Properties

Label 126.2.e.c.121.1
Level $126$
Weight $2$
Character 126.121
Analytic conductor $1.006$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,2,Mod(25,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.00611506547\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 121.1
Root \(0.500000 + 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 126.121
Dual form 126.2.e.c.25.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +(-1.64400 + 0.545231i) q^{3} +1.00000 q^{4} +(-0.794182 - 1.37556i) q^{5} +(1.64400 - 0.545231i) q^{6} +(1.23855 - 2.33795i) q^{7} -1.00000 q^{8} +(2.40545 - 1.79272i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(-1.64400 + 0.545231i) q^{3} +1.00000 q^{4} +(-0.794182 - 1.37556i) q^{5} +(1.64400 - 0.545231i) q^{6} +(1.23855 - 2.33795i) q^{7} -1.00000 q^{8} +(2.40545 - 1.79272i) q^{9} +(0.794182 + 1.37556i) q^{10} +(0.794182 - 1.37556i) q^{11} +(-1.64400 + 0.545231i) q^{12} +(2.40545 - 4.16635i) q^{13} +(-1.23855 + 2.33795i) q^{14} +(2.05563 + 1.82841i) q^{15} +1.00000 q^{16} +(-2.69963 - 4.67589i) q^{17} +(-2.40545 + 1.79272i) q^{18} +(-3.54944 + 6.14781i) q^{19} +(-0.794182 - 1.37556i) q^{20} +(-0.761450 + 4.51887i) q^{21} +(-0.794182 + 1.37556i) q^{22} +(-0.150186 - 0.260130i) q^{23} +(1.64400 - 0.545231i) q^{24} +(1.23855 - 2.14523i) q^{25} +(-2.40545 + 4.16635i) q^{26} +(-2.97710 + 4.25874i) q^{27} +(1.23855 - 2.33795i) q^{28} +(4.13781 + 7.16689i) q^{29} +(-2.05563 - 1.82841i) q^{30} -2.71201 q^{31} -1.00000 q^{32} +(-0.555632 + 2.69443i) q^{33} +(2.69963 + 4.67589i) q^{34} +(-4.19963 + 0.153051i) q^{35} +(2.40545 - 1.79272i) q^{36} +(0.500000 - 0.866025i) q^{37} +(3.54944 - 6.14781i) q^{38} +(-1.68292 + 8.16100i) q^{39} +(0.794182 + 1.37556i) q^{40} +(2.93818 - 5.08907i) q^{41} +(0.761450 - 4.51887i) q^{42} +(-0.833104 - 1.44298i) q^{43} +(0.794182 - 1.37556i) q^{44} +(-4.37636 - 1.88510i) q^{45} +(0.150186 + 0.260130i) q^{46} +2.66621 q^{47} +(-1.64400 + 0.545231i) q^{48} +(-3.93199 - 5.79133i) q^{49} +(-1.23855 + 2.14523i) q^{50} +(6.98762 + 6.21523i) q^{51} +(2.40545 - 4.16635i) q^{52} +(2.44437 + 4.23377i) q^{53} +(2.97710 - 4.25874i) q^{54} -2.52290 q^{55} +(-1.23855 + 2.33795i) q^{56} +(2.48329 - 12.0422i) q^{57} +(-4.13781 - 7.16689i) q^{58} +6.47710 q^{59} +(2.05563 + 1.82841i) q^{60} -4.47710 q^{61} +2.71201 q^{62} +(-1.21201 - 7.84417i) q^{63} +1.00000 q^{64} -7.64145 q^{65} +(0.555632 - 2.69443i) q^{66} -10.0531 q^{67} +(-2.69963 - 4.67589i) q^{68} +(0.388736 + 0.345766i) q^{69} +(4.19963 - 0.153051i) q^{70} +12.7207 q^{71} +(-2.40545 + 1.79272i) q^{72} +(8.02654 + 13.9024i) q^{73} +(-0.500000 + 0.866025i) q^{74} +(-0.866524 + 4.20205i) q^{75} +(-3.54944 + 6.14781i) q^{76} +(-2.23236 - 3.56046i) q^{77} +(1.68292 - 8.16100i) q^{78} +8.38688 q^{79} +(-0.794182 - 1.37556i) q^{80} +(2.57234 - 8.62456i) q^{81} +(-2.93818 + 5.08907i) q^{82} +(1.18292 + 2.04887i) q^{83} +(-0.761450 + 4.51887i) q^{84} +(-4.28799 + 7.42702i) q^{85} +(0.833104 + 1.44298i) q^{86} +(-10.7101 - 9.52628i) q^{87} +(-0.794182 + 1.37556i) q^{88} +(1.60507 - 2.78007i) q^{89} +(4.37636 + 1.88510i) q^{90} +(-6.76145 - 10.7840i) q^{91} +(-0.150186 - 0.260130i) q^{92} +(4.45853 - 1.47867i) q^{93} -2.66621 q^{94} +11.2756 q^{95} +(1.64400 - 0.545231i) q^{96} +(0.712008 + 1.23323i) q^{97} +(3.93199 + 5.79133i) q^{98} +(-0.555632 - 4.73259i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 2 q^{3} + 6 q^{4} + q^{5} - 2 q^{6} + 2 q^{7} - 6 q^{8} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{2} + 2 q^{3} + 6 q^{4} + q^{5} - 2 q^{6} + 2 q^{7} - 6 q^{8} + 8 q^{9} - q^{10} - q^{11} + 2 q^{12} + 8 q^{13} - 2 q^{14} + 12 q^{15} + 6 q^{16} - 4 q^{17} - 8 q^{18} - 3 q^{19} + q^{20} - 10 q^{21} + q^{22} - 7 q^{23} - 2 q^{24} + 2 q^{25} - 8 q^{26} - 7 q^{27} + 2 q^{28} - 5 q^{29} - 12 q^{30} - 40 q^{31} - 6 q^{32} - 3 q^{33} + 4 q^{34} - 13 q^{35} + 8 q^{36} + 3 q^{37} + 3 q^{38} - 5 q^{39} - q^{40} + 10 q^{42} - 6 q^{43} - q^{44} + 9 q^{45} + 7 q^{46} + 18 q^{47} + 2 q^{48} + 12 q^{49} - 2 q^{50} + 6 q^{51} + 8 q^{52} + 15 q^{53} + 7 q^{54} - 26 q^{55} - 2 q^{56} + 22 q^{57} + 5 q^{58} + 28 q^{59} + 12 q^{60} - 16 q^{61} + 40 q^{62} - 31 q^{63} + 6 q^{64} + 24 q^{65} + 3 q^{66} - 2 q^{67} - 4 q^{68} + 3 q^{69} + 13 q^{70} + 14 q^{71} - 8 q^{72} + 19 q^{73} - 3 q^{74} + 8 q^{75} - 3 q^{76} + 10 q^{77} + 5 q^{78} - 10 q^{79} + q^{80} + 8 q^{81} + 2 q^{83} - 10 q^{84} - 2 q^{85} + 6 q^{86} - 27 q^{87} + q^{88} - 9 q^{89} - 9 q^{90} - 46 q^{91} - 7 q^{92} - 38 q^{93} - 18 q^{94} + 8 q^{95} - 2 q^{96} + 28 q^{97} - 12 q^{98} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.64400 + 0.545231i −0.949162 + 0.314789i
\(4\) 1.00000 0.500000
\(5\) −0.794182 1.37556i −0.355169 0.615171i 0.631978 0.774986i \(-0.282243\pi\)
−0.987147 + 0.159816i \(0.948910\pi\)
\(6\) 1.64400 0.545231i 0.671159 0.222590i
\(7\) 1.23855 2.33795i 0.468128 0.883661i
\(8\) −1.00000 −0.353553
\(9\) 2.40545 1.79272i 0.801815 0.597572i
\(10\) 0.794182 + 1.37556i 0.251142 + 0.434991i
\(11\) 0.794182 1.37556i 0.239455 0.414748i −0.721103 0.692828i \(-0.756365\pi\)
0.960558 + 0.278080i \(0.0896979\pi\)
\(12\) −1.64400 + 0.545231i −0.474581 + 0.157395i
\(13\) 2.40545 4.16635i 0.667151 1.15554i −0.311547 0.950231i \(-0.600847\pi\)
0.978697 0.205308i \(-0.0658196\pi\)
\(14\) −1.23855 + 2.33795i −0.331016 + 0.624843i
\(15\) 2.05563 + 1.82841i 0.530762 + 0.472093i
\(16\) 1.00000 0.250000
\(17\) −2.69963 4.67589i −0.654756 1.13407i −0.981955 0.189115i \(-0.939438\pi\)
0.327199 0.944955i \(-0.393895\pi\)
\(18\) −2.40545 + 1.79272i −0.566969 + 0.422547i
\(19\) −3.54944 + 6.14781i −0.814298 + 1.41041i 0.0955331 + 0.995426i \(0.469544\pi\)
−0.909831 + 0.414979i \(0.863789\pi\)
\(20\) −0.794182 1.37556i −0.177584 0.307585i
\(21\) −0.761450 + 4.51887i −0.166162 + 0.986098i
\(22\) −0.794182 + 1.37556i −0.169320 + 0.293271i
\(23\) −0.150186 0.260130i −0.0313159 0.0542408i 0.849943 0.526875i \(-0.176636\pi\)
−0.881259 + 0.472634i \(0.843303\pi\)
