 0.358480i
\(733\) −7.00953 + 12.1409i −0.258903 + 0.448433i −0.965948 0.258735i \(-0.916694\pi\)
0.707045 + 0.707168i \(0.250028\pi\)
\(734\) 3.27188 + 5.66707i 0.120767 + 0.209175i
\(735\) 7.16372 + 0.688942i 0.264238 + 0.0254120i
\(736\) 2.23025 3.86291i 0.0822082 0.142389i
\(737\) −0.568000 0.983804i −0.0209225 0.0362389i
\(738\) 0.472958 0.669906i 0.0174098 0.0246596i
\(739\) 13.3872 23.1874i 0.492458 0.852962i −0.507504 0.861649i \(-0.669432\pi\)
0.999962 + 0.00868705i \(0.00276521\pi\)
\(740\) −0.593579 −0.0218204
\(741\) −10.7824 20.8113i −0.396101 0.764521i
\(742\) −0.535897 + 21.3024i −0.0196734 + 0.782034i
\(743\) −5.04669 8.74113i −0.185145 0.320681i 0.758480 0.651696i \(-0.225942\pi\)
−0.943625 + 0.331015i \(0.892609\pi\)
\(744\) 7.34348 11.4778i 0.269225 0.420795i
\(745\) −5.35740 9.27928i −0.196280 0.339967i
\(746\) 4.71420 8.16524i 0.172599 0.298951i
\(747\) −23.0093 2.10306i −0.841867 0.0769468i
\(748\) 1.73385 0.0633959
\(749\) 42.2316 + 25.8198i 1.54311 + 0.943437i
\(750\) 5.34562 8.35512i 0.195194 0.305086i
\(751\) −5.75729 + 9.97193i −0.210087 + 0.363881i −0.951741 0.306901i \(-0.900708\pi\)
0.741655 + 0.670782i \(0.234041\pi\)
\(752\) 12.1623 0.443512
\(753\) −18.2434 + 28.5141i −0.664826 + 1.03911i
\(754\) −15.5763 −0.567254
\(755\) 0.978019 0.0355938
\(756\) −12.8581 + 4.86518i −0.467644 + 0.176945i
\(757\) −15.2484 −0.554214 −0.277107 0.960839i \(-0.589376\pi\)
−0.277107 + 0.960839i \(0.589376\pi\)
\(758\) 7.27762 0.264335
\(759\) −2.47150 + 3.86291i −0.0897096 + 0.140215i
\(760\) 3.19436 0.115871
\(761\) 0.850874 1.47376i 0.0308442 0.0534236i −0.850191 0.526474i \(-0.823514\pi\)
0.881035 + 0.473050i \(0.156847\pi\)
\(762\) −11.5139 + 17.9961i −0.417105 + 0.651929i
\(763\) −0.190757 + 7.58277i −0.00690588 + 0.274515i
\(764\) 3.98229 0.144074
\(765\) 3.00000 4.24925i 0.108465 0.153632i
\(766\) −12.0416 + 20.8567i −0.435082 + 0.753584i
\(767\) −10.8727 18.8320i