Properties

Label 126.12.g.b.37.3
Level $126$
Weight $12$
Character 126.37
Analytic conductor $96.811$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,12,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(96.8112407505\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 1516x^{4} + 1461x^{3} + 2295252x^{2} - 40905x + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.3
Root \(0.00891079 + 0.0154339i\) of defining polynomial
Character \(\chi\) \(=\) 126.37
Dual form 126.12.g.b.109.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(16.0000 - 27.7128i) q^{2} +(-512.000 - 886.810i) q^{4} +(1098.21 - 1902.16i) q^{5} +(39703.5 + 20023.9i) q^{7} -32768.0 q^{8} +(-35142.9 - 60869.3i) q^{10} +(206569. + 357788. i) q^{11} +1.89569e6 q^{13} +(1.19018e6 - 779913. i) q^{14} +(-524288. + 908093. i) q^{16} +(-4.55417e6 - 7.88805e6i) q^{17} +(-1.24340e6 + 2.15364e6i) q^{19} -2.24914e6 q^{20} +1.32204e7 q^{22} +(-2.95467e7 + 5.11765e7i) q^{23} +(2.20019e7 + 3.81084e7i) q^{25} +(3.03310e7 - 5.25349e7i) q^{26} +(-2.57079e6 - 4.54617e7i) q^{28} +7.92564e7 q^{29} +(5.46551e7 + 9.46654e7i) q^{31} +(1.67772e7 + 2.90590e7i) q^{32} -2.91467e8 q^{34} +(8.16918e7 - 5.35320e7i) q^{35} +(-3.38292e8 + 5.85938e8i) q^{37} +(3.97889e7 + 6.89163e7i) q^{38} +(-3.59863e7 + 6.23301e7i) q^{40} -2.52468e8 q^{41} -1.75201e9 q^{43} +(2.11526e8 - 3.66374e8i) q^{44} +(9.45496e8 + 1.63765e9i) q^{46} +(1.29188e9 - 2.23760e9i) q^{47} +(1.17541e9 + 1.59004e9i) q^{49} +1.40812e9 q^{50} +(-9.70593e8 - 1.68112e9i) q^{52} +(2.44697e9 + 4.23828e9i) q^{53} +9.07428e8 q^{55} +(-1.30100e9 - 6.56144e8i) q^{56} +(1.26810e9 - 2.19642e9i) q^{58} +(-1.46530e9 - 2.53797e9i) q^{59} +(-5.72843e8 + 9.92193e8i) q^{61} +3.49793e9 q^{62} +1.07374e9 q^{64} +(2.08187e9 - 3.60591e9i) q^{65} +(5.82061e9 + 1.00816e10i) q^{67} +(-4.66347e9 + 8.07736e9i) q^{68} +(-1.76455e8 - 3.12042e9i) q^{70} -5.24957e9 q^{71} +(8.75111e9 + 1.51574e10i) q^{73} +(1.08253e10 + 1.87500e10i) q^{74} +2.54649e9 q^{76} +(1.03720e9 + 1.83417e10i) q^{77} +(2.12040e10 - 3.67263e10i) q^{79} +(1.15156e9 + 1.99456e9i) q^{80} +(-4.03949e9 + 6.99661e9i) q^{82} +8.46684e9 q^{83} -2.00058e10 q^{85} +(-2.80322e10 + 4.85531e10i) q^{86} +(-6.76885e9 - 1.17240e10i) q^{88} +(-9.36269e9 + 1.62167e10i) q^{89} +(7.52655e10 + 3.79591e10i) q^{91} +6.05117e10 q^{92} +(-4.13402e10 - 7.16034e10i) q^{94} +(2.73104e9 + 4.73031e9i) q^{95} +1.03324e11 q^{97} +(6.28711e10 - 7.13333e9i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 96 q^{2} - 3072 q^{4} - 1045 q^{5} + 45731 q^{7} - 196608 q^{8} + 33440 q^{10} - 181565 q^{11} + 1186364 q^{13} + 703808 q^{14} - 3145728 q^{16} + 701848 q^{17} - 7893102 q^{19} + 2140160 q^{20} - 11620160 q^{22}+ \cdots - 30564771552 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.0000 27.7128i 0.353553 0.612372i
\(3\) 0 0
\(4\) −512.000 886.810i −0.250000 0.433013i
\(5\) 1098.21 1902.16i 0.157164 0.272216i −0.776681 0.629894i \(-0.783098\pi\)
0.933845 + 0.357678i \(0.116432\pi\)
\(6\) 0 0
\(7\) 39703.5 + 20023.9i 0.892873 + 0.450308i
\(8\) −32768.0 −0.353553
\(9\) 0 0
\(10\) −35142.9 60869.3i −0.111132 0.192485i
\(11\) 206569. + 357788.i 0.386727 + 0.669831i 0.992007 0.126181i \(-0.0402721\pi\)
−0.605280 + 0.796013i \(0.706939\pi\)
\(12\) 0 0
\(13\) 1.89569e6 1.41605 0.708025 0.706187i \(-0.249586\pi\)
0.708025 + 0.706187i \(0.249586\pi\)
\(14\) 1.19018e6 779913.i 0.591435 0.387563i
\(15\) 0 0
\(16\) −524288. + 908093.i −0.125000 + 0.216506i
\(17\) −4.55417e6 7.88805e6i −0.777929 1.34741i −0.933134 0.359530i \(-0.882937\pi\)
0.155205 0.987882i \(-0.450396\pi\)
\(18\) 0 0
\(19\) −1.24340e6 + 2.15364e6i −0.115204 + 0.199539i −0.917861 0.396902i \(-0.870085\pi\)
0.802657 + 0.596440i \(0.203419\pi\)
\(20\) −2.24914e6 −0.157164
\(21\) 0 0
\(22\) 1.32204e7 0.546915
\(23\) −2.95467e7 + 5.11765e7i −0.957208 + 1.65793i −0.227977 + 0.973667i \(0.573211\pi\)
−0.729232 + 0.684267i \(0.760122\pi\)
\(24\) 0 0
\(25\) 2.20019e7 + 3.81084e7i 0.450599 + 0.780461i
\(26\) 3.03310e7 5.25349e7i 0.500649 0.867150i
\(27\) 0 0
\(28\) −2.57079e6 4.54617e7i −0.0282291 0.499202i
\(29\) 7.92564e7 0.717539 0.358769 0.933426i \(-0.383196\pi\)
0.358769 + 0.933426i \(0.383196\pi\)
\(30\) 0 0
\(31\) 5.46551e7 + 9.46654e7i 0.342879 + 0.593884i 0.984966 0.172747i \(-0.0552645\pi\)
−0.642087 + 0.766632i \(0.721931\pi\)
\(32\) 1.67772e7 + 2.90590e7i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −2.91467e8 −1.10016
\(35\) 8.16918e7 5.35320e7i 0.262908 0.172282i
\(36\) 0 0
\(37\) −3.38292e8 + 5.85938e8i −0.802014 + 1.38913i 0.116275 + 0.993217i \(0.462905\pi\)
−0.918289 + 0.395912i \(0.870429\pi\)
\(38\) 3.97889e7 + 6.89163e7i 0.0814614 + 0.141095i
\(39\) 0 0
\(40\) −3.59863e7 + 6.23301e7i −0.0555658 + 0.0962427i
\(41\) −2.52468e8 −0.340327 −0.170163 0.985416i \(-0.554430\pi\)
−0.170163 + 0.985416i \(0.554430\pi\)
\(42\) 0 0
\(43\) −1.75201e9 −1.81744 −0.908720 0.417407i \(-0.862939\pi\)
−0.908720 + 0.417407i \(0.862939\pi\)
\(44\) 2.11526e8 3.66374e8i 0.193364 0.334916i
\(45\) 0 0
\(46\) 9.45496e8 + 1.63765e9i 0.676849 + 1.17234i
\(47\) 1.29188e9 2.23760e9i 0.821646 1.42313i −0.0828105 0.996565i \(-0.526390\pi\)
0.904456 0.426567i \(-0.140277\pi\)
\(48\) 0 0
\(49\) 1.17541e9 + 1.59004e9i 0.594445 + 0.804136i
\(50\) 1.40812e9 0.637243
\(51\) 0 0
\(52\) −9.70593e8 1.68112e9i −0.354013 0.613168i
\(53\) 2.44697e9 + 4.23828e9i 0.803732 + 1.39210i 0.917144 + 0.398557i \(0.130489\pi\)
−0.113412 + 0.993548i \(0.536178\pi\)
\(54\) 0 0
\(55\) 9.07428e8 0.243118
\(56\) −1.30100e9 6.56144e8i −0.315678 0.159208i
\(57\) 0 0
\(58\) 1.26810e9 2.19642e9i 0.253688 0.439401i
\(59\) −1.46530e9 2.53797e9i −0.266833 0.462168i 0.701209 0.712955i \(-0.252644\pi\)
−0.968042 + 0.250787i \(0.919310\pi\)
\(60\) 0 0
\(61\) −5.72843e8 + 9.92193e8i −0.0868403 + 0.150412i −0.906174 0.422905i \(-0.861010\pi\)
0.819334 + 0.573317i \(0.194344\pi\)
\(62\) 3.49793e9 0.484905
\(63\) 0 0
\(64\) 1.07374e9 0.125000
\(65\) 2.08187e9 3.60591e9i 0.222552 0.385471i
\(66\) 0 0
\(67\) 5.82061e9 + 1.00816e10i 0.526692 + 0.912258i 0.999516 + 0.0311008i \(0.00990130\pi\)
−0.472824 + 0.881157i \(0.656765\pi\)
\(68\) −4.66347e9 + 8.07736e9i −0.388964 + 0.673706i
\(69\) 0 0
\(70\) −1.76455e8 3.12042e9i −0.0125486 0.221909i
\(71\) −5.24957e9 −0.345305 −0.172653 0.984983i \(-0.555234\pi\)