\(24\) 1.64400 0.545231i 0.335579 0.111295i
\(25\) 1.23855 2.14523i 0.247710 0.429046i
\(26\) −2.40545 + 4.16635i −0.471747 + 0.817089i
\(27\) −2.97710 + 4.25874i −0.572943 + 0.819595i
\(28\) 1.23855 2.33795i 0.234064 0.441830i
\(29\) 4.13781 + 7.16689i 0.768371 + 1.33086i 0.938446 + 0.345427i \(0.112266\pi\)
−0.170074 + 0.985431i \(0.554401\pi\)
\(30\) −2.05563 1.82841i −0.375305 0.333820i
\(31\) −2.71201 −0.487091 −0.243545 0.969889i \(-0.578311\pi\)
−0.243545 + 0.969889i \(0.578311\pi\)
\(32\) −1.00000 −0.176777
\(33\) −0.555632 + 2.69443i −0.0967231 + 0.469041i
\(34\) 2.69963 + 4.67589i 0.462982 + 0.801909i
\(35\) −4.19963 + 0.153051i −0.709867 + 0.0258703i
\(36\) 2.40545 1.79272i 0.400908 0.298786i
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) 3.54944 6.14781i 0.575796 0.997307i
\(39\) −1.68292 + 8.16100i −0.269483 + 1.30681i
\(40\) 0.794182 + 1.37556i 0.125571 + 0.217496i
\(41\) 2.93818 5.08907i 0.458866 0.794780i −0.540035 0.841643i \(-0.681589\pi\)
0.998901 + 0.0468628i \(0.0149223\pi\)
\(42\) 0.761450 4.51887i 0.117494 0.697277i
\(43\) −0.833104 1.44298i −0.127047 0.220052i 0.795484 0.605974i \(-0.207217\pi\)
−0.922531 + 0.385922i \(0.873883\pi\)
\(44\) 0.794182 1.37556i 0.119727 0.207374i
\(45\) −4.37636 1.88510i −0.652389 0.281014i
\(46\) 0.150186 + 0.260130i 0.0221437 + 0.0383540i
\(47\) 2.66621 0.388906 0.194453 0.980912i \(-0.437707\pi\)
0.194453 + 0.980912i \(0.437707\pi\)
\(48\) −1.64400 + 0.545231i −0.237290 + 0.0786973i
\(49\) −3.93199 5.79133i −0.561713 0.827332i
\(50\) −1.23855 + 2.14523i −0.175157 + 0.303382i
\(51\) 6.98762 + 6.21523i 0.978463 + 0.870306i
\(52\) 2.40545 4.16635i 0.333575 0.577769i
\(53\) 2.44437 + 4.23377i 0.335760 + 0.581553i 0.983630 0.180197i \(-0.0576736\pi\)
−0.647871 + 0.761750i \(0.724340\pi\)
\(54\) 2.97710 4.25874i 0.405132 0.579541i
\(55\) −2.52290 −0.340188
\(56\) −1.23855 + 2.33795i −0.165508 + 0.312421i
\(57\) 2.48329 12.0422i 0.328920 1.59503i
\(58\) −4.13781 7.16689i −0.543321 0.941059i
\(59\) 6.47710 0.843247 0.421623 0.906771i \(-0.361460\pi\)
0.421623 + 0.906771i \(0.361460\pi\)
\(60\) 2.05563 + 1.82841i 0.265381 + 0.236047i
\(61\) −4.47710 −0.573234 −0.286617 0.958045i \(-0.592531\pi\)
−0.286617 + 0.958045i \(0.592531\pi\)
\(62\) 2.71201 0.344425
\(63\) −1.21201 7.84417i −0.152699 0.988273i
\(64\) 1.00000 0.125000
\(65\) −7.64145 −0.947805
\(66\) 0.555632 2.69443i 0.0683936 0.331662i
\(67\) −10.0531 −1.22818 −0.614090 0.789236i \(-0.710477\pi\)
−0.614090 + 0.789236i \(0.710477\pi\)
\(68\) −2.69963 4.67589i −0.327378 0.567035i
\(69\) 0.388736 + 0.345766i 0.0467983 + 0.0416253i
\(70\) 4.19963 0.153051i 0.501952 0.0182931i
\(71\) 12.7207 1.50967 0.754833 0.655917i \(-0.227718\pi\)
0.754833 + 0.655917i \(0.227718\pi\)
\(72\) −2.40545 + 1.79272i −0.283485 + 0.211274i
\(73\) 8.02654 + 13.9024i 0.939436 + 1.62715i 0.766527 + 0.642213i \(0.221983\pi\)
0.172909 + 0.984938i \(0.444683\pi\)
\(74\) −0.500000 + 0.866025i −0.0581238 + 0.100673i
\(75\) −0.866524 + 4.20205i −0.100058 + 0.485211i
\(76\) −3.54944 + 6.14781i −0.407149 + 0.705203i
\(77\) −2.23236 3.56046i −0.254401 0.405752i
\(78\) 1.68292 8.16100i 0.190553 0.924051i
\(79\) 8.38688 0.943597 0.471799 0.881706i \(-0.343605\pi\)
0.471799 + 0.881706i \(0.343605\pi\)
\(80\) −0.794182 1.37556i −0.0887922 0.153793i
\(81\) 2.57234 8.62456i 0.285816 0.958285i
\(82\) −2.93818 + 5.08907i −0.324467 + 0.561994i
\(83\) 1.18292 + 2.04887i 0.129842 + 0.224893i 0.923615 0.383321i \(-0.125220\pi\)
−0.793773 + 0.608214i \(0.791886\pi\)
\(84\) −0.761450 + 4.51887i −0.0830810 + 0.493049i
\(85\) −4.28799 + 7.42702i −0.465098 + 0.805573i
\(86\) 0.833104 + 1.44298i 0.0898359 + 0.155600i
\(87\) −10.7101 9.52628i −1.14825 1.02132i
\(88\) −0.794182 + 1.37556i −0.0846601 + 0.146636i
\(89\) 1.60507 2.78007i 0.170138 0.294687i −0.768330 0.640054i \(-0.778912\pi\)
0.938468 + 0.345367i \(0.112245\pi\)
\(90\) 4.37636 + 1.88510i 0.461308 + 0.198707i
\(91\) −6.76145 10.7840i −0.708793 1.13047i
\(92\) −0.150186 0.260130i −0.0156580 0.0271204i
\(93\) 4.45853 1.47867i 0.462328 0.153331i
\(94\) −2.66621 −0.274998
\(95\) 11.2756 1.15685
\(96\) 1.64400 0.545231i 0.167790 0.0556474i
\(97\) 0.712008 + 1.23323i 0.0722934 + 0.125216i 0.899906 0.436084i \(-0.143635\pi\)
−0.827613 + 0.561300i \(0.810302\pi\)
\(98\) 3.93199 + 5.79133i 0.397191 + 0.585012i
\(99\) −0.555632 4.73259i −0.0558431 0.475643i
\(100\) 1.23855 2.14523i 0.123855 0.214523i
\(101\) −6.01671 + 10.4212i −0.598685 + 1.03695i 0.394330 + 0.918969i \(0.370977\pi\)
−0.993015 + 0.117984i \(0.962357\pi\)
\(102\) −6.98762 6.21523i −0.691878 0.615399i
\(103\) 3.04944 + 5.28179i 0.300470 + 0.520430i 0.976243 0.216680i \(-0.0695230\pi\)
−0.675772 + 0.737111i \(0.736190\pi\)
\(104\) −2.40545 + 4.16635i −0.235873 + 0.408545i
\(105\) 6.82072 2.54138i 0.665635 0.248014i
\(106\) −2.44437 4.23377i −0.237418 0.411220i
\(107\) −1.54325 + 2.67299i −0.149192 + 0.258408i −0.930929 0.365200i \(-0.881001\pi\)
0.781737 + 0.623608i \(0.214334\pi\)
\(108\) −2.97710 + 4.25874i −0.286472 + 0.409798i
\(109\) 1.14400 + 1.98146i 0.109575 + 0.189789i 0.915598 0.402095i \(-0.131718\pi\)
−0.806023 + 0.591884i \(0.798384\pi\)
\(110\) 2.52290 0.240549
\(111\) −0.349814 + 1.69636i −0.0332029 + 0.161011i
\(112\) 1.23855 2.33795i 0.117032 0.220915i
\(113\) −9.73236 + 16.8569i −0.915543 + 1.58577i −0.109440 + 0.993993i \(0.534906\pi\)
−0.806104 + 0.591774i \(0.798428\pi\)
\(114\) −2.48329 + 12.0422i −0.232581 + 1.12786i
\(115\) −0.238550 + 0.413181i −0.0222449 + 0.0385293i
\(116\) 4.13781 + 7.16689i 0.384186 + 0.665429i
\(117\) −1.68292 14.3342i −0.155586 1.32520i
\(118\) −6.47710 −0.596265
\(119\) −14.2756 + 0.520259i −1.30864 + 0.0476921i
\(120\) −2.05563 1.82841i −0.187653 0.166910i
\(121\) 4.23855 + 7.34138i 0.385323 + 0.667399i
\(122\) 4.47710 0.405338
\(123\) −2.05563 + 9.96840i −0.185350 + 0.898821i
\(124\) −2.71201 −0.243545
\(125\) −11.8764 −1.06225
\(126\) 1.21201 + 7.84417i 0.107974 + 0.698814i
\(127\) −13.4400 −1.19260 −0.596302 0.802760i \(-0.703364\pi\)
