Properties

Label 126.2.a
Level $126$
Weight $2$
Character orbit 126.a
Rep. character $\chi_{126}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $48$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 126.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(48\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(126))\).

Total New Old
Modular forms 32 2 30
Cusp forms 17 2 15
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(6\)\(0\)\(6\)\(4\)\(0\)\(4\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(5\)\(1\)\(4\)\(3\)\(1\)\(2\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(3\)\(0\)\(3\)\(1\)\(0\)\(1\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(4\)\(0\)\(4\)\(2\)\(0\)\(2\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(4\)\(0\)\(4\)\(2\)\(0\)\(2\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(5\)\(0\)\(5\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(3\)\(1\)\(2\)\(1\)\(1\)\(0\)\(2\)\(0\)\(2\)
Plus space\(+\)\(14\)\(0\)\(14\)\(7\)\(0\)\(7\)\(7\)\(0\)\(7\)
Minus space\(-\)\(18\)\(2\)\(16\)\(10\)\(2\)\(8\)\(8\)\(0\)\(8\)

Trace form

\( 2 q + 2 q^{4} + 2 q^{5} - 2 q^{10} + 4 q^{11} + 2 q^{13} + 2 q^{14} + 2 q^{16} - 8 q^{17} - 2 q^{19} + 2 q^{20} - 4 q^{22} - 8 q^{23} - 6 q^{25} - 10 q^{26} + 8 q^{29} - 4 q^{31} - 4 q^{34} - 2 q^{35} - 8 q^{37}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(126))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7
126.2.a.a 126.a 1.a $1$ $1.006$ \(\Q\) None 42.2.a.a \(-1\) \(0\) \(2\) \(-1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{5}-q^{7}-q^{8}-2q^{10}+\cdots\)
126.2.a.b 126.a 1.a $1$ $1.006$ \(\Q\) None 14.2.a.a \(1\) \(0\) \(0\) \(1\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+q^{7}+q^{8}-4q^{13}+q^{14}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(126))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(126)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)