−0.172653 + 0.984983i \(0.555234\pi\)
\(72\) 0 0
\(73\) 8.75111e9 + 1.51574e10i 0.494069 + 0.855752i 0.999977 0.00683535i \(-0.00217578\pi\)
−0.505908 + 0.862587i \(0.668842\pi\)
\(74\) 1.08253e10 + 1.87500e10i 0.567109 + 0.982262i
\(75\) 0 0
\(76\) 2.54649e9 0.115204
\(77\) 1.03720e9 + 1.83417e10i 0.0436679 + 0.772221i
\(78\) 0 0
\(79\) 2.12040e10 3.67263e10i 0.775297 1.34285i −0.159331 0.987225i \(-0.550934\pi\)
0.934627 0.355628i \(-0.115733\pi\)
\(80\) 1.15156e9 + 1.99456e9i 0.0392909 + 0.0680539i
\(81\) 0 0
\(82\) −4.03949e9 + 6.99661e9i −0.120324 + 0.208407i
\(83\) 8.46684e9 0.235935 0.117967 0.993017i \(-0.462362\pi\)
0.117967 + 0.993017i \(0.462362\pi\)
\(84\) 0 0
\(85\) −2.00058e10 −0.489049
\(86\) −2.80322e10 + 4.85531e10i −0.642562 + 1.11295i
\(87\) 0 0
\(88\) −6.76885e9 1.17240e10i −0.136729 0.236821i
\(89\) −9.36269e9 + 1.62167e10i −0.177728 + 0.307834i −0.941102 0.338123i \(-0.890208\pi\)
0.763374 + 0.645957i \(0.223541\pi\)
\(90\) 0 0
\(91\) 7.52655e10 + 3.79591e10i 1.26435 + 0.637659i
\(92\) 6.05117e10 0.957208
\(93\) 0 0
\(94\) −4.13402e10 7.16034e10i −0.580991 1.00631i
\(95\) 2.73104e9 + 4.73031e9i 0.0362117 + 0.0627205i
\(96\) 0 0
\(97\) 1.03324e11 1.22168 0.610839 0.791755i \(-0.290832\pi\)
0.610839 + 0.791755i \(0.290832\pi\)
\(98\) 6.28711e10 7.13333e9i 0.702599 0.0797167i
\(99\) 0 0
\(100\) 2.25300e10 3.90230e10i 0.225300 0.390230i
\(101\) −3.13221e10 5.42515e10i −0.296540 0.513623i 0.678802 0.734322i \(-0.262500\pi\)
−0.975342 + 0.220699i \(0.929166\pi\)
\(102\) 0 0
\(103\) −2.71368e10 + 4.70024e10i −0.230651 + 0.399499i −0.958000 0.286769i \(-0.907419\pi\)
0.727349 + 0.686268i \(0.240752\pi\)
\(104\) −6.21179e10 −0.500649
\(105\) 0 0
\(106\) 1.56606e11 1.13665
\(107\) −3.82438e10 + 6.62402e10i −0.263603 + 0.456573i −0.967197 0.254029i \(-0.918244\pi\)
0.703594 + 0.710602i \(0.251577\pi\)
\(108\) 0 0
\(109\) 8.25991e10 + 1.43066e11i 0.514197 + 0.890615i 0.999864 + 0.0164715i \(0.00524329\pi\)
−0.485667 + 0.874144i \(0.661423\pi\)
\(110\) 1.45188e10 2.51474e10i 0.0859552 0.148879i
\(111\) 0 0
\(112\) −3.89997e10 + 2.55562e10i −0.209104 + 0.137024i
\(113\) 1.20455e11 0.615025 0.307513 0.951544i \(-0.400503\pi\)
0.307513 + 0.951544i \(0.400503\pi\)
\(114\) 0 0
\(115\) 6.48973e10 + 1.12406e11i 0.300877 + 0.521134i
\(116\) −4.05793e10 7.02854e10i −0.179385 0.310703i
\(117\) 0 0
\(118\) −9.37789e10 −0.377359
\(119\) −2.28668e10 4.04375e11i −0.0878410 1.55338i
\(120\) 0 0
\(121\) 5.73145e10 9.92717e10i 0.200884 0.347941i
\(122\) 1.83310e10 + 3.17502e10i 0.0614054 + 0.106357i
\(123\) 0 0
\(124\) 5.59668e10 9.69374e10i 0.171440 0.296942i
\(125\) 2.03899e11 0.597599
\(126\) 0 0
\(127\) 5.61600e9 0.0150837 0.00754183 0.999972i \(-0.497599\pi\)
0.00754183 + 0.999972i \(0.497599\pi\)
\(128\) 1.71799e10 2.97564e10i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) −6.66200e10 1.15389e11i −0.157368 0.272569i
\(131\) 3.24628e11 5.62272e11i 0.735180 1.27337i −0.219464 0.975621i \(-0.570431\pi\)
0.954644 0.297749i \(-0.0962358\pi\)
\(132\) 0 0
\(133\) −9.24916e10 + 6.06091e10i −0.192716 + 0.126286i
\(134\) 3.72519e11 0.744855
\(135\) 0 0
\(136\) 1.49231e11 + 2.58476e11i 0.275039 + 0.476382i
\(137\) 4.90376e10 + 8.49356e10i 0.0868093 + 0.150358i 0.906161 0.422933i \(-0.139000\pi\)
−0.819351 + 0.573292i \(0.805666\pi\)
\(138\) 0 0
\(139\) 1.01778e12 1.66369 0.831846 0.555007i \(-0.187284\pi\)
0.831846 + 0.555007i \(0.187284\pi\)
\(140\) −8.92989e10 4.50367e10i −0.140327 0.0707721i
\(141\) 0 0
\(142\) −8.39931e10 + 1.45480e11i −0.122084 + 0.211455i
\(143\) 3.91590e11 + 6.78254e11i 0.547625 + 0.948515i
\(144\) 0 0
\(145\) 8.70406e10 1.50759e11i 0.112771 0.195325i
\(146\) 5.60071e11 0.698719
\(147\) 0 0
\(148\) 6.92821e11 0.802014
\(149\) 2.04842e11 3.54797e11i 0.228505 0.395782i −0.728861 0.684662i \(-0.759950\pi\)
0.957365 + 0.288881i \(0.0932831\pi\)
\(150\) 0 0
\(151\) 1.75347e11 + 3.03711e11i 0.181772 + 0.314838i 0.942484 0.334252i \(-0.108484\pi\)
−0.760712 + 0.649089i \(0.775150\pi\)
\(152\) 4.07438e10 7.05703e10i 0.0407307 0.0705476i
\(153\) 0 0
\(154\) 5.24896e11 + 2.64724e11i 0.488326 + 0.246280i
\(155\) 2.40092e11 0.215553
\(156\) 0 0
\(157\) −2.34655e11 4.06435e11i −0.196328 0.340050i 0.751007 0.660294i \(-0.229568\pi\)
−0.947335 + 0.320244i \(0.896235\pi\)
\(158\) −6.78527e11 1.17524e12i −0.548218 0.949541i
\(159\) 0 0
\(160\) 7.37000e10 0.0555658
\(161\) −2.19786e12 + 1.44024e12i −1.60125 + 1.04929i
\(162\) 0 0
\(163\) 1.04916e12 1.81719e12i 0.714182 1.23700i −0.249092 0.968480i \(-0.580132\pi\)
0.963274 0.268520i \(-0.0865345\pi\)
\(164\) 1.29264e11 + 2.23892e11i 0.0850816 + 0.147366i
\(165\) 0 0
\(166\) 1.35469e11 2.34640e11i 0.0834155 0.144480i
\(167\) 1.60121e12 0.953912 0.476956 0.878927i \(-0.341740\pi\)
0.476956 + 0.878927i \(0.341740\pi\)
\(168\) 0 0
\(169\) 1.80148e12 1.00520
\(170\) −3.20093e11 + 5.54417e11i −0.172905 + 0.299480i
\(171\) 0 0
\(172\) 8.97029e11 + 1.55370e12i 0.454360 + 0.786974i
\(173\) −1.50220e12 + 2.60189e12i −0.737012 + 1.27654i 0.216823 + 0.976211i \(0.430430\pi\)
−0.953835 + 0.300331i \(0.902903\pi\)
\(174\) 0 0
\(175\) 1.10473e11 + 1.95360e12i 0.0508801 + 0.899761i
\(176\) −4.33206e11 −0.193364
\(177\) 0 0
\(178\) 2.99606e11 + 5.18933e11i 0.125673 + 0.217671i
\(179\) 7.74326e11 + 1.34117e12i 0.314943 + 0.545497i 0.979425 0.201807i \(-0.0646812\pi\)
−0.664482 + 0.747304i \(0.731348\pi\)
\(180\) 0 0
\(181\) −2.86403e12 −1.09584 −0.547918 0.836532i \(-0.684579\pi\)
−0.547918 + 0.836532i \(0.684579\pi\)
\(182\) 2.25620e12 1.47847e12i 0.837501 0.548809i
\(183\) 0 0
\(184\) 9.68188e11 1.67695e12i 0.338424 0.586168i
\(185\) 7.43034e11 + 1.28697e12i 0.252095 + 0.436641i
\(186\) 0 0
\(187\) 1.88150e12 3.25885e12i 0.601693 1.04216i
\(188\) −2.64577e12 −0.821646
\(189\) 0 0
\(190\) 1.74787e11 0.0512111
\(191\) −2.43222e12 + 4.21273e12i −0.692340 + 1.19917i 0.278729 + 0.960370i \(0.410087\pi\)
−0.971069 + 0.238798i \(0.923247\pi\)
\(192\) 0 0
\(193\) 1.58703e12 + 2.74881e12i 0.426598 + 0.738890i 0.996568 0.0827756i \(-0.0263785\pi\)
−0.569970 + 0.821666i \(0.693045\pi\)
\(194\) 1.65319e12 2.86340e12i 0.431929 0.748122i
\(195\) 0 0
\(196\) 8.08252e11 1.85647e12i 0.199590 0.458436i
\(197\) 6.68041e12 1.60413 0.802064 0.597238i \(-0.203735\pi\)
0.802064 + 0.597238i \(0.203735\pi\)