−0.596302 + 0.802760i \(0.703364\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 2.15638 + 1.91802i 0.189858 + 0.168872i
\(130\) 7.64145 0.670199
\(131\) 1.58836 + 2.75113i 0.138776 + 0.240367i 0.927034 0.374978i \(-0.122350\pi\)
−0.788258 + 0.615345i \(0.789017\pi\)
\(132\) −0.555632 + 2.69443i −0.0483616 + 0.234520i
\(133\) 9.97710 + 15.9128i 0.865124 + 1.37981i
\(134\) 10.0531 0.868454
\(135\) 8.22253 + 0.712974i 0.707683 + 0.0613631i
\(136\) 2.69963 + 4.67589i 0.231491 + 0.400955i
\(137\) 10.6316 18.4145i 0.908320 1.57326i 0.0919231 0.995766i \(-0.470699\pi\)
0.816397 0.577491i \(-0.195968\pi\)
\(138\) −0.388736 0.345766i −0.0330914 0.0294336i
\(139\) 6.52654 11.3043i 0.553574 0.958818i −0.444439 0.895809i \(-0.646597\pi\)
0.998013 0.0630092i \(-0.0200698\pi\)
\(140\) −4.19963 + 0.153051i −0.354933 + 0.0129352i
\(141\) −4.38323 + 1.45370i −0.369135 + 0.122424i
\(142\) −12.7207 −1.06749
\(143\) −3.82072 6.61769i −0.319505 0.553399i
\(144\) 2.40545 1.79272i 0.200454 0.149393i
\(145\) 6.57234 11.3836i 0.545803 0.945359i
\(146\) −8.02654 13.9024i −0.664281 1.15057i
\(147\) 9.62178 + 7.37708i 0.793591 + 0.608451i
\(148\) 0.500000 0.866025i 0.0410997 0.0711868i
\(149\) −2.60439 4.51093i −0.213360 0.369550i 0.739404 0.673262i \(-0.235107\pi\)
−0.952764 + 0.303712i \(0.901774\pi\)
\(150\) 0.866524 4.20205i 0.0707514 0.343096i
\(151\) 0.261450 0.452845i 0.0212765 0.0368520i −0.855191 0.518313i \(-0.826560\pi\)
0.876468 + 0.481461i \(0.159894\pi\)
\(152\) 3.54944 6.14781i 0.287898 0.498654i
\(153\) −14.8764 6.40794i −1.20268 0.518052i
\(154\) 2.23236 + 3.56046i 0.179889 + 0.286910i
\(155\) 2.15383 + 3.73054i 0.173000 + 0.299644i
\(156\) −1.68292 + 8.16100i −0.134741 + 0.653403i
\(157\) 8.86398 0.707422 0.353711 0.935355i \(-0.384920\pi\)
0.353711 + 0.935355i \(0.384920\pi\)
\(158\) −8.38688 −0.667224
\(159\) −6.32691 5.62755i −0.501757 0.446294i
\(160\) 0.794182 + 1.37556i 0.0627856 + 0.108748i
\(161\) −0.794182 + 0.0289431i −0.0625903 + 0.00228104i
\(162\) −2.57234 + 8.62456i −0.202102 + 0.677610i
\(163\) 10.9814 19.0204i 0.860132 1.48979i −0.0116689 0.999932i \(-0.503714\pi\)
0.871801 0.489860i \(-0.162952\pi\)
\(164\) 2.93818 5.08907i 0.229433 0.397390i
\(165\) 4.14764 1.37556i 0.322893 0.107087i
\(166\) −1.18292 2.04887i −0.0918122 0.159023i
\(167\) 1.65019 2.85821i 0.127695 0.221175i −0.795088 0.606494i \(-0.792575\pi\)
0.922783 + 0.385319i \(0.125909\pi\)
\(168\) 0.761450 4.51887i 0.0587471 0.348638i
\(169\) −5.07234 8.78555i −0.390180 0.675812i
\(170\) 4.28799 7.42702i 0.328874 0.569626i
\(171\) 2.48329 + 21.1514i 0.189902 + 1.61749i
\(172\) −0.833104 1.44298i −0.0635236 0.110026i
\(173\) 19.1075 1.45272 0.726360 0.687315i \(-0.241211\pi\)
0.726360 + 0.687315i \(0.241211\pi\)
\(174\) 10.7101 + 9.52628i 0.811934 + 0.722185i
\(175\) −3.48143 5.55264i −0.263171 0.419740i
\(176\) 0.794182 1.37556i 0.0598637 0.103687i
\(177\) −10.6483 + 3.53152i −0.800377 + 0.265445i
\(178\) −1.60507 + 2.78007i −0.120305 + 0.208375i
\(179\) −8.03706 13.9206i −0.600718 1.04047i −0.992712 0.120507i \(-0.961548\pi\)
0.391994 0.919968i \(-0.371785\pi\)
\(180\) −4.37636 1.88510i −0.326194 0.140507i
\(181\) 8.05308 0.598581 0.299291 0.954162i \(-0.403250\pi\)
0.299291 + 0.954162i \(0.403250\pi\)
\(182\) 6.76145 + 10.7840i 0.501192 + 0.799366i
\(183\) 7.36033 2.44105i 0.544092 0.180448i
\(184\) 0.150186 + 0.260130i 0.0110719 + 0.0191770i
\(185\) −1.58836 −0.116779
\(186\) −4.45853 + 1.47867i −0.326915 + 0.108421i
\(187\) −8.57598 −0.627138
\(188\) 2.66621 0.194453
\(189\) 6.26942 + 12.2350i 0.456033 + 0.889963i
\(190\) −11.2756 −0.818019
\(191\) −23.9629 −1.73389 −0.866946 0.498402i \(-0.833920\pi\)
−0.866946 + 0.498402i \(0.833920\pi\)
\(192\) −1.64400 + 0.545231i −0.118645 + 0.0393487i
\(193\) 9.76509 0.702907 0.351453 0.936205i \(-0.385688\pi\)
0.351453 + 0.936205i \(0.385688\pi\)
\(194\) −0.712008 1.23323i −0.0511192 0.0885410i
\(195\) 12.5625 4.16635i 0.899620 0.298359i
\(196\) −3.93199 5.79133i −0.280856 0.413666i
\(197\) −18.2436 −1.29980 −0.649900 0.760020i \(-0.725189\pi\)
−0.649900 + 0.760020i \(0.725189\pi\)
\(198\) 0.555632 + 4.73259i 0.0394871 + 0.336330i
\(199\) 9.04944 + 15.6741i 0.641498 + 1.11111i 0.985098 + 0.171991i \(0.0550200\pi\)
−0.343601 + 0.939116i \(0.611647\pi\)
\(200\) −1.23855 + 2.14523i −0.0875787 + 0.151691i
\(201\) 16.5272 5.48125i 1.16574 0.386618i
\(202\) 6.01671 10.4212i 0.423334 0.733236i
\(203\) 21.8807 0.797418i 1.53572 0.0559678i
\(204\) 6.98762 + 6.21523i 0.489231 + 0.435153i
\(205\) −9.33379 −0.651900
\(206\) −3.04944 5.28179i −0.212465 0.368000i
\(207\) −0.827603 0.356487i −0.0575224 0.0247776i
\(208\) 2.40545 4.16635i 0.166788 0.288885i
\(209\) 5.63781 + 9.76497i 0.389975 + 0.675457i
\(210\) −6.82072 + 2.54138i −0.470675 + 0.175372i
\(211\) 0.166208 0.287880i 0.0114422 0.0198185i −0.860248 0.509877i \(-0.829691\pi\)
0.871690 + 0.490058i \(0.163024\pi\)
\(212\) 2.44437 + 4.23377i 0.167880 + 0.290776i
\(213\) −20.9127 + 6.93570i −1.43292 + 0.475227i
\(214\) 1.54325 2.67299i 0.105495 0.182722i
\(215\) −1.32327 + 2.29197i −0.0902464 + 0.156311i
\(216\) 2.97710 4.25874i 0.202566 0.289771i
\(217\) −3.35896 + 6.34053i −0.228021 + 0.430423i
\(218\) −1.14400 1.98146i −0.0774812 0.134201i
\(219\) −20.7756 18.4791i −1.40389 1.24870i
\(220\) −2.52290 −0.170094
\(221\) −25.9752 −1.74728
\(222\) 0.349814 1.69636i 0.0234780 0.113852i
\(223\) 3.16621 + 5.48403i 0.212025 + 0.367238i 0.952348 0.305013i \(-0.0986609\pi\)
−0.740323 + 0.672251i \(0.765328\pi\)
\(224\) −1.23855 + 2.33795i −0.0827541 + 0.156211i
\(225\) −0.866524 7.38061i −0.0577683 0.492040i
\(226\) 9.73236 16.8569i 0.647387 1.12131i
\(227\) 11.6545 20.1862i 0.773537 1.33981i −0.162075 0.986778i \(-0.551819\pi\)
0.935613 0.353028i \(-0.114848\pi\)
\(228\) 2.48329 12.0422i 0.164460 0.797517i
\(229\) 2.47710 + 4.29046i 0.163691 + 0.283522i 0.936190 0.351495i \(-0.114327\pi\)
−0.772498 + 0.635017i \(0.780993\pi\)
