Newspace parameters
Level: | \( N \) | \(=\) | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 126.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.00611506547\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Relative dimension: | \(3\) over \(\Q(\zeta_{3})\) |
Coefficient field: | 6.0.309123.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{5} - \nu^{4} + 5\nu^{3} + \nu^{2} + 6 ) / 3 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -\nu^{5} + \nu^{4} - 5\nu^{3} + 2\nu^{2} - 3\nu ) / 3 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -2\nu^{5} + 5\nu^{4} - 16\nu^{3} + 19\nu^{2} - 21\nu + 6 ) / 3 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 2\nu^{5} - 5\nu^{4} + 19\nu^{3} - 22\nu^{2} + 33\nu - 9 ) / 3 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{3} + \beta_{2} + \beta _1 - 2 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{5} + \beta_{4} + \beta_{3} + \beta_{2} - 3\beta _1 - 1 \)
|
\(\nu^{4}\) | \(=\) |
\( 2\beta_{5} + 3\beta_{4} - 5\beta_{3} - 3\beta_{2} - 6\beta _1 + 6 \)
|
\(\nu^{5}\) | \(=\) |
\( -3\beta_{5} - 2\beta_{4} - 11\beta_{3} - 6\beta_{2} + 8\beta _1 + 7 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).
\(n\) | \(29\) | \(73\) |
\(\chi(n)\) | \(-1 - \beta_{4}\) | \(-1 - \beta_{4}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 |
|
−1.00000 | −1.64400 | − | 0.545231i | 1.00000 | −0.794182 | + | 1.37556i | 1.64400 | + | 0.545231i | 1.23855 | + | 2.33795i | −1.00000 | 2.40545 | + | 1.79272i | 0.794182 | − | 1.37556i | ||||||||||||||||||||||||
25.2 | −1.00000 | 0.933463 | − | 1.45899i | 1.00000 | −0.296790 | + | 0.514055i | −0.933463 | + | 1.45899i | 2.32383 | − | 1.26483i | −1.00000 | −1.25729 | − | 2.72382i | 0.296790 | − | 0.514055i | |||||||||||||||||||||||||
25.3 | −1.00000 | 1.71053 | + | 0.272169i | 1.00000 | 1.59097 | − | 2.75564i | −1.71053 | − | 0.272169i | −2.56238 | + | 0.658939i | −1.00000 | 2.85185 | + | 0.931107i | −1.59097 | + | 2.75564i | |||||||||||||||||||||||||
121.1 | −1.00000 | −1.64400 | + | 0.545231i | 1.00000 | −0.794182 | − | 1.37556i | 1.64400 | − | 0.545231i | 1.23855 | − | 2.33795i | −1.00000 | 2.40545 | − | 1.79272i | 0.794182 | + | 1.37556i | |||||||||||||||||||||||||
121.2 | −1.00000 | 0.933463 | + | 1.45899i | 1.00000 | −0.296790 | − | 0.514055i | −0.933463 | − | 1.45899i | 2.32383 | + | 1.26483i | −1.00000 | −1.25729 | + | 2.72382i | 0.296790 | + | 0.514055i | |||||||||||||||||||||||||
121.3 | −1.00000 | 1.71053 | − | 0.272169i | 1.00000 | 1.59097 | + | 2.75564i | −1.71053 | + | 0.272169i | −2.56238 | − | 0.658939i | −1.00000 | 2.85185 | − | 0.931107i | −1.59097 | − | 2.75564i | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.h | even | 3 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{6} - T_{5}^{5} + 7T_{5}^{4} + 12T_{5}^{3} + 33T_{5}^{2} + 18T_{5} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(126, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T + 1)^{6} \)
$3$
\( T^{6} - 2 T^{5} - 2 T^{4} + 9 T^{3} + \cdots + 27 \)
$5$
\( T^{6} - T^{5} + 7 T^{4} + 12 T^{3} + \cdots + 9 \)
$7$
\( T^{6} - 2 T^{5} - 4 T^{4} + 31 T^{3} + \cdots + 343 \)
$11$
\( T^{6} + T^{5} + 7 T^{4} - 12 T^{3} + \cdots + 9 \)
$13$
\( T^{6} - 8 T^{5} + 63 T^{4} + \cdots + 4761 \)
$17$
\( T^{6} + 4 T^{5} + 28 T^{4} + 240 T^{2} + \cdots + 576 \)
$19$
\( T^{6} + 3 T^{5} + 45 T^{4} + \cdots + 2401 \)
$23$
\( T^{6} + 7 T^{5} + 37 T^{4} + 78 T^{3} + \cdots + 9 \)
$29$
\( T^{6} + 5 T^{5} + 91 T^{4} + \cdots + 131769 \)
$31$
\( (T^{3} + 20 T^{2} + 121 T + 201)^{2} \)
$37$
\( (T^{2} - T + 1)^{3} \)
$41$
\( T^{6} + 33 T^{4} + 18 T^{3} + 1089 T^{2} + \cdots + 81 \)
$43$
\( T^{6} + 6 T^{5} + 105 T^{4} + \cdots + 16129 \)
$47$
\( (T^{3} - 9 T^{2} - 54 T + 189)^{2} \)
$53$
\( T^{6} - 15 T^{5} + 159 T^{4} + \cdots + 6561 \)
$59$
\( (T^{3} - 14 T^{2} + 39 T + 63)^{2} \)
$61$
\( (T^{3} + 8 T^{2} - 5 T - 93)^{2} \)
$67$
\( (T^{3} + T^{2} - 112 T - 211)^{2} \)
$71$
\( (T^{3} - 7 T^{2} - 198 T + 1593)^{2} \)
$73$
\( T^{6} - 19 T^{5} + 353 T^{4} + \cdots + 398161 \)
$79$
\( (T^{3} + 5 T^{2} - 74 T - 321)^{2} \)
$83$
\( T^{6} - 2 T^{5} + 67 T^{4} + \cdots + 21609 \)
$89$
\( T^{6} + 9 T^{5} + 123 T^{4} - 396 T^{3} + \cdots + 81 \)
$97$
\( T^{6} - 28 T^{5} + 572 T^{4} + \cdots + 61504 \)
show more
show less