\(198\) 0 0
\(199\) 6.07895e11 + 1.05291e12i 0.138082 + 0.239165i 0.926771 0.375628i \(-0.122573\pi\)
−0.788689 + 0.614793i \(0.789240\pi\)
\(200\) −7.20959e11 1.24874e12i −0.159311 0.275934i
\(201\) 0 0
\(202\) −2.00462e12 −0.419371
\(203\) 3.14676e12 + 1.58702e12i 0.640671 + 0.323114i
\(204\) 0 0
\(205\) −2.77265e11 + 4.80236e11i −0.0534870 + 0.0926422i
\(206\) 8.68379e11 + 1.50408e12i 0.163095 + 0.282488i
\(207\) 0 0
\(208\) −9.93887e11 + 1.72146e12i −0.177006 + 0.306584i
\(209\) −1.02739e12 −0.178210
\(210\) 0 0
\(211\) −5.96917e12 −0.982563 −0.491282 0.871001i \(-0.663471\pi\)
−0.491282 + 0.871001i \(0.663471\pi\)
\(212\) 2.50570e12 4.33999e12i 0.401866 0.696052i
\(213\) 0 0
\(214\) 1.22380e12 + 2.11969e12i 0.186395 + 0.322846i
\(215\) −1.92408e12 + 3.33261e12i −0.285636 + 0.494735i
\(216\) 0 0
\(217\) 2.74427e11 + 4.85296e12i 0.0387167 + 0.684665i
\(218\) 5.28634e12 0.727184
\(219\) 0 0
\(220\) −4.64603e11 8.04716e11i −0.0607795 0.105273i
\(221\) −8.63328e12 1.49533e13i −1.10159 1.90800i
\(222\) 0 0
\(223\) −7.21084e12 −0.875607 −0.437804 0.899071i \(-0.644243\pi\)
−0.437804 + 0.899071i \(0.644243\pi\)
\(224\) 8.42396e10 + 1.48969e12i 0.00998050 + 0.176495i
\(225\) 0 0
\(226\) 1.92728e12 3.33814e12i 0.217444 0.376625i
\(227\) −2.76893e12 4.79593e12i −0.304909 0.528118i 0.672332 0.740250i \(-0.265293\pi\)
−0.977241 + 0.212132i \(0.931959\pi\)
\(228\) 0 0
\(229\) −3.76757e12 + 6.52561e12i −0.395335 + 0.684741i −0.993144 0.116898i \(-0.962705\pi\)
0.597809 + 0.801639i \(0.296038\pi\)
\(230\) 4.15343e12 0.425504
\(231\) 0 0
\(232\) −2.59707e12 −0.253688
\(233\) −3.13160e11 + 5.42409e11i −0.0298751 + 0.0517451i −0.880576 0.473904i \(-0.842844\pi\)
0.850701 + 0.525649i \(0.176178\pi\)
\(234\) 0 0
\(235\) −2.83753e12 4.91474e12i −0.258266 0.447329i
\(236\) −1.50046e12 + 2.59888e12i −0.133416 + 0.231084i
\(237\) 0 0
\(238\) −1.15723e13 5.83630e12i −0.982301 0.495410i
\(239\) −1.71468e13 −1.42231 −0.711154 0.703037i \(-0.751827\pi\)
−0.711154 + 0.703037i \(0.751827\pi\)
\(240\) 0 0
\(241\) 1.60918e12 + 2.78718e12i 0.127500 + 0.220837i 0.922707 0.385501i \(-0.125971\pi\)
−0.795207 + 0.606338i \(0.792638\pi\)
\(242\) −1.83407e12 3.17669e12i −0.142046 0.246032i
\(243\) 0 0
\(244\) 1.17318e12 0.0868403
\(245\) 4.31537e12 4.89621e11i 0.312324 0.0354361i
\(246\) 0 0
\(247\) −2.35710e12 + 4.08262e12i −0.163134 + 0.282557i
\(248\) −1.79094e12 3.10200e12i −0.121226 0.209970i
\(249\) 0 0
\(250\) 3.26238e12 5.65061e12i 0.211283 0.365953i
\(251\) −1.76163e13 −1.11611 −0.558057 0.829803i \(-0.688453\pi\)
−0.558057 + 0.829803i \(0.688453\pi\)
\(252\) 0 0
\(253\) −2.44137e13 −1.48071
\(254\) 8.98561e10 1.55635e11i 0.00533288 0.00923682i
\(255\) 0 0
\(256\) −5.49756e11 9.52205e11i −0.0312500 0.0541266i
\(257\) −6.40081e12 + 1.10865e13i −0.356125 + 0.616827i −0.987310 0.158805i \(-0.949236\pi\)
0.631184 + 0.775633i \(0.282569\pi\)
\(258\) 0 0
\(259\) −2.51642e13 + 1.64899e13i −1.34163 + 0.879162i
\(260\) −4.26368e12 −0.222552
\(261\) 0 0
\(262\) −1.03881e13 1.79927e13i −0.519851 0.900408i
\(263\) −7.22781e12 1.25189e13i −0.354201 0.613495i 0.632780 0.774332i \(-0.281914\pi\)
−0.986981 + 0.160837i \(0.948581\pi\)
\(264\) 0 0
\(265\) 1.07492e13 0.505270
\(266\) 1.99783e11 + 3.53295e12i 0.00919833 + 0.162663i
\(267\) 0 0
\(268\) 5.96030e12 1.03235e13i 0.263346 0.456129i
\(269\) 2.42568e12 + 4.20141e12i 0.105002 + 0.181868i 0.913739 0.406302i \(-0.133182\pi\)
−0.808737 + 0.588170i \(0.799848\pi\)
\(270\) 0 0
\(271\) 2.06716e13 3.58043e13i 0.859100 1.48800i −0.0136892 0.999906i \(-0.504358\pi\)
0.872789 0.488098i \(-0.162309\pi\)
\(272\) 9.55078e12 0.388964
\(273\) 0 0
\(274\) 3.13841e12 0.122767
\(275\) −9.08981e12 + 1.57440e13i −0.348518 + 0.603651i
\(276\) 0 0
\(277\) 1.64215e12 + 2.84429e12i 0.0605026 + 0.104794i 0.894690 0.446687i \(-0.147396\pi\)
−0.834188 + 0.551481i \(0.814063\pi\)
\(278\) 1.62845e13 2.82056e13i 0.588204 1.01880i
\(279\) 0 0
\(280\) −2.67688e12 + 1.75414e12i −0.0929521 + 0.0609108i
\(281\) 2.08840e13 0.711097 0.355549 0.934658i \(-0.384294\pi\)
0.355549 + 0.934658i \(0.384294\pi\)
\(282\) 0 0
\(283\) −7.45841e12 1.29183e13i −0.244242 0.423040i 0.717676 0.696377i \(-0.245206\pi\)
−0.961918 + 0.273337i \(0.911873\pi\)
\(284\) 2.68778e12 + 4.65537e12i 0.0863263 + 0.149521i
\(285\) 0 0
\(286\) 2.50618e13 0.774459
\(287\) −1.00239e13 5.05541e12i −0.303868 0.153252i
\(288\) 0 0
\(289\) −2.43449e13 + 4.21666e13i −0.710346 + 1.23036i
\(290\) −2.78530e12 4.82428e12i −0.0797412 0.138116i
\(291\) 0 0
\(292\) 8.96114e12 1.55211e13i 0.247034 0.427876i
\(293\) −6.23932e13 −1.68797 −0.843986 0.536366i \(-0.819797\pi\)
−0.843986 + 0.536366i \(0.819797\pi\)
\(294\) 0 0
\(295\) −6.43684e12 −0.167746
\(296\) 1.10851e13 1.92000e13i 0.283555 0.491131i
\(297\) 0 0
\(298\) −6.55495e12 1.13535e13i −0.161577 0.279860i
\(299\) −5.60114e13 + 9.70146e13i −1.35546 + 2.34772i
\(300\) 0 0
\(301\) −6.95609e13 3.50821e13i −1.62274 0.818408i
\(302\) 1.12222e13 0.257064
\(303\) 0 0
\(304\) −1.30380e12 2.25825e12i −0.0288009 0.0498847i
\(305\) 1.25821e12 + 2.17928e12i 0.0272963 + 0.0472786i
\(306\) 0 0
\(307\) 3.87055e13 0.810050 0.405025 0.914306i \(-0.367263\pi\)
0.405025 + 0.914306i \(0.367263\pi\)
\(308\) 1.57346e13 1.03108e13i 0.323465 0.211964i
\(309\) 0 0
\(310\) 3.84147e12 6.65363e12i 0.0762094 0.131999i
\(311\) 2.53578e13 + 4.39210e13i 0.494231 + 0.856033i 0.999978 0.00664890i \(-0.00211643\pi\)
−0.505747 + 0.862682i \(0.668783\pi\)
\(312\) 0 0
\(313\) −7.29975e12 + 1.26435e13i −0.137345 + 0.237889i −0.926491 0.376317i \(-0.877190\pi\)
0.789146 + 0.614206i \(0.210524\pi\)
\(314\) −1.50179e13 −0.277650
\(315\) 0 0
\(316\) −4.34257e13 −0.775297
\(317\) 1.62473e13 2.81412e13i 0.285073 0.493761i −0.687554 0.726133i \(-0.741315\pi\)
0.972627 + 0.232372i \(0.0746488\pi\)
\(318\) 0 0
\(319\) 1.63719e13 + 2.83570e13i 0.277492 + 0.480630i
\(320\) 1.17920e12 2.04243e12i 0.0196455 0.0340269i
\(321\) 0 0
\(322\) 4.74740e12 + 8.39529e13i 0.0764274 + 1.35154i
\(323\) 2.26506e13 0.358481
\(324\) 0 0
\(325\) 4.17088e13 + 7.22417e13i 0.638071 + 1.10517i
\(326\) −3.35730e13 5.81502e13i −0.505003 0.874691i
\(327\) 0 0
\(328\) 8.27288e12 0.120324
\(329\) 9.60979e13 6.29722e13i 1.37447 0.900683i
\(330\) 0 0