\(230\) 0.238550 0.413181i 0.0157295 0.0272443i
\(231\) 5.61126 + 4.63623i 0.369194 + 0.305041i
\(232\) −4.13781 7.16689i −0.271660 0.470529i
\(233\) −7.13781 + 12.3630i −0.467613 + 0.809930i −0.999315 0.0370017i \(-0.988219\pi\)
0.531702 + 0.846932i \(0.321553\pi\)
\(234\) 1.68292 + 14.3342i 0.110016 + 0.937057i
\(235\) −2.11745 3.66754i −0.138127 0.239244i
\(236\) 6.47710 0.421623
\(237\) −13.7880 + 4.57279i −0.895626 + 0.297034i
\(238\) 14.2756 0.520259i 0.925351 0.0337234i
\(239\) 2.48762 4.30868i 0.160911 0.278706i −0.774285 0.632837i \(-0.781890\pi\)
0.935196 + 0.354132i \(0.115224\pi\)
\(240\) 2.05563 + 1.82841i 0.132690 + 0.118023i
\(241\) 6.50000 11.2583i 0.418702 0.725213i −0.577107 0.816668i \(-0.695819\pi\)
0.995809 + 0.0914555i \(0.0291519\pi\)
\(242\) −4.23855 7.34138i −0.272464 0.471922i
\(243\) 0.473458 + 15.5813i 0.0303723 + 0.999539i
\(244\) −4.47710 −0.286617
\(245\) −4.84362 + 10.0081i −0.309448 + 0.639392i
\(246\) 2.05563 9.96840i 0.131062 0.635562i
\(247\) 17.0760 + 29.5765i 1.08652 + 1.88191i
\(248\) 2.71201 0.172213
\(249\) −3.06182 2.72338i −0.194035 0.172587i
\(250\) 11.8764 0.751127
\(251\) 2.43268 0.153549 0.0767746 0.997048i \(-0.475538\pi\)
0.0767746 + 0.997048i \(0.475538\pi\)
\(252\) −1.21201 7.84417i −0.0763493 0.494136i
\(253\) −0.477100 −0.0299950
\(254\) 13.4400 0.843298
\(255\) 3.00000 14.5479i 0.187867 0.911027i
\(256\) 1.00000 0.0625000
\(257\) 0.493810 + 0.855304i 0.0308030 + 0.0533524i 0.881016 0.473087i \(-0.156860\pi\)
−0.850213 + 0.526439i \(0.823527\pi\)
\(258\) −2.15638 1.91802i −0.134250 0.119410i
\(259\) −1.40545 2.24159i −0.0873302 0.139286i
\(260\) −7.64145 −0.473902
\(261\) 22.8015 + 9.82166i 1.41138 + 0.607946i
\(262\) −1.58836 2.75113i −0.0981295 0.169965i
\(263\) −8.59269 + 14.8830i −0.529848 + 0.917724i 0.469545 + 0.882908i \(0.344418\pi\)
−0.999394 + 0.0348158i \(0.988916\pi\)
\(264\) 0.555632 2.69443i 0.0341968 0.165831i
\(265\) 3.88255 6.72477i 0.238503 0.413099i
\(266\) −9.97710 15.9128i −0.611735 0.975675i
\(267\) −1.12296 + 5.44556i −0.0687237 + 0.333263i
\(268\) −10.0531 −0.614090
\(269\) 11.4523 + 19.8360i 0.698262 + 1.20942i 0.969069 + 0.246791i \(0.0793761\pi\)
−0.270807 + 0.962634i \(0.587291\pi\)
\(270\) −8.22253 0.712974i −0.500407 0.0433902i
\(271\) 7.00364 12.1307i 0.425441 0.736885i −0.571021 0.820936i \(-0.693452\pi\)
0.996462 + 0.0840504i \(0.0267857\pi\)
\(272\) −2.69963 4.67589i −0.163689 0.283518i
\(273\) 16.9956 + 14.0424i 1.02862 + 0.849883i
\(274\) −10.6316 + 18.4145i −0.642279 + 1.11246i
\(275\) −1.96727 3.40741i −0.118631 0.205474i
\(276\) 0.388736 + 0.345766i 0.0233991 + 0.0208127i
\(277\) −14.1476 + 24.5044i −0.850049 + 1.47233i 0.0311139 + 0.999516i \(0.490095\pi\)
−0.881163 + 0.472813i \(0.843239\pi\)
\(278\) −6.52654 + 11.3043i −0.391436 + 0.677987i
\(279\) −6.52359 + 4.86186i −0.390557 + 0.291072i
\(280\) 4.19963 0.153051i 0.250976 0.00914654i
\(281\) −8.79782 15.2383i −0.524834 0.909039i −0.999582 0.0289175i \(-0.990794\pi\)
0.474748 0.880122i \(-0.342539\pi\)
\(282\) 4.38323 1.45370i 0.261018 0.0865665i
\(283\) −18.5229 −1.10107 −0.550536 0.834811i \(-0.685577\pi\)
−0.550536 + 0.834811i \(0.685577\pi\)
\(284\) 12.7207 0.754833
\(285\) −18.5371 + 6.14781i −1.09804 + 0.364165i
\(286\) 3.82072 + 6.61769i 0.225924 + 0.391312i
\(287\) −8.25890 13.1724i −0.487508 0.777541i
\(288\) −2.40545 + 1.79272i −0.141742 + 0.105637i
\(289\) −6.07598 + 10.5239i −0.357411 + 0.619054i
\(290\) −6.57234 + 11.3836i −0.385941 + 0.668470i
\(291\) −1.84294 1.63922i −0.108035 0.0960929i
\(292\) 8.02654 + 13.9024i 0.469718 + 0.813575i
\(293\) −7.04256 + 12.1981i −0.411431 + 0.712619i −0.995046 0.0994108i \(-0.968304\pi\)
0.583616 + 0.812030i \(0.301638\pi\)
\(294\) −9.62178 7.37708i −0.561154 0.430240i
\(295\) −5.14400 8.90966i −0.299495 0.518741i
\(296\) −0.500000 + 0.866025i −0.0290619 + 0.0503367i
\(297\) 3.49381 + 7.47741i 0.202731 + 0.433883i
\(298\) 2.60439 + 4.51093i 0.150868 + 0.261311i
\(299\) −1.44506 −0.0835698
\(300\) −0.866524 + 4.20205i −0.0500288 + 0.242605i
\(301\) −4.40545 + 0.160552i −0.253926 + 0.00925405i
\(302\) −0.261450 + 0.452845i −0.0150448 + 0.0260583i
\(303\) 4.20946 20.4130i 0.241827 1.17270i
\(304\) −3.54944 + 6.14781i −0.203574 + 0.352601i
\(305\) 3.55563 + 6.15854i 0.203595 + 0.352637i
\(306\) 14.8764 + 6.40794i 0.850425 + 0.366318i
\(307\) −5.85532 −0.334180 −0.167090 0.985942i \(-0.553437\pi\)
−0.167090 + 0.985942i \(0.553437\pi\)
\(308\) −2.23236 3.56046i −0.127201 0.202876i
\(309\) −7.89307 7.02059i −0.449021 0.399387i
\(310\) −2.15383 3.73054i −0.122329 0.211880i
\(311\) 0.810892 0.0459815 0.0229907 0.999736i \(-0.492681\pi\)
0.0229907 + 0.999736i \(0.492681\pi\)
\(312\) 1.68292 8.16100i 0.0952765 0.462025i
\(313\) 10.5760 0.597790 0.298895 0.954286i \(-0.403382\pi\)
0.298895 + 0.954286i \(0.403382\pi\)
\(314\) −8.86398 −0.500223
\(315\) −9.82760 + 7.89689i −0.553723 + 0.444940i
\(316\) 8.38688 0.471799
\(317\) 12.1964 0.685018 0.342509 0.939515i \(-0.388723\pi\)
0.342509 + 0.939515i \(0.388723\pi\)
\(318\) 6.32691 + 5.62755i 0.354796 + 0.315578i
\(319\) 13.1447 0.735961
\(320\) −0.794182 1.37556i −0.0443961 0.0768963i
\(321\) 1.07970 5.23582i 0.0602631 0.292235i
\(322\) 0.794182 0.0289431i 0.0442580 0.00161294i
\(323\) 38.3287 2.13267
\(324\) 2.57234 8.62456i 0.142908 0.479142i
\(325\) −5.95853 10.3205i −0.330520 0.572477i
\(326\) −10.9814 + 19.0204i −0.608205 + 1.05344i
\(327\) −2.96108 2.63377i −0.163748 0.145648i
\(328\) −2.93818 + 5.08907i −0.162234 + 0.280997i
\(329\) 3.30223 6.23345i 0.182058 0.343661i
\(330\) −4.14764 + 1.37556i −0.228320 + 0.0757223i
\(331\) −15.6662 −0.861093 −0.430546 0.902568i \(-0.641679\pi\)
−0.430546 + 0.902568i \(0.641679\pi\)
\(332\) 1.18292 + 2.04887i 0.0649211 + 0.112447i
\(333\) −0.349814 2.97954i −0.0191697 0.163278i
\(334\) −1.65019 + 2.85821i −0.0902942 + 0.156394i
\(335\) 7.98398 + 13.8287i 0.436211 + 0.755540i
\(336\) −0.761450 + 4.51887i −0.0415405 + 0.246525i
\(337\) −4.21201 + 7.29541i −0.229443 + 0.397406i −0.957643 0.287958i \(-0.907024\pi\)
0.728200 + 0.685364i \(0.240357\pi\)
\(338\) 5.07234 + 8.78555i 0.275899 + 0.477871i
\(339\) 6.80903 33.0191i 0.369816 1.79335i
\(340\) −4.28799 + 7.42702i −0.232549 + 0.402787i
\(341\) −2.15383 + 3.73054i −0.116636 + 0.202020i
\(342\) −2.48329 21.1514i −0.134281 1.14374i
\(343\) −18.4098 + 2.01993i −0.994035 + 0.109066i
\(344\) 0.833104 + 1.44298i 0.0449179 + 0.0778002i
\(345\) 0.166896 0.809332i 0.00898539 0.0435730i
\(346\) −19.1075 −1.02723
\(347\) 0.567323 0.0304555 0.0152277 0.999884i \(-0.495153\pi\)
0.0152277 + 0.999884i \(0.495153\pi\)
\(348\) −10.7101 9.52628i −0.574124 0.510662i
\(349\) −0.00364189 0.00630794i −0.000194946 0.000337656i 0.865928 0.500169i \(-0.166729\pi\)
−0.866123 + 0.499831i \(0.833395\pi\)
\(350\) 3.48143 + 5.55264i 0.186090 + 0.296801i
\(351\) 10.5822 + 22.6478i 0.564835 + 1.20885i
\(352\) −0.794182 + 1.37556i −0.0423300 + 0.0733178i
\(353\) −3.32691 + 5.76238i −0.177074 + 0.306701i −0.940877 0.338748i \(-0.889996\pi\)
0.763803 + 0.645449i \(0.223330\pi\)
\(354\) 10.6483 3.53152i 0.565952 0.187698i
\(355\) −10.1025 17.4981i −0.536186 0.928702i
\(356\) 1.60507 2.78007i 0.0850688 0.147343i
\(357\) 23.1854 8.63881i 1.22710 0.457214i
\(358\) 8.03706 + 13.9206i 0.424772 + 0.735727i
\(359\) −0.398568 + 0.690339i −0.0210356 + 0.0364347i −0.876352 0.481672i \(-0.840030\pi\)
0.855316 + 0.518107i \(0.173363\pi\)
\(360\) 4.37636 + 1.88510i 0.230654 + 0.0993536i
\(361\) −15.6971 27.1881i −0.826162 1.43095i
\(362\) −8.05308 −0.423261
\(363\) −10.9709 9.75822i −0.575823 0.512174i
\(364\) −6.76145 10.7840i −0.354396 0.565237i
\(365\) 12.7491 22.0820i 0.667317 1.15583i
\(366\) −7.36033 + 2.44105i −0.384731 + 0.127596i
\(367\) 7.71634 13.3651i 0.402790 0.697652i −0.591272 0.806472i \(-0.701374\pi\)
0.994061 + 0.108820i \(0.0347073\pi\)
\(368\) −0.150186 0.260130i −0.00782898 0.0135602i
\(369\) −2.05563 17.5088i −0.107012 0.911472i
\(370\) 1.58836 0.0825751
\(371\) 12.9258 0.471067i 0.671074 0.0244566i
\(372\) 4.45853 1.47867i 0.231164 0.0766655i
\(373\) −5.12110 8.87000i −0.265160 0.459271i 0.702445 0.711738i \(-0.252092\pi\)
−0.967606 + 0.252467i \(0.918758\pi\)
\(374\) 8.57598 0.443454
\(375\) 19.5247 6.47536i 1.00825 0.334386i
\(376\) −2.66621 −0.137499
\(377\) 39.8131 2.05048
\(378\) −6.26942 12.2350i −0.322464 0.629299i
\(379\) 25.0087 1.28461 0.642304 0.766450i \(-0.277979\pi\)
0.642304 + 0.766450i \(0.277979\pi\)
\(380\) 11.2756 0.578427
\(381\) 22.0952 7.32788i 1.13197 0.375419i
\(382\) 23.9629 1.22605
\(383\) 3.13348 + 5.42734i 0.160113 + 0.277324i 0.934909 0.354887i \(-0.115481\pi\)
−0.774796 + 0.632211i \(0.782147\pi\)
\(384\) 1.64400 0.545231i 0.0838948 0.0278237i
\(385\) −3.12474 + 5.89841i −0.159251 + 0.300611i
\(386\) −9.76509 −0.497030
\(387\) −4.59084 1.97749i −0.233365 0.100521i
\(388\) 0.712008 + 1.23323i 0.0361467 + 0.0626080i
\(389\) 10.8171 18.7357i 0.548448 0.949940i −0.449933 0.893062i \(-0.648552\pi\)
0.998381 0.0568774i \(-0.0181144\pi\)
\(390\) −12.5625 + 4.16635i −0.636127 + 0.210972i
\(391\) −0.810892 + 1.40451i −0.0410086 + 0.0710290i
\(392\) 3.93199 + 5.79133i 0.198595 + 0.292506i
\(393\) −4.11126 3.65682i −0.207386 0.184462i
\(394\) 18.2436 0.919098
\(395\) −6.66071 11.5367i −0.335137 0.580473i
\(396\) −0.555632 4.73259i −0.0279216 0.237821i
\(397\) 2.05308 3.55605i 0.103041 0.178473i −0.809895 0.586575i \(-0.800476\pi\)
0.912936 + 0.408102i \(0.133809\pi\)
\(398\) −9.04944 15.6741i −0.453608 0.785671i
\(399\) −25.0785 20.7207i −1.25549 1.03733i
\(400\) 1.23855 2.14523i 0.0619275 0.107262i
\(401\) −8.37085 14.4987i −0.418021 0.724033i 0.577720 0.816235i \(-0.303943\pi\)
−0.995740 + 0.0922024i \(0.970609\pi\)
\(402\) −16.5272 + 5.48125i −0.824303 + 0.273380i
\(403\) −6.52359 + 11.2992i −0.324963 + 0.562853i
\(404\) −6.01671 + 10.4212i −0.299343 + 0.518476i
\(405\) −13.9065 + 3.31105i −0.691022 + 0.164527i
\(406\) −21.8807 + 0.797418i −1.08592 + 0.0395752i
\(407\) −0.794182 1.37556i −0.0393661 0.0681842i
\(408\) −6.98762 6.21523i −0.345939 0.307700i
\(409\) −8.76509 −0.433406 −0.216703 0.976238i \(-0.569530\pi\)
−0.216703 + 0.976238i \(0.569530\pi\)
\(410\) 9.33379 0.460963
\(411\) −7.43818 + 36.0701i −0.366898 + 1.77920i
\(412\) 3.04944 + 5.28179i 0.150235 + 0.260215i
\(413\) 8.02221 15.1431i 0.394747 0.745144i
\(414\) 0.827603 + 0.356487i 0.0406744 + 0.0175204i
\(415\) 1.87890 3.25436i 0.0922318 0.159750i
\(416\) −2.40545 + 4.16635i −0.117937 + 0.204272i
\(417\) −4.56615 + 22.1427i −0.223605 + 1.08433i
\(418\) −5.63781 9.76497i −0.275754 0.477620i
\(419\) −0.210149 + 0.363988i −0.0102664 + 0.0177820i −0.871113 0.491083i \(-0.836601\pi\)
0.860847 + 0.508865i \(0.169935\pi\)
\(420\) 6.82072 2.54138i 0.332817 0.124007i
\(421\) 3.28799 + 5.69497i 0.160247 + 0.277556i 0.934957 0.354761i \(-0.115438\pi\)
−0.774710 + 0.632316i \(0.782104\pi\)
\(422\) −0.166208 + 0.287880i −0.00809086 + 0.0140138i
\(423\) 6.41342 4.77975i 0.311831 0.232399i
\(424\) −2.44437 4.23377i −0.118709 0.205610i
\(425\) −13.3745 −0.648758
\(426\) 20.9127 6.93570i 1.01323 0.336036i
\(427\) −5.54511 + 10.4672i −0.268347 + 0.506544i
\(428\) −1.54325 + 2.67299i −0.0745959 + 0.129204i
\(429\) 9.88942 + 8.79628i 0.477466 + 0.424688i
\(430\) 1.32327 2.29197i 0.0638138 0.110529i
\(431\) 11.0439 + 19.1287i 0.531968 + 0.921395i 0.999304 + 0.0373155i \(0.0118806\pi\)
−0.467336 + 0.884080i \(0.654786\pi\)
\(432\) −2.97710 + 4.25874i −0.143236 + 0.204899i
\(433\) −9.43268 −0.453306 −0.226653 0.973976i \(-0.572778\pi\)
−0.226653 + 0.973976i \(0.572778\pi\)
\(434\) 3.35896 6.34053i 0.161235 0.304355i
\(435\) −4.59820 + 22.2981i −0.220467 + 1.06911i
\(436\) 1.14400 + 1.98146i 0.0547875 + 0.0948947i
\(437\) 2.13231 0.102002
\(438\) 20.7756 + 18.4791i 0.992697 + 0.882967i
\(439\) −31.2064 −1.48940 −0.744701 0.667398i \(-0.767408\pi\)
−0.744701 + 0.667398i \(0.767408\pi\)
\(440\) 2.52290 0.120275
\(441\) −19.8404 6.88179i −0.944780 0.327704i
\(442\) 25.9752 1.23552