\(331\) 4.44555e13 7.69992e13i 0.614995 1.06520i −0.375391 0.926867i \(-0.622491\pi\)
0.990385 0.138336i \(-0.0441753\pi\)
\(332\) −4.33502e12 7.50848e12i −0.0589837 0.102163i
\(333\) 0 0
\(334\) 2.56194e13 4.43741e13i 0.337259 0.584149i
\(335\) 2.55691e13 0.331108
\(336\) 0 0
\(337\) 1.66318e13 0.208437 0.104219 0.994554i \(-0.466766\pi\)
0.104219 + 0.994554i \(0.466766\pi\)
\(338\) 2.88236e13 4.99240e13i 0.355391 0.615556i
\(339\) 0 0
\(340\) 1.02430e13 + 1.77414e13i 0.122262 + 0.211764i
\(341\) −2.25801e13 + 3.91098e13i −0.265202 + 0.459343i
\(342\) 0 0
\(343\) 1.48292e13 + 8.66665e13i 0.168655 + 0.985675i
\(344\) 5.74098e13 0.642562
\(345\) 0 0
\(346\) 4.80704e13 + 8.32604e13i 0.521146 + 0.902651i
\(347\) −3.13085e13 5.42279e13i −0.334080 0.578643i 0.649228 0.760594i \(-0.275092\pi\)
−0.983308 + 0.181951i \(0.941759\pi\)
\(348\) 0 0
\(349\) −6.87125e13 −0.710389 −0.355194 0.934792i \(-0.615585\pi\)
−0.355194 + 0.934792i \(0.615585\pi\)
\(350\) 5.59074e13 + 2.81961e13i 0.568978 + 0.286956i
\(351\) 0 0
\(352\) −6.93130e12 + 1.20054e13i −0.0683644 + 0.118411i
\(353\) 8.42583e13 + 1.45940e14i 0.818186 + 1.41714i 0.907018 + 0.421093i \(0.138353\pi\)
−0.0888317 + 0.996047i \(0.528313\pi\)
\(354\) 0 0
\(355\) −5.76516e12 + 9.98555e12i −0.0542694 + 0.0939974i
\(356\) 1.91748e13 0.177728
\(357\) 0 0
\(358\) 4.95569e13 0.445397
\(359\) 1.41556e13 2.45182e13i 0.125288 0.217005i −0.796558 0.604563i \(-0.793348\pi\)
0.921845 + 0.387558i \(0.126681\pi\)
\(360\) 0 0
\(361\) 5.51530e13 + 9.55279e13i 0.473456 + 0.820050i
\(362\) −4.58245e13 + 7.93703e13i −0.387436 + 0.671059i
\(363\) 0 0
\(364\) −4.87342e12 8.61813e13i −0.0399739 0.706896i
\(365\) 3.84424e13 0.310599
\(366\) 0 0
\(367\) −9.23617e13 1.59975e14i −0.724150 1.25427i −0.959323 0.282312i \(-0.908899\pi\)
0.235172 0.971954i \(-0.424435\pi\)
\(368\) −3.09820e13 5.36624e13i −0.239302 0.414483i
\(369\) 0 0
\(370\) 4.75542e13 0.356516
\(371\) 1.22864e13 + 2.17272e14i 0.0907546 + 1.60490i
\(372\) 0 0
\(373\) 6.80240e12 1.17821e13i 0.0487825 0.0844937i −0.840603 0.541652i \(-0.817799\pi\)
0.889386 + 0.457158i \(0.151133\pi\)
\(374\) −6.02079e13 1.04283e14i −0.425461 0.736920i
\(375\) 0 0
\(376\) −4.23324e13 + 7.33218e13i −0.290496 + 0.503153i
\(377\) 1.50246e14 1.01607
\(378\) 0 0
\(379\) −1.45859e14 −0.958113 −0.479057 0.877784i \(-0.659021\pi\)
−0.479057 + 0.877784i \(0.659021\pi\)
\(380\) 2.79659e12 4.84384e12i 0.0181059 0.0313603i
\(381\) 0 0
\(382\) 7.78310e13 + 1.34807e14i 0.489558 + 0.847940i
\(383\) −8.99451e13 + 1.55789e14i −0.557679 + 0.965928i 0.440011 + 0.897992i \(0.354975\pi\)
−0.997690 + 0.0679355i \(0.978359\pi\)
\(384\) 0 0
\(385\) 3.60281e13 + 1.81703e13i 0.217074 + 0.109478i
\(386\) 1.01570e14 0.603301
\(387\) 0 0
\(388\) −5.29019e13 9.16288e13i −0.305420 0.529002i
\(389\) −1.28981e14 2.23401e14i −0.734180 1.27164i −0.955082 0.296340i \(-0.904234\pi\)
0.220903 0.975296i \(-0.429100\pi\)
\(390\) 0 0
\(391\) 5.38243e14 2.97856
\(392\) −3.85159e13 5.21024e13i −0.210168 0.284305i
\(393\) 0 0
\(394\) 1.06887e14 1.85133e14i 0.567145 0.982324i
\(395\) −4.65730e13 8.06668e13i −0.243697 0.422096i
\(396\) 0 0
\(397\) 1.42077e14 2.46084e14i 0.723061 1.25238i −0.236706 0.971581i \(-0.576068\pi\)
0.959767 0.280797i \(-0.0905989\pi\)
\(398\) 3.89053e13 0.195277
\(399\) 0 0
\(400\) −4.61414e13 −0.225300
\(401\) −5.22923e13 + 9.05729e13i −0.251851 + 0.436218i −0.964035 0.265774i \(-0.914373\pi\)
0.712185 + 0.701992i \(0.247706\pi\)
\(402\) 0 0
\(403\) 1.03609e14 + 1.79456e14i 0.485534 + 0.840970i
\(404\) −3.20738e13 + 5.55535e13i −0.148270 + 0.256811i
\(405\) 0 0
\(406\) 9.43291e13 6.18132e13i 0.424377 0.278092i
\(407\) −2.79522e14 −1.24064
\(408\) 0 0
\(409\) −2.25545e13 3.90656e13i −0.0974441 0.168778i 0.813182 0.582010i \(-0.197733\pi\)
−0.910626 + 0.413231i \(0.864400\pi\)
\(410\) 8.87247e12 + 1.53676e13i 0.0378210 + 0.0655079i
\(411\) 0 0
\(412\) 5.55763e13 0.230651
\(413\) −7.35736e12 1.30107e14i −0.0301298 0.532814i
\(414\) 0 0
\(415\) 9.29841e12 1.61053e13i 0.0370804 0.0642251i
\(416\) 3.18044e13 + 5.50868e13i 0.125162 + 0.216788i
\(417\) 0 0
\(418\) −1.64383e13 + 2.84719e13i −0.0630067 + 0.109131i
\(419\) 1.89082e14 0.715276 0.357638 0.933860i \(-0.383582\pi\)
0.357638 + 0.933860i \(0.383582\pi\)
\(420\) 0 0
\(421\) 2.40145e14 0.884955 0.442478 0.896780i \(-0.354100\pi\)
0.442478 + 0.896780i \(0.354100\pi\)
\(422\) −9.55067e13 + 1.65423e14i −0.347389 + 0.601695i
\(423\) 0 0
\(424\) −8.01823e13 1.38880e14i −0.284162 0.492183i
\(425\) 2.00401e14 3.47104e14i 0.701068 1.21429i
\(426\) 0 0
\(427\) −4.26115e13 + 2.79230e13i −0.145269 + 0.0951938i
\(428\) 7.83233e13 0.263603
\(429\) 0 0
\(430\) 6.15707e13 + 1.06644e14i 0.201975 + 0.349831i
\(431\) −2.70880e13 4.69177e13i −0.0877306 0.151954i 0.818821 0.574049i \(-0.194628\pi\)
−0.906552 + 0.422095i \(0.861295\pi\)
\(432\) 0 0
\(433\) −3.19018e14 −1.00724 −0.503619 0.863926i \(-0.667999\pi\)
−0.503619 + 0.863926i \(0.667999\pi\)
\(434\) 1.38880e14 + 7.00422e13i 0.432958 + 0.218357i
\(435\) 0 0
\(436\) 8.45815e13 1.46499e14i 0.257098 0.445308i
\(437\) −7.34769e13 1.27266e14i −0.220548 0.382000i
\(438\) 0 0
\(439\) 2.34219e14 4.05680e14i 0.685596 1.18749i −0.287653 0.957735i \(-0.592875\pi\)
0.973249 0.229752i \(-0.0737916\pi\)
\(440\) −2.97346e13 −0.0859552
\(441\) 0 0
\(442\) −5.52530e14 −1.55788
\(443\) 2.19487e13 3.80163e13i 0.0611208 0.105864i −0.833846 0.551997i \(-0.813866\pi\)
0.894967 + 0.446133i \(0.147199\pi\)
\(444\) 0 0
\(445\) 2.05645e13 + 3.56188e13i 0.0558648 + 0.0967606i
\(446\) −1.15374e14 + 1.99833e14i −0.309574 + 0.536198i
\(447\) 0 0
\(448\) 4.26313e13 + 2.15005e13i 0.111609 + 0.0562885i
\(449\) −2.17474e14 −0.562409 −0.281204 0.959648i \(-0.590734\pi\)
−0.281204 + 0.959648i \(0.590734\pi\)
\(450\) 0 0
\(451\) −5.21521e13 9.03301e13i −0.131614 0.227961i
\(452\) −6.16729e13 1.06821e14i −0.153756 0.266314i
\(453\) 0 0
\(454\) −1.77212e14 −0.431207
\(455\) 1.54862e14 1.01480e14i 0.372291 0.243960i
\(456\) 0 0
\(457\) −4.03290e14 + 6.98518e14i −0.946407 + 1.63923i −0.193498 + 0.981101i \(0.561983\pi\)
−0.752909 + 0.658125i \(0.771350\pi\)
\(458\) 1.20562e14 + 2.08820e14i 0.279544 + 0.484185i
\(459\) 0 0
\(460\) 6.64549e13 1.15103e14i 0.150438 0.260567i
\(461\) 7.25880e14 1.62371 0.811857 0.583856i \(-0.198457\pi\)
0.811857 + 0.583856i \(0.198457\pi\)