\(443\) 13.0545 0.620236 0.310118 0.950698i \(-0.399631\pi\)
0.310118 + 0.950698i \(0.399631\pi\)
\(444\) −0.349814 + 1.69636i −0.0166014 + 0.0805056i
\(445\) −5.09888 −0.241710
\(446\) −3.16621 5.48403i −0.149924 0.259676i
\(447\) 6.74110 + 5.99596i 0.318843 + 0.283599i
\(448\) 1.23855 2.33795i 0.0585160 0.110458i
\(449\) −9.91706 −0.468015 −0.234008 0.972235i \(-0.575184\pi\)
−0.234008 + 0.972235i \(0.575184\pi\)
\(450\) 0.866524 + 7.38061i 0.0408484 + 0.347925i
\(451\) −4.66690 8.08330i −0.219756 0.380628i
\(452\) −9.73236 + 16.8569i −0.457772 + 0.792884i
\(453\) −0.182918 + 0.887026i −0.00859423 + 0.0416761i
\(454\) −11.6545 + 20.1862i −0.546974 + 0.947386i
\(455\) −9.46431 + 17.8653i −0.443694 + 0.837538i
\(456\) −2.48329 + 12.0422i −0.116291 + 0.563930i
\(457\) −24.5229 −1.14713 −0.573566 0.819159i \(-0.694441\pi\)
−0.573566 + 0.819159i \(0.694441\pi\)
\(458\) −2.47710 4.29046i −0.115747 0.200480i
\(459\) 27.9505 + 2.42358i 1.30462 + 0.113123i
\(460\) −0.238550 + 0.413181i −0.0111224 + 0.0192646i
\(461\) 1.75526 + 3.04020i 0.0817506 + 0.141596i 0.904002 0.427528i \(-0.140616\pi\)
−0.822251 + 0.569125i \(0.807282\pi\)
\(462\) −5.61126 4.63623i −0.261060 0.215697i
\(463\) 8.69413 15.0587i 0.404050 0.699836i −0.590160 0.807286i \(-0.700935\pi\)
0.994210 + 0.107451i \(0.0342687\pi\)
\(464\) 4.13781 + 7.16689i 0.192093 + 0.332715i
\(465\) −5.57489 4.95866i −0.258529 0.229952i
\(466\) 7.13781 12.3630i 0.330652 0.572707i
\(467\) 6.69894 11.6029i 0.309990 0.536918i −0.668370 0.743829i \(-0.733008\pi\)
0.978360 + 0.206911i \(0.0663410\pi\)
\(468\) −1.68292 14.3342i −0.0777929 0.662600i
\(469\) −12.4512 + 23.5036i −0.574945 + 1.08529i
\(470\) 2.11745 + 3.66754i 0.0976709 + 0.169171i
\(471\) −14.5723 + 4.83292i −0.671458 + 0.222689i
\(472\) −6.47710 −0.298133
\(473\) −2.64654 −0.121688
\(474\) 13.7880 4.57279i 0.633303 0.210035i
\(475\) 8.79232 + 15.2287i 0.403419 + 0.698743i
\(476\) −14.2756 + 0.520259i −0.654322 + 0.0238460i
\(477\) 13.4697 + 5.80205i 0.616737 + 0.265658i
\(478\) −2.48762 + 4.30868i −0.113781 + 0.197075i
\(479\) −10.4029 + 18.0183i −0.475321 + 0.823279i −0.999600 0.0282667i \(-0.991001\pi\)
0.524280 + 0.851546i \(0.324335\pi\)
\(480\) −2.05563 1.82841i −0.0938263 0.0834550i
\(481\) −2.40545 4.16635i −0.109679 0.189969i
\(482\) −6.50000 + 11.2583i −0.296067 + 0.512803i
\(483\) 1.28985 0.480595i 0.0586903 0.0218678i
\(484\) 4.23855 + 7.34138i 0.192661 + 0.333699i
\(485\) 1.13093 1.95882i 0.0513528 0.0889456i
\(486\) −0.473458 15.5813i −0.0214765 0.706781i
\(487\) 16.2472 + 28.1410i 0.736231 + 1.27519i 0.954181 + 0.299230i \(0.0967298\pi\)
−0.217950 + 0.975960i \(0.569937\pi\)
\(488\) 4.47710 0.202669
\(489\) −7.68292 + 37.2569i −0.347434 + 1.68481i
\(490\) 4.84362 10.0081i 0.218813 0.452118i
\(491\) −9.66071 + 16.7328i −0.435982 + 0.755142i −0.997375 0.0724067i \(-0.976932\pi\)
0.561394 + 0.827549i \(0.310265\pi\)
\(492\) −2.05563 + 9.96840i −0.0926751 + 0.449410i
\(493\) 22.3411 38.6959i 1.00619 1.74277i
\(494\) −17.0760 29.5765i −0.768285 1.33071i
\(495\) −6.06870 + 4.52284i −0.272768 + 0.203287i
\(496\) −2.71201 −0.121773
\(497\) 15.7552 29.7402i 0.706717 1.33403i
\(498\) 3.06182 + 2.72338i 0.137204 + 0.122037i
\(499\) 5.57530 + 9.65670i 0.249585 + 0.432293i 0.963411 0.268030i \(-0.0863726\pi\)
−0.713826 + 0.700323i \(0.753039\pi\)
\(500\) −11.8764 −0.531127
\(501\) −1.15452 + 5.59861i −0.0515800 + 0.250128i
\(502\) −2.43268 −0.108576
\(503\) −40.7651 −1.81763 −0.908813 0.417204i \(-0.863010\pi\)
−0.908813 + 0.417204i \(0.863010\pi\)
\(504\) 1.21201 + 7.84417i 0.0539871 + 0.349407i
\(505\) 19.1135 0.850537
\(506\) 0.477100 0.0212097
\(507\) 13.1291 + 11.6778i 0.583082 + 0.518630i
\(508\) −13.4400 −0.596302
\(509\) −0.722528 1.25146i −0.0320255 0.0554698i 0.849568 0.527478i \(-0.176862\pi\)
−0.881594 + 0.472009i \(0.843529\pi\)
\(510\) −3.00000 + 14.5479i −0.132842 + 0.644194i
\(511\) 42.4443 1.54684i 1.87762 0.0684280i
\(512\) −1.00000 −0.0441942
\(513\) −15.6149 33.4188i −0.689415 1.47548i
\(514\) −0.493810 0.855304i −0.0217810 0.0377259i
\(515\) 4.84362 8.38940i 0.213436 0.369681i
\(516\) 2.15638 + 1.91802i 0.0949292 + 0.0844360i
\(517\) 2.11745 3.66754i 0.0931255 0.161298i
\(518\) 1.40545 + 2.24159i 0.0617518 + 0.0984898i
\(519\) −31.4127 + 10.4180i −1.37887 + 0.457301i
\(520\) 7.64145 0.335100
\(521\) 9.64214 + 16.7007i 0.422430 + 0.731670i 0.996177 0.0873630i \(-0.0278440\pi\)
−0.573747 + 0.819033i \(0.694511\pi\)
\(522\) −22.8015 9.82166i −0.997993 0.429882i
\(523\) −18.3454 + 31.7752i −0.802189 + 1.38943i 0.115984 + 0.993251i \(0.462998\pi\)
−0.918173 + 0.396180i \(0.870335\pi\)
\(524\) 1.58836 + 2.75113i 0.0693880 + 0.120184i
\(525\) 8.75093 + 7.23033i 0.381922 + 0.315558i
\(526\) 8.59269 14.8830i 0.374659 0.648929i
\(527\) 7.32141 + 12.6811i 0.318926 + 0.552396i
\(528\) −0.555632 + 2.69443i −0.0241808 + 0.117260i
\(529\) 11.4549 19.8404i 0.498039 0.862628i
\(530\) −3.88255 + 6.72477i −0.168647 + 0.292105i
\(531\) 15.5803 11.6116i 0.676128 0.503900i
\(532\) 9.97710 + 15.9128i 0.432562 + 0.689907i
\(533\) −14.1353 24.4830i −0.612266 1.06048i
\(534\) 1.12296 5.44556i 0.0485950 0.235652i
\(535\) 4.90249 0.211953
\(536\) 10.0531 0.434227
\(537\) 20.8028 + 18.5034i 0.897709 + 0.798479i
\(538\) −11.4523 19.8360i −0.493745 0.855192i
\(539\) −11.0891 + 0.809332i −0.477639 + 0.0348604i
\(540\) 8.22253 + 0.712974i 0.353841 + 0.0306815i
\(541\) −1.62543 + 2.81532i −0.0698825 + 0.121040i −0.898849 0.438258i \(-0.855596\pi\)
0.828967 + 0.559298i \(0.188929\pi\)
\(542\) −7.00364 + 12.1307i −0.300832 + 0.521057i
\(543\) −13.2392 + 4.39079i −0.568150 + 0.188427i
\(544\) 2.69963 + 4.67589i 0.115746 + 0.200477i
\(545\) 1.81708 3.14728i 0.0778352 0.134815i
\(546\) −16.9956 14.0424i −0.727344 0.600958i
\(547\) −2.95853 5.12432i −0.126498 0.219100i 0.795820 0.605534i \(-0.207040\pi\)
−0.922317 + 0.386433i \(0.873707\pi\)
\(548\) 10.6316 18.4145i 0.454160 0.786628i
\(549\) −10.7694 + 8.02617i −0.459628 + 0.342548i
\(550\) 1.96727 + 3.40741i 0.0838846 + 0.145292i