\(462\) 0 0
\(463\) −1.15814e14 −0.252968 −0.126484 0.991969i \(-0.540369\pi\)
−0.126484 + 0.991969i \(0.540369\pi\)
\(464\) −4.15532e13 + 7.19722e13i −0.0896924 + 0.155352i
\(465\) 0 0
\(466\) 1.00211e13 + 1.73571e13i 0.0211249 + 0.0365893i
\(467\) 3.43718e13 5.95337e13i 0.0716076 0.124028i −0.827998 0.560730i \(-0.810520\pi\)
0.899606 + 0.436702i \(0.143854\pi\)
\(468\) 0 0
\(469\) 2.92257e13 + 5.16826e14i 0.0594722 + 1.05170i
\(470\) −1.81602e14 −0.365243
\(471\) 0 0
\(472\) 4.80148e13 + 8.31641e13i 0.0943396 + 0.163401i
\(473\) −3.61910e14 6.26847e14i −0.702854 1.21738i
\(474\) 0 0
\(475\) −1.09429e14 −0.207643
\(476\) −3.46896e14 + 2.27319e14i −0.650671 + 0.426380i
\(477\) 0 0
\(478\) −2.74348e14 + 4.75185e14i −0.502862 + 0.870982i
\(479\) −5.74784e12 9.95556e12i −0.0104150 0.0180393i 0.860771 0.508993i \(-0.169982\pi\)
−0.871186 + 0.490953i \(0.836649\pi\)
\(480\) 0 0
\(481\) −6.41296e14 + 1.11076e15i −1.13569 + 1.96708i
\(482\) 1.02988e14 0.180313
\(483\) 0 0
\(484\) −1.17380e14 −0.200884
\(485\) 1.13472e14 1.96539e14i 0.192004 0.332560i
\(486\) 0 0
\(487\) −3.39579e14 5.88168e14i −0.561735 0.972954i −0.997345 0.0728186i \(-0.976801\pi\)
0.435610 0.900136i \(-0.356533\pi\)
\(488\) 1.87709e13 3.25122e13i 0.0307027 0.0531786i
\(489\) 0 0
\(490\) 5.54772e13 1.27425e14i 0.0887230 0.203787i
\(491\) 9.19715e13 0.145447 0.0727235 0.997352i \(-0.476831\pi\)
0.0727235 + 0.997352i \(0.476831\pi\)
\(492\) 0 0
\(493\) −3.60947e14 6.25178e14i −0.558194 0.966821i
\(494\) 7.54273e13 + 1.30644e14i 0.115353 + 0.199798i
\(495\) 0 0
\(496\) −1.14620e14 −0.171440
\(497\) −2.08426e14 1.05117e14i −0.308314 0.155494i
\(498\) 0 0
\(499\) 5.10323e14 8.83905e14i 0.738400 1.27895i −0.214815 0.976655i \(-0.568915\pi\)
0.953215 0.302292i \(-0.0977518\pi\)
\(500\) −1.04396e14 1.80820e14i −0.149400 0.258768i
\(501\) 0 0
\(502\) −2.81860e14 + 4.88196e14i −0.394606 + 0.683477i
\(503\) 1.64199e14 0.227377 0.113689 0.993516i \(-0.463733\pi\)
0.113689 + 0.993516i \(0.463733\pi\)
\(504\) 0 0
\(505\) −1.37594e14 −0.186421
\(506\) −3.90620e14 + 6.76573e14i −0.523512 + 0.906749i
\(507\) 0 0
\(508\) −2.87539e12 4.98033e12i −0.00377092 0.00653142i
\(509\) −4.17114e14 + 7.22463e14i −0.541137 + 0.937276i 0.457702 + 0.889105i \(0.348673\pi\)
−0.998839 + 0.0481709i \(0.984661\pi\)
\(510\) 0 0
\(511\) 4.39400e13 + 7.77032e14i 0.0557885 + 0.986561i
\(512\) −3.51844e13 −0.0441942
\(513\) 0 0
\(514\) 2.04826e14 + 3.54769e14i 0.251819 + 0.436163i
\(515\) 5.96042e13 + 1.03237e14i 0.0724998 + 0.125573i
\(516\) 0 0
\(517\) 1.06745e15 1.27101
\(518\) 5.43548e13 + 9.61208e14i 0.0640360 + 1.13241i
\(519\) 0 0
\(520\) −6.82188e13 + 1.18159e14i −0.0786839 + 0.136285i
\(521\) 2.31769e14 + 4.01435e14i 0.264513 + 0.458150i 0.967436 0.253116i \(-0.0814554\pi\)
−0.702923 + 0.711266i \(0.748122\pi\)
\(522\) 0 0
\(523\) 5.66164e13 9.80626e13i 0.0632679 0.109583i −0.832656 0.553790i \(-0.813181\pi\)
0.895924 + 0.444207i \(0.146514\pi\)
\(524\) −6.64838e14 −0.735180
\(525\) 0 0
\(526\) −4.62580e14 −0.500916
\(527\) 4.97817e14 8.62244e14i 0.533471 0.924000i
\(528\) 0 0
\(529\) −1.26962e15 2.19904e15i −1.33250 2.30795i
\(530\) 1.71987e14 2.97890e14i 0.178640 0.309413i
\(531\) 0 0
\(532\) 1.01104e14 + 5.09906e13i 0.102862 + 0.0518772i
\(533\) −4.78602e14 −0.481919
\(534\) 0 0
\(535\) 8.39998e13 + 1.45492e14i 0.0828576 + 0.143514i
\(536\) −1.90730e14 3.30353e14i −0.186214 0.322532i
\(537\) 0 0
\(538\) 1.55244e14 0.148495
\(539\) −3.26093e14 + 7.49000e14i −0.308748 + 0.709159i
\(540\) 0 0
\(541\) 1.17921e14 2.04245e14i 0.109397 0.189481i −0.806129 0.591740i \(-0.798441\pi\)
0.915526 + 0.402258i \(0.131775\pi\)
\(542\) −6.61492e14 1.14574e15i −0.607475 1.05218i
\(543\) 0 0
\(544\) 1.52812e14 2.64679e14i 0.137520 0.238191i
\(545\) 3.62846e14 0.323252
\(546\) 0 0
\(547\) 3.36340e14 0.293662 0.146831 0.989162i \(-0.453093\pi\)
0.146831 + 0.989162i \(0.453093\pi\)
\(548\) 5.02145e13 8.69741e13i 0.0434046 0.0751790i
\(549\) 0 0
\(550\) 2.90874e14 + 5.03809e14i 0.246439 + 0.426846i
\(551\) −9.85476e13 + 1.70689e14i −0.0826632 + 0.143177i
\(552\) 0 0
\(553\) 1.57728e15 1.03358e15i 1.29694 0.849875i
\(554\) 1.05098e14 0.0855636
\(555\) 0 0
\(556\) −5.21104e14 9.02578e14i −0.415923 0.720399i
\(557\) 6.00397e14 + 1.03992e15i 0.474498 + 0.821855i 0.999574 0.0292007i \(-0.00929620\pi\)
−0.525075 + 0.851056i \(0.675963\pi\)
\(558\) 0 0
\(559\) −3.32127e15 −2.57359
\(560\) 5.78208e12 + 1.02250e14i 0.00443659 + 0.0784565i
\(561\) 0 0
\(562\) 3.34144e14 5.78754e14i 0.251411 0.435456i
\(563\) 9.61397e13 + 1.66519e14i 0.0716319 + 0.124070i 0.899617 0.436681i \(-0.143846\pi\)
−0.827985 + 0.560751i \(0.810513\pi\)
\(564\) 0 0
\(565\) 1.32285e14 2.29125e14i 0.0966597 0.167420i
\(566\) −4.77338e14 −0.345411
\(567\) 0 0
\(568\) 1.72018e14 0.122084
\(569\) 1.79609e14 3.11093e14i 0.126244 0.218661i −0.795974 0.605330i \(-0.793041\pi\)
0.922219 + 0.386669i \(0.126374\pi\)
\(570\) 0 0
\(571\) 5.64553e13 + 9.77834e13i 0.0389230 + 0.0674166i 0.884831 0.465913i \(-0.154274\pi\)
−0.845908 + 0.533329i \(0.820941\pi\)
\(572\) 4.00988e14 6.94532e14i 0.273813 0.474257i
\(573\) 0 0
\(574\) −3.00482e14 + 1.96904e14i −0.201281 + 0.131898i
\(575\) −2.60034e15 −1.72527
\(576\) 0 0
\(577\) −2.03777e14 3.52952e14i −0.132644 0.229746i 0.792051 0.610455i \(-0.209013\pi\)
−0.924695 + 0.380709i \(0.875680\pi\)
\(578\) 7.79037e14 + 1.34933e15i 0.502291 + 0.869993i
\(579\) 0 0
\(580\) −1.78259e14 −0.112771
\(581\) 3.36163e14 + 1.69539e14i 0.210660 + 0.106243i
\(582\) 0 0
\(583\) −1.01093e15 + 1.75099e15i −0.621650 + 1.07673i
\(584\) −2.86756e14 4.96677e14i −0.174680 0.302554i
\(585\) 0 0
\(586\) −9.98291e14 + 1.72909e15i −0.596788 + 1.03367i
\(587\) −8.47437e14 −0.501878 −0.250939 0.968003i \(-0.580739\pi\)
−0.250939 + 0.968003i \(0.580739\pi\)
\(588\) 0 0
\(589\) −2.71833e14 −0.158004
\(590\) −1.02989e14 + 1.78383e14i −0.0593071 + 0.102723i
\(591\) 0 0
\(592\) −3.54725e14 6.14401e14i −0.200503 0.347282i
\(593\) 1.12009e15 1.94006e15i 0.627267 1.08646i −0.360830 0.932631i \(-0.617507\pi\)
0.988098 0.153827i \(-0.0491600\pi\)
\(594\) 0 0
\(595\) −7.94301e14 4.00595e14i −0.436658 0.220223i
\(596\) −4.19517e14 −0.228505
\(597\) 0 0
\(598\) 1.79237e15 + 3.10447e15i 0.958452 + 1.66009i
\(599\) 2.49488e14 + 4.32127e14i 0.132191 + 0.228962i 0.924521 0.381131i \(-0.124465\pi\)
−0.792330 + 0.610093i \(0.791132\pi\)
\(600\) 0 0
\(601\) 3.23660e15 1.68375 0.841877 0.539669i \(-0.181451\pi\)
0.841877 + 0.539669i \(0.181451\pi\)
\(602\) −2.08520e15 + 1.36642e15i −1.07490 + 0.704372i
\(603\) 0 0
\(604\) 1.79556e14 3.11000e14i 0.0908858 0.157419i
\(605\) −1.25887e14 2.18043e14i −0.0631433 0.109367i
\(606\) 0 0
\(607\) 1.08736e15 1.88337e15i 0.535595 0.927677i −0.463540 0.886076i \(-0.653421\pi\)
0.999134 0.0416011i \(-0.0132459\pi\)
\(608\) −8.34433e13 −0.0407307
\(609\) 0 0
\(610\) 8.05254e13 0.0386028
\(611\) 2.44901e15 4.24180e15i 1.16349 2.01523i
\(612\) 0 0
\(613\) −1.58056e15 2.73760e15i −0.737526 1.27743i −0.953606 0.301057i \(-0.902661\pi\)
0.216080 0.976376i \(-0.430673\pi\)
\(614\) 6.19288e14 1.07264e15i 0.286396 0.496052i
\(615\) 0 0
\(616\) −3.39869e13 6.01022e14i −0.0154389 0.273021i
\(617\) −2.27574e14 −0.102460 −0.0512300 0.998687i \(-0.516314\pi\)
−0.0512300 + 0.998687i \(0.516314\pi\)
\(618\) 0 0
\(619\) 1.60371e15 + 2.77772e15i 0.709298 + 1.22854i 0.965118 + 0.261815i \(0.0843211\pi\)
−0.255820 + 0.966724i \(0.582346\pi\)
\(620\) −1.22927e14 2.12916e14i −0.0538882 0.0933371i
\(621\) 0 0
\(622\) 1.62290e15 0.698948
\(623\) −6.96453e14 + 4.56381e14i −0.297309 + 0.194824i
\(624\) 0 0
\(625\) −8.50387e14 + 1.47291e15i −0.356678 + 0.617785i
\(626\) 2.33592e14 + 4.04593e14i 0.0971179 + 0.168213i
\(627\) 0 0
\(628\) −2.40287e14 + 4.16190e14i −0.0981641 + 0.170025i
\(629\) 6.16255e15 2.49564
\(630\) 0 0
\(631\) 2.60523e15 1.03678 0.518389 0.855145i \(-0.326532\pi\)
0.518389 + 0.855145i \(0.326532\pi\)
\(632\) −6.94811e14 + 1.20345e15i −0.274109 + 0.474770i
\(633\) 0 0
\(634\) −5.19915e14 9.00519e14i −0.201577 0.349142i
\(635\) 6.16758e12 1.06826e13i 0.00237061 0.00410601i
\(636\) 0 0
\(637\) 2.22822e15 + 3.01422e15i 0.841764 + 1.13870i
\(638\) 1.04780e15 0.392433
\(639\) 0 0
\(640\) −3.77344e13 6.53579e13i −0.0138914 0.0240607i
\(641\) −9.64829e14 1.67113e15i −0.352153 0.609947i 0.634473 0.772945i \(-0.281217\pi\)
−0.986626 + 0.162998i \(0.947884\pi\)
\(642\) 0 0
\(643\) −2.92728e15 −1.05028 −0.525139 0.851016i \(-0.675987\pi\)
−0.525139 + 0.851016i \(0.675987\pi\)
\(644\) 2.40253e15 + 1.21168e15i 0.854666 + 0.431039i
\(645\) 0 0
\(646\) 3.62410e14 6.27713e14i 0.126742 0.219524i
\(647\) −2.34714e15 4.06536e15i −0.813888 1.40970i −0.910123 0.414337i \(-0.864013\pi\)
0.0962350 0.995359i \(-0.469320\pi\)
\(648\) 0 0
\(649\) 6.05369e14 1.04853e15i 0.206383 0.357466i
\(650\) 2.66936e15 0.902369
\(651\) 0 0
\(652\) −2.14867e15 −0.714182
\(653\) −1.46511e15 + 2.53765e15i −0.482891 + 0.836391i −0.999807 0.0196446i \(-0.993747\pi\)
0.516916 + 0.856036i \(0.327080\pi\)
\(654\) 0 0
\(655\) −7.13023e14 1.23499e15i −0.231087 0.400255i
\(656\) 1.32366e14 2.29265e14i 0.0425408 0.0736829i
\(657\) 0 0
\(658\) −2.07572e14 3.67070e15i −0.0656035 1.16013i
\(659\) −9.39749e13 −0.0294538 −0.0147269 0.999892i \(-0.504688\pi\)
−0.0147269 + 0.999892i \(0.504688\pi\)
\(660\) 0 0
\(661\) 1.81950e15 + 3.15147e15i 0.560847 + 0.971416i 0.997423 + 0.0717483i \(0.0228578\pi\)
−0.436576 + 0.899668i \(0.643809\pi\)
\(662\) −1.42258e15 2.46397e15i −0.434867 0.753212i
\(663\) 0 0
\(664\) −2.77441e14 −0.0834155
\(665\) 1.37128e13 + 2.42496e14i 0.00408890 + 0.0723079i
\(666\) 0 0
\(667\) −2.34177e15 + 4.05606e15i −0.686834 + 1.18963i
\(668\) −8.19821e14 1.41997e15i −0.238478 0.413056i
\(669\) 0 0
\(670\) 4.09106e14 7.08592e14i 0.117064 0.202761i
\(671\) −4.73326e14 −0.134334
\(672\) 0 0
\(673\) 5.20155e15 1.45228 0.726140 0.687547i \(-0.241313\pi\)
0.726140 + 0.687547i \(0.241313\pi\)
\(674\) 2.66109e14 4.60914e14i 0.0736936 0.127641i
\(675\) 0 0
\(676\) −9.22356e14 1.59757e15i −0.251300 0.435264i
\(677\) −1.10820e15 + 1.91946e15i −0.299489 + 0.518730i −0.976019 0.217685i \(-0.930149\pi\)
0.676530 + 0.736415i \(0.263483\pi\)
\(678\) 0 0
\(679\) 4.10233e15 + 2.06895e15i 1.09080 + 0.550132i
\(680\) 6.55550e14 0.172905
\(681\) 0 0
\(682\) 7.22562e14 + 1.25151e15i 0.187526 + 0.324804i
\(683\) 2.53825e15 + 4.39637e15i 0.653461 + 1.13183i 0.982277 + 0.187434i \(0.0600171\pi\)
−0.328816 + 0.944394i \(0.606650\pi\)
\(684\) 0 0
\(685\) 2.15415e14 0.0545731
\(686\) 2.63904e15 + 9.75707e14i 0.663229 + 0.245209i
\(687\) 0 0
\(688\) 9.18558e14 1.59099e15i 0.227180 0.393487i
\(689\) 4.63869e15 + 8.03445e15i 1.13812 + 1.97129i
\(690\) 0 0
\(691\) 1.06653e15 1.84729e15i 0.257540 0.446073i −0.708042 0.706170i \(-0.750421\pi\)
0.965582 + 0.260097i \(0.0837547\pi\)
\(692\) 3.07651e15 0.737012
\(693\) 0 0
\(694\) −2.00375e15 −0.472460
\(695\) 1.11774e15 1.93599e15i 0.261472 0.452883i
\(696\) 0 0
\(697\) 1.14978e15 + 1.99148e15i 0.264750 + 0.458560i
\(698\) −1.09940e15 + 1.90422e15i −0.251160 + 0.435023i
\(699\) 0 0
\(700\) 1.67591e15 1.09821e15i 0.376888 0.246972i
\(701\) −7.19614e15 −1.60565 −0.802825 0.596215i \(-0.796670\pi\)
−0.802825 + 0.596215i \(0.796670\pi\)
\(702\) 0 0
\(703\) −8.41265e14 1.45711e15i −0.184790 0.320066i
\(704\) 2.21802e14 + 3.84171e14i 0.0483409 + 0.0837289i
\(705\) 0 0
\(706\) 5.39253e15 1.15709
\(707\) −1.57271e14 2.78117e15i −0.0334843 0.592134i
\(708\) 0 0
\(709\) 1.78025e15 3.08348e15i 0.373187 0.646378i −0.616867 0.787067i \(-0.711598\pi\)
0.990054 + 0.140689i \(0.0449318\pi\)
\(710\) 1.84485e14 + 3.19537e14i 0.0383743 + 0.0664662i
\(711\) 0 0
\(712\) 3.06797e14 5.31387e14i 0.0628363 0.108836i
\(713\) −6.45952e15 −1.31283
\(714\) 0 0
\(715\) 1.72020e15 0.344267
\(716\) 7.92910e14 1.37336e15i 0.157472 0.272749i
\(717\) 0 0
\(718\) −4.52979e14 7.84583e14i −0.0885919 0.153446i
\(719\) 2.36049e15 4.08849e15i 0.458135 0.793513i −0.540727 0.841198i \(-0.681851\pi\)
0.998862 + 0.0476846i \(0.0151842\pi\)
\(720\) 0 0
\(721\) −2.01860e15 + 1.32277e15i −0.385839 + 0.252838i
\(722\) 3.52979e15 0.669568
\(723\) 0 0
\(724\) 1.46638e15 + 2.53985e15i 0.273959 + 0.474511i
\(725\) 1.74379e15 + 3.02034e15i 0.323322 + 0.560011i
\(726\) 0 0
\(727\) −3.86491e15 −0.705829 −0.352915 0.935656i \(-0.614809\pi\)
−0.352915 + 0.935656i \(0.614809\pi\)
\(728\) −2.46630e15 1.24384e15i −0.447016 0.225447i
\(729\) 0 0
\(730\) 6.15078e14 1.06535e15i 0.109813 0.190202i
\(731\) 7.97894e15 + 1.38199e16i 1.41384 + 2.44884i
\(732\) 0 0
\(733\) 3.55474e15 6.15699e15i 0.620492 1.07472i −0.368902 0.929468i \(-0.620266\pi\)