\(551\) −58.7476 −2.50273
\(552\) −0.388736 0.345766i −0.0165457 0.0147168i
\(553\) 10.3876 19.6081i 0.441724 0.833820i
\(554\) 14.1476 24.5044i 0.601076 1.04109i
\(555\) 2.61126 0.866025i 0.110842 0.0367607i
\(556\) 6.52654 11.3043i 0.276787 0.479409i
\(557\) 12.8040 + 22.1772i 0.542523 + 0.939678i 0.998758 + 0.0498188i \(0.0158644\pi\)
−0.456235 + 0.889859i \(0.650802\pi\)
\(558\) 6.52359 4.86186i 0.276166 0.205819i
\(559\) −8.01594 −0.339038
\(560\) −4.19963 + 0.153051i −0.177467 + 0.00646758i
\(561\) 14.0989 4.67589i 0.595255 0.197416i
\(562\) 8.79782 + 15.2383i 0.371114 + 0.642788i
\(563\) −46.6377 −1.96555 −0.982773 0.184817i \(-0.940831\pi\)
−0.982773 + 0.184817i \(0.940831\pi\)
\(564\) −4.38323 + 1.45370i −0.184567 + 0.0612118i
\(565\) 30.9171 1.30069
\(566\) 18.5229 0.778576
\(567\) −16.9778 16.6959i −0.713000 0.701164i
\(568\) −12.7207 −0.533747
\(569\) 31.1978 1.30788 0.653939 0.756547i \(-0.273115\pi\)
0.653939 + 0.756547i \(0.273115\pi\)
\(570\) 18.5371 6.14781i 0.776432 0.257504i
\(571\) −15.6762 −0.656030 −0.328015 0.944672i \(-0.606380\pi\)
−0.328015 + 0.944672i \(0.606380\pi\)
\(572\) −3.82072 6.61769i −0.159752 0.276699i
\(573\) 39.3948 13.0653i 1.64574 0.545811i
\(574\) 8.25890 + 13.1724i 0.344720 + 0.549804i
\(575\) −0.744051 −0.0310291
\(576\) 2.40545 1.79272i 0.100227 0.0746965i
\(577\) 6.99567 + 12.1169i 0.291234 + 0.504431i 0.974102 0.226110i \(-0.0726010\pi\)
−0.682868 + 0.730542i \(0.739268\pi\)
\(578\) 6.07598 10.5239i 0.252728 0.437737i
\(579\) −16.0538 + 5.32423i −0.667172 + 0.221268i
\(580\) 6.57234 11.3836i 0.272902 0.472680i
\(581\) 6.25526 0.227966i 0.259512 0.00945763i
\(582\) 1.84294 + 1.63922i 0.0763921 + 0.0679480i
\(583\) 7.76509 0.321597
\(584\) −8.02654 13.9024i −0.332141 0.575285i
\(585\) −18.3811 + 13.6989i −0.759965 + 0.566382i
\(586\) 7.04256 12.1981i 0.290926 0.503898i
\(587\) 1.44801 + 2.50803i 0.0597658 + 0.103517i 0.894360 0.447348i \(-0.147631\pi\)
−0.834594 + 0.550865i \(0.814298\pi\)
\(588\) 9.62178 + 7.37708i 0.396796 + 0.304226i
\(589\) 9.62612 16.6729i 0.396637 0.686996i
\(590\) 5.14400 + 8.90966i 0.211775 + 0.366805i
\(591\) 29.9924 9.94696i 1.23372 0.409163i
\(592\) 0.500000 0.866025i 0.0205499 0.0355934i
\(593\) −2.04394 + 3.54021i −0.0839346 + 0.145379i −0.904937 0.425546i \(-0.860082\pi\)
0.821002 + 0.570925i \(0.193415\pi\)
\(594\) −3.49381 7.47741i −0.143353 0.306802i
\(595\) 12.0531 + 19.2238i 0.494128 + 0.788100i
\(596\) −2.60439 4.51093i −0.106680 0.184775i
\(597\) −23.4233 20.8341i −0.958650 0.852683i
\(598\) 1.44506 0.0590928
\(599\) −19.7651 −0.807580 −0.403790 0.914852i \(-0.632307\pi\)
−0.403790 + 0.914852i \(0.632307\pi\)
\(600\) 0.866524 4.20205i 0.0353757 0.171548i
\(601\) −13.4320 23.2649i −0.547902 0.948994i −0.998418 0.0562261i \(-0.982093\pi\)
0.450516 0.892768i \(-0.351240\pi\)
\(602\) 4.40545 0.160552i 0.179553 0.00654360i
\(603\) −24.1822 + 18.0223i −0.984773 + 0.733926i
\(604\) 0.261450 0.452845i 0.0106383 0.0184260i
\(605\) 6.73236 11.6608i 0.273709 0.474079i
\(606\) −4.20946 + 20.4130i −0.170998 + 0.829221i
\(607\) 7.62110 + 13.2001i 0.309331 + 0.535777i 0.978216 0.207589i \(-0.0665617\pi\)
−0.668885 + 0.743366i \(0.733228\pi\)
\(608\) 3.54944 6.14781i 0.143949 0.249327i
\(609\) −35.5370 + 13.2410i −1.44003 + 0.536552i
\(610\) −3.55563 6.15854i −0.143963 0.249352i
\(611\) 6.41342 11.1084i 0.259459 0.449396i
\(612\) −14.8764 6.40794i −0.601341 0.259026i
\(613\) −1.36033 2.35617i −0.0549434 0.0951648i 0.837246 0.546827i \(-0.184165\pi\)
−0.892189 + 0.451662i \(0.850831\pi\)
\(614\) 5.85532 0.236301
\(615\) 15.3447 5.08907i 0.618759 0.205211i
\(616\) 2.23236 + 3.56046i 0.0899444 + 0.143455i
\(617\) −9.21812 + 15.9663i −0.371108 + 0.642777i −0.989736 0.142906i \(-0.954355\pi\)
0.618629 + 0.785684i \(0.287689\pi\)
\(618\) 7.89307 + 7.02059i 0.317506 + 0.282410i
\(619\) −0.0537728 + 0.0931373i −0.00216131 + 0.00374350i −0.867104 0.498127i \(-0.834021\pi\)
0.864943 + 0.501871i \(0.167355\pi\)
\(620\) 2.15383 + 3.73054i 0.0864998 + 0.149822i
\(621\) 1.55494 + 0.134829i 0.0623977 + 0.00541050i
\(622\) −0.810892 −0.0325138
\(623\) −4.51169 7.19583i −0.180757 0.288295i
\(624\) −1.68292 + 8.16100i −0.0673706 + 0.326701i
\(625\) 3.23924 + 5.61053i 0.129570 + 0.224421i
\(626\) −10.5760 −0.422701
\(627\) −14.5927 12.9797i −0.582776 0.518358i
\(628\) 8.86398 0.353711
\(629\) −5.39926 −0.215282
\(630\) 9.82760 7.89689i 0.391541 0.314620i
\(631\) 35.7266 1.42225 0.711126 0.703064i \(-0.248185\pi\)
0.711126 + 0.703064i \(0.248185\pi\)
\(632\) −8.38688 −0.333612
\(633\) −0.116283 + 0.563895i −0.00462185 + 0.0224128i
\(634\) −12.1964 −0.484381
\(635\) 10.6738 + 18.4875i 0.423576 + 0.733655i
\(636\) −6.32691 5.62755i −0.250878 0.223147i
\(637\) −33.5869 + 2.45133i −1.33076 + 0.0971254i
\(638\) −13.1447 −0.520403
\(639\) 30.5989 22.8045i 1.21047 0.902134i
\(640\) 0.794182 + 1.37556i 0.0313928 + 0.0543739i
\(641\) −8.65638 + 14.9933i −0.341906 + 0.592199i −0.984787 0.173767i \(-0.944406\pi\)
0.642880 + 0.765967i \(0.277739\pi\)
\(642\) −1.07970 + 5.23582i −0.0426125 + 0.206641i
\(643\) 14.4821 25.0838i 0.571119 0.989207i −0.425332 0.905037i \(-0.639843\pi\)
0.996451 0.0841700i \(-0.0268239\pi\)
\(644\) −0.794182 + 0.0289431i −0.0312952 + 0.00114052i
\(645\) 0.925798 4.48949i 0.0364533 0.176773i
\(646\) −38.3287 −1.50802
\(647\) 1.27816 + 2.21384i 0.0502497 + 0.0870350i 0.890056 0.455851i \(-0.150665\pi\)
−0.839807 + 0.542886i \(0.817332\pi\)
\(648\) −2.57234 + 8.62456i −0.101051 + 0.338805i
\(649\) 5.14400 8.90966i 0.201920 0.349735i
\(650\) 5.95853 + 10.3205i 0.233713 + 0.404802i
\(651\) 2.06506 12.2552i 0.0809360 0.480320i
\(652\) 10.9814 19.0204i 0.430066 0.744896i
\(653\) −14.9883 25.9605i −0.586538 1.01591i −0.994682 0.102996i \(-0.967157\pi\)
0.408144 0.912918i \(-0.366176\pi\)
\(654\) 2.96108 + 2.63377i 0.115787 + 0.102989i
\(655\) 2.52290 4.36979i 0.0985779 0.170742i
\(656\) 2.93818 5.08907i 0.114717 0.198695i
\(657\) 44.2304 + 19.0521i 1.72559 + 0.743294i