0.989394 0.145256i \(-0.0464004\pi\)
\(734\) −5.91115e15 −1.02410
\(735\) 0 0
\(736\) −1.98285e15 −0.338424
\(737\) −2.40471e15 + 4.16508e15i −0.407373 + 0.705590i
\(738\) 0 0
\(739\) 2.49707e15 + 4.32505e15i 0.416760 + 0.721849i 0.995611 0.0935840i \(-0.0298324\pi\)
−0.578852 + 0.815433i \(0.696499\pi\)
\(740\) 7.60867e14 1.31786e15i 0.126047 0.218321i
\(741\) 0 0
\(742\) 6.21781e15 + 3.13587e15i 1.01488 + 0.511842i
\(743\) −7.94563e15 −1.28733 −0.643665 0.765307i \(-0.722587\pi\)
−0.643665 + 0.765307i \(0.722587\pi\)
\(744\) 0 0
\(745\) −4.49922e14 7.79287e14i −0.0718253 0.124405i
\(746\) −2.17677e14 3.77027e14i −0.0344944 0.0597461i
\(747\) 0 0
\(748\) −3.85331e15 −0.601693
\(749\) −2.84480e15 + 1.86418e15i −0.440963 + 0.288960i
\(750\) 0 0
\(751\) 1.62485e15 2.81433e15i 0.248196 0.429888i −0.714830 0.699299i \(-0.753496\pi\)
0.963025 + 0.269411i \(0.0868291\pi\)
\(752\) 1.35464e15 + 2.34630e15i 0.205411 + 0.355783i
\(753\) 0 0
\(754\) 2.40393e15 4.16373e15i 0.359235 0.622214i
\(755\) 7.70277e14 0.114272
\(756\) 0 0
\(757\) −6.67369e15 −0.975750 −0.487875 0.872914i \(-0.662228\pi\)
−0.487875 + 0.872914i \(0.662228\pi\)
\(758\) −2.33374e15 + 4.04216e15i −0.338744 + 0.586722i
\(759\) 0 0
\(760\) −8.94909e13 1.55003e14i −0.0128028 0.0221751i
\(761\) 2.34409e15 4.06008e15i 0.332934 0.576658i −0.650152 0.759804i \(-0.725295\pi\)
0.983086 + 0.183146i \(0.0586281\pi\)
\(762\) 0 0
\(763\) 4.14736e14 + 7.33417e15i 0.0580613 + 1.02675i
\(764\) 4.98119e15 0.692340
\(765\) 0 0
\(766\) 2.87824e15 + 4.98526e15i 0.394338 + 0.683014i
\(767\) −2.77775e15 4.81120e15i −0.377849 0.654453i
\(768\) 0 0
\(769\) −5.61692e15 −0.753189 −0.376594 0.926378i \(-0.622905\pi\)
−0.376594 + 0.926378i \(0.622905\pi\)
\(770\) 1.08000e15 7.07715e14i 0.143788 0.0942235i
\(771\) 0 0
\(772\) 1.62512e15 2.81478e15i 0.213299 0.369445i
\(773\) −4.01315e15 6.95098e15i −0.522996 0.905856i −0.999642 0.0267602i \(-0.991481\pi\)
0.476646 0.879095i \(-0.341852\pi\)
\(774\) 0 0
\(775\) −2.40503e15 + 4.16564e15i −0.309002 + 0.535208i
\(776\) −3.38572e15 −0.431929
\(777\) 0 0
\(778\) −8.25477e15 −1.03829
\(779\) 3.13920e14 5.43725e14i 0.0392069 0.0679083i
\(780\) 0 0
\(781\) −1.08440e15 1.87823e15i −0.133539 0.231296i
\(782\) 8.61189e15 1.49162e16i 1.05308 1.82399i
\(783\) 0 0
\(784\) −2.06016e15 + 2.33745e14i −0.248406 + 0.0281841i
\(785\) −1.03081e15 −0.123423
\(786\) 0 0
\(787\) −1.21637e15 2.10681e15i −0.143616 0.248751i 0.785240 0.619192i \(-0.212540\pi\)
−0.928856 + 0.370441i \(0.879206\pi\)
\(788\) −3.42037e15 5.92426e15i −0.401032 0.694608i
\(789\) 0 0
\(790\) −2.98067e15 −0.344640
\(791\) 4.78248e15 + 2.41198e15i 0.549140 + 0.276951i
\(792\) 0 0
\(793\) −1.08593e15 + 1.88089e15i −0.122970 + 0.212991i
\(794\) −4.54645e15 7.87469e15i −0.511281 0.885565i
\(795\) 0 0
\(796\) 6.22485e14 1.07818e15i 0.0690410 0.119582i
\(797\) 9.46059e14 0.104207 0.0521036 0.998642i \(-0.483407\pi\)
0.0521036 + 0.998642i \(0.483407\pi\)
\(798\) 0 0
\(799\) −2.35338e16 −2.55673
\(800\) −7.38262e14 + 1.27871e15i −0.0796554 + 0.137967i
\(801\) 0 0
\(802\) 1.67335e15 + 2.89833e15i 0.178085 + 0.308453i
\(803\) −3.61541e15 + 6.26208e15i −0.382140 + 0.661885i
\(804\) 0 0
\(805\) 3.25854e14 + 5.76239e15i 0.0339740 + 0.600794i
\(806\) 6.63098e15 0.686649
\(807\) 0 0
\(808\) 1.02636e15 + 1.77771e15i 0.104843 + 0.181593i
\(809\) 4.85762e15 + 8.41364e15i 0.492841 + 0.853625i 0.999966 0.00824739i \(-0.00262525\pi\)
−0.507125 + 0.861872i \(0.669292\pi\)
\(810\) 0 0
\(811\) −1.45341e16 −1.45470 −0.727348 0.686269i \(-0.759247\pi\)
−0.727348 + 0.686269i \(0.759247\pi\)
\(812\) −2.03752e14 3.60313e15i −0.0202555 0.358197i
\(813\) 0 0
\(814\) −4.47235e15 + 7.74634e15i −0.438633 + 0.759735i
\(815\) −2.30440e15 3.99134e15i −0.224487 0.388823i
\(816\) 0 0
\(817\) 2.17845e15 3.77319e15i 0.209376 0.362650i
\(818\) −1.44349e15 −0.137807
\(819\) 0 0
\(820\) 5.67838e14 0.0534870
\(821\) −2.89155e15 + 5.00832e15i −0.270548 + 0.468602i −0.969002 0.247052i \(-0.920538\pi\)
0.698455 + 0.715654i \(0.253871\pi\)
\(822\) 0 0
\(823\) −4.96010e15 8.59114e15i −0.457922 0.793143i 0.540929 0.841068i \(-0.318073\pi\)
−0.998851 + 0.0479246i \(0.984739\pi\)
\(824\) 8.89220e14 1.54017e15i 0.0815473 0.141244i
\(825\) 0 0
\(826\) −3.72335e15 1.87782e15i −0.336933 0.169928i
\(827\) −3.66176e15 −0.329162 −0.164581 0.986364i \(-0.552627\pi\)
−0.164581 + 0.986364i \(0.552627\pi\)
\(828\) 0 0
\(829\) −5.78989e15 1.00284e16i −0.513594 0.889571i −0.999876 0.0157691i \(-0.994980\pi\)
0.486281 0.873802i \(-0.338353\pi\)
\(830\) −2.97549e14 5.15370e14i −0.0262198 0.0454140i
\(831\) 0 0
\(832\) 2.03548e15 0.177006
\(833\) 7.18929e15 1.65130e16i 0.621067 1.42652i
\(834\) 0 0
\(835\) 1.75847e15 3.04577e15i 0.149920 0.259670i
\(836\) 5.26025e14 + 9.11101e14i 0.0445524 + 0.0771671i
\(837\) 0 0
\(838\) 3.02532e15 5.24000e15i 0.252888 0.438015i
\(839\) −1.53723e16 −1.27658 −0.638292 0.769794i \(-0.720359\pi\)
−0.638292 + 0.769794i \(0.720359\pi\)
\(840\) 0 0
\(841\) −5.91893e15 −0.485138
\(842\) 3.84231e15 6.65508e15i 0.312879 0.541922i
\(843\) 0 0
\(844\) 3.05622e15 + 5.29352e15i 0.245641 + 0.425462i
\(845\) 1.97841e15 3.42670e15i 0.157981 0.273631i
\(846\) 0 0
\(847\) 4.26340e15 2.79377e15i 0.336045 0.220208i
\(848\) −5.13167e15 −0.401866
\(849\) 0 0
\(850\) −6.41282e15 1.11073e16i −0.495730 0.858629i
\(851\) −1.99908e16 3.46251e16i −1.53539 2.65937i
\(852\) 0 0
\(853\) 1.35790e16 1.02955 0.514777 0.857324i \(-0.327875\pi\)
0.514777 + 0.857324i \(0.327875\pi\)
\(854\) 9.20411e13 + 1.62765e15i 0.00693368 + 0.122615i
\(855\) 0 0
\(856\) 1.25317e15 2.17056e15i 0.0931977 0.161423i
\(857\) 1.26143e16 + 2.18486e16i 0.932111 + 1.61446i 0.779707 + 0.626145i \(0.215368\pi\)
0.152404 + 0.988318i \(0.451298\pi\)
\(858\) 0 0
\(859\) 8.73719e15 1.51333e16i 0.637396 1.10400i −0.348606 0.937269i \(-0.613345\pi\)
0.986002 0.166733i \(-0.0533219\pi\)
\(860\) 3.94052e15 0.285636
\(861\) 0 0
\(862\) −1.73363e15 −0.124070
\(863\) −8.58667e15 + 1.48725e16i −0.610612 + 1.05761i 0.380526 + 0.924770i \(0.375743\pi\)
−0.991137 + 0.132840i \(0.957590\pi\)
\(864\) 0 0
\(865\) 3.29948e15 + 5.71487e15i 0.231663 + 0.401252i
\(866\) −5.10430e15 + 8.84090e15i −0.356113 + 0.616805i
\(867\) 0 0
\(868\) 4.16315e15 2.72808e15i 0.286789 0.187931i
\(869\) 1.75203e16 1.19931
\(870\) 0 0
\(871\) 1.10341e16 + 1.91116e16i 0.745823 + 1.29180i
\(872\) −2.70661e15 4.68798e15i −0.181796 0.314880i
\(873\) 0 0
\(874\) −4.70252e15 −0.311902
\(875\) 8.09550e15 + 4.08285e15i 0.533580 + 0.269104i
\(876\) 0 0
\(877\) −1.42352e16 + 2.46561e16i −0.926543 + 1.60482i −0.137483 + 0.990504i \(0.543901\pi\)
−0.789060 + 0.614316i \(0.789432\pi\)
\(878\) −7.49502e15 1.29818e16i −0.484789 0.839680i
\(879\) 0 0
\(880\) −4.75753e14 + 8.24029e14i −0.0303898 + 0.0526366i
\(881\) −1.93122e16 −1.22593 −0.612963 0.790112i \(-0.710023\pi\)
−0.612963 + 0.790112i \(0.710023\pi\)
\(882\) 0 0
\(883\) −9.08204e15 −0.569376 −0.284688 0.958620i \(-0.591890\pi\)
−0.284688 + 0.958620i \(0.591890\pi\)
\(884\) −8.84048e15 + 1.53122e16i −0.550793 + 0.954002i
\(885\) 0 0
\(886\) −7.02360e14 1.21652e15i −0.0432189 0.0748574i
\(887\) −8.94539e15 + 1.54939e16i −0.547040 + 0.947502i 0.451435 + 0.892304i \(0.350912\pi\)
−0.998475 + 0.0551978i \(0.982421\pi\)
\(888\) 0 0
\(889\) 2.22975e14 + 1.12454e14i 0.0134678 + 0.00679230i
\(890\) 1.31613e15 0.0790047
\(891\) 0 0
\(892\) 3.69195e15 + 6.39465e15i 0.218902 + 0.379149i
\(893\) 3.21266e15 + 5.56448e15i 0.189313 + 0.327900i
\(894\) 0 0
\(895\) 3.40150e15 0.197991
\(896\) 1.27794e15 8.37426e14i 0.0739293 0.0484454i
\(897\) 0 0
\(898\) −3.47958e15 + 6.02681e15i −0.198841 + 0.344403i
\(899\) 4.33177e15 + 7.50284e15i 0.246029 + 0.426135i
\(900\) 0 0
\(901\) 2.22878e16 3.86036e16i 1.25049 2.16592i
\(902\) −3.33773e15 −0.186130
\(903\) 0 0
\(904\) −3.94707e15 −0.217444
\(905\) −3.14532e15 + 5.44785e15i −0.172226 + 0.298303i
\(906\) 0 0
\(907\) −5.99693e15 1.03870e16i −0.324406 0.561888i 0.656986 0.753903i \(-0.271831\pi\)
−0.981392 + 0.192015i \(0.938498\pi\)
\(908\) −2.83539e15 + 4.91104e15i −0.152455 + 0.264059i
\(909\) 0 0
\(910\) −3.34504e14 5.91535e15i −0.0177694 0.314234i
\(911\) −1.64716e16 −0.869728 −0.434864 0.900496i \(-0.643204\pi\)
−0.434864 + 0.900496i \(0.643204\pi\)
\(912\) 0 0
\(913\) 1.74898e15 + 3.02933e15i 0.0912424 + 0.158037i
\(914\) 1.29053e16 + 2.23526e16i 0.669211 + 1.15911i
\(915\) 0 0
\(916\) 7.71597e15 0.395335
\(917\) 2.41478e16 1.58239e16i 1.22983 0.805900i
\(918\) 0 0
\(919\) −1.18247e16 + 2.04810e16i −0.595053 + 1.03066i 0.398487 + 0.917174i \(0.369535\pi\)
−0.993539 + 0.113487i \(0.963798\pi\)
\(920\) −2.12656e15 3.68330e15i −0.106376 0.184249i
\(921\) 0 0
\(922\) 1.16141e16 2.01162e16i 0.574070 0.994318i
\(923\) −9.95155e15 −0.488969
\(924\) 0 0
\(925\) −2.97723e16 −1.44555
\(926\) −1.85302e15 + 3.20953e15i −0.0894376 + 0.154911i
\(927\) 0 0
\(928\) 1.32970e15 + 2.30311e15i 0.0634221 + 0.109850i
\(929\) 9.67202e15 1.67524e16i 0.458596 0.794312i −0.540291 0.841479i \(-0.681686\pi\)
0.998887 + 0.0471661i \(0.0150190\pi\)
\(930\) 0 0
\(931\) −4.88588e15 + 5.54350e14i −0.228939 + 0.0259753i
\(932\) 6.41352e14 0.0298751
\(933\) 0 0
\(934\) −1.09990e15 1.90508e15i −0.0506342 0.0877010i
\(935\) −4.13258e15 7.15783e15i −0.189129 0.327580i
\(936\) 0 0
\(937\) 3.88518e15 0.175729 0.0878644 0.996132i \(-0.471996\pi\)
0.0878644 + 0.996132i \(0.471996\pi\)
\(938\) 1.47903e16 + 7.45929e15i 0.665061 + 0.335414i
\(939\) 0 0
\(940\) −2.90563e15 + 5.03270e15i −0.129133 + 0.223665i
\(941\) 5.26866e15 + 9.12558e15i 0.232786 + 0.403197i 0.958627 0.284665i \(-0.0918825\pi\)
−0.725841 + 0.687863i \(0.758549\pi\)
\(942\) 0 0
\(943\) 7.45962e15 1.29204e16i 0.325763 0.564239i
\(944\) 3.07295e15 0.133416
\(945\) 0 0
\(946\) −2.31623e16 −0.993985
\(947\) −1.22564e16 + 2.12286e16i −0.522922 + 0.905727i 0.476722 + 0.879054i \(0.341825\pi\)
−0.999644 + 0.0266732i \(0.991509\pi\)
\(948\) 0 0
\(949\) 1.65894e16 + 2.87337e16i 0.699626 + 1.21179i
\(950\) −1.75086e15 + 3.03258e15i −0.0734128 + 0.127155i
\(951\) 0 0
\(952\) 7.49299e14 + 1.32506e16i 0.0310565 + 0.549201i
\(953\) 2.70879e16 1.11626 0.558129 0.829754i \(-0.311519\pi\)
0.558129 + 0.829754i \(0.311519\pi\)
\(954\) 0 0
\(955\) 5.34220e15 + 9.25296e15i 0.217621 + 0.376931i
\(956\) 8.77914e15 + 1.52059e16i 0.355577 + 0.615877i
\(957\) 0 0
\(958\) −3.67862e14 −0.0147290
\(959\) 2.46221e14 + 4.35417e15i 0.00980220 + 0.173342i
\(960\) 0 0
\(961\) 6.72988e15 1.16565e16i 0.264867 0.458764i
\(962\) 2.05215e16 + 3.55442e16i 0.803055 + 1.39093i
\(963\) 0 0
\(964\) 1.64780e15 2.85407e15i 0.0637501 0.110418i
\(965\) 6.97159e15 0.268183
\(966\) 0 0
\(967\) 4.76683e16 1.81294 0.906472 0.422266i \(-0.138765\pi\)
0.906472 + 0.422266i \(0.138765\pi\)
\(968\) −1.87808e15 + 3.25293e15i −0.0710232 + 0.123016i
\(969\) 0 0
\(970\) −3.63111e15 6.28926e15i −0.135767 0.235155i
\(971\) 1.06577e16 1.84598e16i 0.396241 0.686310i −0.597017 0.802228i \(-0.703648\pi\)
0.993259 + 0.115918i \(0.0369810\pi\)
\(972\) 0 0
\(973\) 4.04095e16 + 2.03800e16i 1.48547 + 0.749174i
\(974\) −2.17331e16 −0.794414
\(975\) 0 0
\(976\) −6.00669e14 1.04039e15i −0.0217101 0.0376030i
\(977\) 3.78564e15 + 6.55692e15i 0.136056 + 0.235657i 0.926001 0.377522i \(-0.123224\pi\)
−0.789944 + 0.613179i \(0.789890\pi\)
\(978\) 0 0
\(979\) −7.73616e15 −0.274929
\(980\) −2.64367e15 3.57623e15i −0.0934252 0.126381i
\(981\) 0 0
\(982\) 1.47154e15 2.54879e15i 0.0514233 0.0890678i
\(983\) −1.86896e16 3.23714e16i −0.649466 1.12491i −0.983251 0.182259i \(-0.941659\pi\)
0.333785 0.942649i \(-0.391674\pi\)
\(984\) 0 0
\(985\) 7.33653e15 1.27072e16i 0.252111 0.436669i
\(986\) −2.31006e16 −0.789406
\(987\) 0 0
\(988\) 4.82735e15 0.163134
\(989\) 5.17662e16 8.96616e16i 1.73967 3.01319i
\(990\) 0 0
\(991\) 5.88130e15 + 1.01867e16i 0.195465 + 0.338555i 0.947053 0.321078i \(-0.104045\pi\)
−0.751588 + 0.659633i \(0.770712\pi\)
\(992\) −1.83392e15 + 3.17644e15i −0.0606131 + 0.104985i
\(993\) 0 0
\(994\) −6.24791e15 + 4.09421e15i −0.204225 + 0.133827i
\(995\) 2.67040e15 0.0868059
\(996\) 0 0
\(997\) 1.43321e16 + 2.48239e16i 0.460771 + 0.798080i 0.999000 0.0447196i \(-0.0142395\pi\)
−0.538228 + 0.842799i \(0.680906\pi\)
\(998\) −1.63303e16 2.82850e16i −0.522128 0.904352i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.12.g.b.37.3 6
3.2 odd 2 42.12.e.a.37.1 yes 6
7.4 even 3 inner 126.12.g.b.109.3 6
21.11 odd 6 42.12.e.a.25.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.12.e.a.25.1 6 21.11 odd 6
42.12.e.a.37.1 yes 6 3.2 odd 2
126.12.g.b.37.3 6 1.1 even 1 trivial
126.12.g.b.109.3 6 7.4 even 3 inner