\(658\) −3.30223 + 6.23345i −0.128734 + 0.243005i
\(659\) −7.63162 13.2183i −0.297286 0.514914i 0.678228 0.734851i \(-0.262748\pi\)
−0.975514 + 0.219937i \(0.929415\pi\)
\(660\) 4.14764 1.37556i 0.161447 0.0535437i
\(661\) −27.2522 −1.05999 −0.529994 0.848001i \(-0.677806\pi\)
−0.529994 + 0.848001i \(0.677806\pi\)
\(662\) 15.6662 0.608884
\(663\) 42.7032 14.1625i 1.65845 0.550026i
\(664\) −1.18292 2.04887i −0.0459061 0.0795117i
\(665\) 13.9654 26.3618i 0.541555 1.02227i
\(666\) 0.349814 + 2.97954i 0.0135550 + 0.115455i
\(667\) 1.24288 2.15273i 0.0481245 0.0833541i
\(668\) 1.65019 2.85821i 0.0638476 0.110587i
\(669\) −8.19530 7.28941i −0.316849 0.281825i
\(670\) −7.98398 13.8287i −0.308448 0.534248i
\(671\) −3.55563 + 6.15854i −0.137264 + 0.237748i
\(672\) 0.761450 4.51887i 0.0293736 0.174319i
\(673\) 23.2280 + 40.2320i 0.895372 + 1.55083i 0.833344 + 0.552755i \(0.186423\pi\)
0.0620280 + 0.998074i \(0.480243\pi\)
\(674\) 4.21201 7.29541i 0.162240 0.281009i
\(675\) 5.44870 + 11.6612i 0.209721 + 0.448841i
\(676\) −5.07234 8.78555i −0.195090 0.337906i
\(677\) 5.09888 0.195966 0.0979830 0.995188i \(-0.468761\pi\)
0.0979830 + 0.995188i \(0.468761\pi\)
\(678\) −6.80903 + 33.0191i −0.261499 + 1.26809i
\(679\) 3.76509 0.137215i 0.144491 0.00526582i
\(680\) 4.28799 7.42702i 0.164437 0.284813i
\(681\) −8.15383 + 39.5405i −0.312455 + 1.51519i
\(682\) 2.15383 3.73054i 0.0824743 0.142850i
\(683\) −7.77197 13.4614i −0.297386 0.515088i 0.678151 0.734923i \(-0.262782\pi\)
−0.975537 + 0.219835i \(0.929448\pi\)
\(684\) 2.48329 + 21.1514i 0.0949510 + 0.808743i
\(685\) −33.7738 −1.29043
\(686\) 18.4098 2.01993i 0.702889 0.0771213i
\(687\) −6.41164 5.70291i −0.244619 0.217580i
\(688\) −0.833104 1.44298i −0.0317618 0.0550130i
\(689\) 23.5192 0.896009
\(690\) −0.166896 + 0.809332i −0.00635363 + 0.0308107i
\(691\) 23.2967 0.886246 0.443123 0.896461i \(-0.353870\pi\)
0.443123 + 0.896461i \(0.353870\pi\)
\(692\) 19.1075 0.726360
\(693\) −11.7527 4.56251i −0.446449 0.173315i
\(694\) −0.567323 −0.0215353
\(695\) −20.7330 −0.786449
\(696\) 10.7101 + 9.52628i 0.405967 + 0.361093i
\(697\) −31.7280 −1.20178
\(698\) 0.00364189 + 0.00630794i 0.000137848 + 0.000238759i
\(699\) 4.99381 24.2165i 0.188883 0.915954i
\(700\) −3.48143 5.55264i −0.131586 0.209870i
\(701\) −45.6464 −1.72404 −0.862020 0.506874i \(-0.830801\pi\)
−0.862020 + 0.506874i \(0.830801\pi\)
\(702\) −10.5822 22.6478i −0.399398 0.854787i
\(703\) 3.54944 + 6.14781i 0.133870 + 0.231869i
\(704\) 0.794182 1.37556i 0.0299319 0.0518435i
\(705\) 5.48074 + 4.87492i 0.206417 + 0.183600i
\(706\) 3.32691 5.76238i 0.125210 0.216870i
\(707\) 16.9123 + 26.9740i 0.636053 + 1.01446i
\(708\) −10.6483 + 3.53152i −0.400189 + 0.132723i
\(709\) 18.0014 0.676056 0.338028 0.941136i \(-0.390240\pi\)
0.338028 + 0.941136i \(0.390240\pi\)
\(710\) 10.1025 + 17.4981i 0.379141 + 0.656692i
\(711\) 20.1742 15.0353i 0.756591 0.563867i
\(712\) −1.60507 + 2.78007i −0.0601527 + 0.104188i
\(713\) 0.407305 + 0.705474i 0.0152537 + 0.0264202i
\(714\) −23.1854 + 8.63881i −0.867691 + 0.323299i
\(715\) −6.06870 + 10.5113i −0.226957 + 0.393100i
\(716\) −8.03706 13.9206i −0.300359 0.520237i
\(717\) −1.74041 + 8.43979i −0.0649968 + 0.315190i
\(718\) 0.398568 0.690339i 0.0148744 0.0257632i
\(719\) 18.4389 31.9371i 0.687654 1.19105i −0.284941 0.958545i \(-0.591974\pi\)
0.972595 0.232506i \(-0.0746926\pi\)
\(720\) −4.37636 1.88510i −0.163097 0.0702536i
\(721\) 16.1254 0.587674i 0.600542 0.0218861i
\(722\) 15.6971 + 27.1881i 0.584185 + 1.01184i
\(723\) −4.54758 + 22.0527i −0.169126 + 0.820147i
\(724\) 8.05308 0.299291
\(725\) 20.4995 0.761333
\(726\) 10.9709 + 9.75822i 0.407169 + 0.362161i
\(727\) 15.2429 + 26.4014i 0.565327 + 0.979175i 0.997019 + 0.0771543i \(0.0245834\pi\)
−0.431692 + 0.902021i \(0.642083\pi\)
\(728\) 6.76145 + 10.7840i 0.250596 + 0.399683i
\(729\) −9.27375 25.3574i −0.343472 0.939163i
\(730\) −12.7491 + 22.0820i −0.471864 + 0.817293i
\(731\) −4.49814 + 7.79101i −0.166370 + 0.288161i
\(732\) 7.36033 2.44105i 0.272046 0.0902240i
\(733\) −3.07530 5.32657i −0.113589 0.196741i 0.803626 0.595135i \(-0.202901\pi\)
−0.917215 + 0.398393i \(0.869568\pi\)
\(734\) −7.71634 + 13.3651i −0.284815 + 0.493314i
\(735\) 2.50619 19.0941i 0.0924422 0.704297i
\(736\) 0.150186 + 0.260130i 0.00553593 + 0.00958851i
\(737\) −7.98398 + 13.8287i −0.294094 + 0.509385i
\(738\) 2.05563 + 17.5088i 0.0756689 + 0.644508i
\(739\) −20.3912 35.3186i −0.750103 1.29922i −0.947772 0.318947i \(-0.896671\pi\)
0.197670 0.980269i \(-0.436663\pi\)
\(740\) −1.58836 −0.0583894
\(741\) −44.1989 39.3132i −1.62369 1.44421i
\(742\) −12.9258 + 0.471067i −0.474521 + 0.0172934i
\(743\) 7.25271 12.5621i 0.266076 0.460858i −0.701769 0.712405i \(-0.747606\pi\)
0.967845 + 0.251547i \(0.0809394\pi\)
\(744\) −4.45853 + 1.47867i −0.163458 + 0.0542107i
\(745\) −4.13671 + 7.16500i −0.151557 + 0.262505i
\(746\) 5.12110 + 8.87000i 0.187497 + 0.324754i
\(747\) 6.51849 + 2.80782i 0.238499 + 0.102733i
\(748\) −8.57598 −0.313569
\(749\) 4.33792 + 6.91867i 0.158504 + 0.252803i
\(750\) −19.5247 + 6.47536i −0.712941 + 0.236447i
\(751\) −2.09455 3.62787i −0.0764314 0.132383i 0.825276 0.564729i \(-0.191019\pi\)
−0.901708 + 0.432346i \(0.857686\pi\)
\(752\) 2.66621 0.0972266
\(753\) −3.99931 + 1.32637i −0.145743 + 0.0483356i
\(754\) −39.8131 −1.44991
\(755\) −0.830556 −0.0302270
\(756\) 6.26942 + 12.2350i 0.228017 + 0.444981i
\(757\) 2.38688 0.0867525 0.0433763 0.999059i \(-0.486189\pi\)
0.0433763 + 0.999059i \(0.486189\pi\)
\(758\) −25.0087 −0.908355
\(759\) 0.784350 0.260130i 0.0284701 0.00944211i
\(760\) −11.2756 −0.409009
\(761\) −1.81708 3.14728i −0.0658692 0.114089i 0.831210 0.555959i \(-0.187649\pi\)
−0.897079 + 0.441870i \(0.854315\pi\)
\(762\) −22.0952 + 7.32788i −0.800426 + 0.265461i
\(763\) 6.04944 0.220465i 0.219005 0.00798138i
\(764\) −23.9629 −0.866946
\(765\) 3.00000 + 25.5524i 0.108465 + 0.923851i
\(766\) −3.13348 5.42734i −0.113217 0.196098i
\(767\) 15.5803 26.9859i 0.562573