Properties

Label 126.12.g.b.109.1
Level $126$
Weight $12$
Character 126.109
Analytic conductor $96.811$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,12,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(96.8112407505\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 1516x^{4} + 1461x^{3} + 2295252x^{2} - 40905x + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(19.7087 - 34.1365i\) of defining polynomial
Character \(\chi\) \(=\) 126.109
Dual form 126.12.g.b.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(16.0000 + 27.7128i) q^{2} +(-512.000 + 886.810i) q^{4} +(-2025.94 - 3509.03i) q^{5} +(-41231.5 - 16652.0i) q^{7} -32768.0 q^{8} +(64830.0 - 112289. i) q^{10} +(-52646.6 + 91186.6i) q^{11} +144812. q^{13} +(-198230. - 1.40907e6i) q^{14} +(-524288. - 908093. i) q^{16} +(3.54738e6 - 6.14424e6i) q^{17} +(2.86658e6 + 4.96507e6i) q^{19} +4.14912e6 q^{20} -3.36938e6 q^{22} +(-1.91165e7 - 3.31108e7i) q^{23} +(1.62052e7 - 2.80683e7i) q^{25} +(2.31699e6 + 4.01315e6i) q^{26} +(3.58777e7 - 2.80387e7i) q^{28} -1.21081e7 q^{29} +(-5.57549e7 + 9.65703e7i) q^{31} +(1.67772e7 - 2.90590e7i) q^{32} +2.27032e8 q^{34} +(2.51001e7 + 1.78418e8i) q^{35} +(1.38165e8 + 2.39309e8i) q^{37} +(-9.17307e7 + 1.58882e8i) q^{38} +(6.63859e7 + 1.14984e8i) q^{40} -1.41611e9 q^{41} +1.35192e9 q^{43} +(-5.39101e7 - 9.33751e7i) q^{44} +(6.11728e8 - 1.05954e9i) q^{46} +(3.25084e7 + 5.63062e7i) q^{47} +(1.42275e9 + 1.37317e9i) q^{49} +1.03713e9 q^{50} +(-7.41438e7 + 1.28421e8i) q^{52} +(-2.08376e9 + 3.60918e9i) q^{53} +4.26635e8 q^{55} +(1.35107e9 + 5.45653e8i) q^{56} +(-1.93729e8 - 3.35548e8i) q^{58} +(4.30251e8 - 7.45216e8i) q^{59} +(-2.59606e8 - 4.49651e8i) q^{61} -3.56831e9 q^{62} +1.07374e9 q^{64} +(-2.93380e8 - 5.08150e8i) q^{65} +(-7.81246e9 + 1.35316e10i) q^{67} +(3.63251e9 + 6.29170e9i) q^{68} +(-4.54287e9 + 3.55029e9i) q^{70} +6.55768e9 q^{71} +(-4.05303e9 + 7.02006e9i) q^{73} +(-4.42128e9 + 7.65788e9i) q^{74} -5.87076e9 q^{76} +(3.68914e9 - 2.88309e9i) q^{77} +(1.72527e10 + 2.98826e10i) q^{79} +(-2.12435e9 + 3.67948e9i) q^{80} +(-2.26577e10 - 3.92443e10i) q^{82} +1.62544e10 q^{83} -2.87471e10 q^{85} +(2.16306e10 + 3.74654e10i) q^{86} +(1.72512e9 - 2.98800e9i) q^{88} +(1.95499e10 + 3.38615e10i) q^{89} +(-5.97082e9 - 2.41141e9i) q^{91} +3.91506e10 q^{92} +(-1.04027e9 + 1.80180e9i) q^{94} +(1.16150e10 - 2.01178e10i) q^{95} -1.29214e10 q^{97} +(-1.52906e10 + 6.13991e10i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 96 q^{2} - 3072 q^{4} - 1045 q^{5} + 45731 q^{7} - 196608 q^{8} + 33440 q^{10} - 181565 q^{11} + 1186364 q^{13} + 703808 q^{14} - 3145728 q^{16} + 701848 q^{17} - 7893102 q^{19} + 2140160 q^{20} - 11620160 q^{22}+ \cdots - 30564771552 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.0000 + 27.7128i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −512.000 + 886.810i −0.250000 + 0.433013i
\(5\) −2025.94 3509.03i −0.289929 0.502171i 0.683864 0.729610i \(-0.260298\pi\)
−0.973792 + 0.227439i \(0.926965\pi\)
\(6\) 0 0
\(7\) −41231.5 16652.0i −0.927235 0.374479i
\(8\) −32768.0 −0.353553
\(9\) 0 0
\(10\) 64830.0 112289.i 0.205011 0.355089i
\(11\) −52646.6 + 91186.6i −0.0985623 + 0.170715i −0.911090 0.412208i \(-0.864758\pi\)
0.812527 + 0.582923i \(0.198091\pi\)
\(12\) 0 0
\(13\) 144812. 0.108172 0.0540862 0.998536i \(-0.482775\pi\)
0.0540862 + 0.998536i \(0.482775\pi\)
\(14\) −198230. 1.40907e6i −0.0985067 0.700212i
\(15\) 0 0
\(16\) −524288. 908093.i −0.125000 0.216506i
\(17\) 3.54738e6 6.14424e6i 0.605952 1.04954i −0.385948 0.922520i \(-0.626126\pi\)
0.991900 0.127019i \(-0.0405410\pi\)
\(18\) 0 0
\(19\) 2.86658e6 + 4.96507e6i 0.265595 + 0.460024i 0.967719 0.252030i \(-0.0810983\pi\)
−0.702124 + 0.712054i \(0.747765\pi\)
\(20\) 4.14912e6 0.289929
\(21\) 0 0
\(22\) −3.36938e6 −0.139388
\(23\) −1.91165e7 3.31108e7i −0.619306 1.07267i −0.989613 0.143760i \(-0.954081\pi\)
0.370307 0.928910i \(-0.379253\pi\)
\(24\) 0 0
\(25\) 1.62052e7 2.80683e7i 0.331883 0.574838i
\(26\) 2.31699e6 + 4.01315e6i 0.0382447 + 0.0662418i
\(27\) 0 0
\(28\) 3.58777e7 2.80387e7i 0.393963 0.307885i
\(29\) −1.21081e7 −0.109619 −0.0548095 0.998497i \(-0.517455\pi\)
−0.0548095 + 0.998497i \(0.517455\pi\)
\(30\) 0 0
\(31\) −5.57549e7 + 9.65703e7i −0.349779 + 0.605835i −0.986210 0.165499i \(-0.947077\pi\)
0.636431 + 0.771334i \(0.280410\pi\)
\(32\) 1.67772e7 2.90590e7i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 2.27032e8 0.856946
\(35\) 2.51001e7 + 1.78418e8i 0.0807796 + 0.574203i
\(36\) 0 0
\(37\) 1.38165e8 + 2.39309e8i 0.327558 + 0.567347i 0.982027 0.188742i \(-0.0604409\pi\)
−0.654469 + 0.756089i \(0.727108\pi\)
\(38\) −9.17307e7 + 1.58882e8i −0.187804 + 0.325286i
\(39\) 0 0
\(40\) 6.63859e7 + 1.14984e8i 0.102505 + 0.177544i
\(41\) −1.41611e9 −1.90891 −0.954453 0.298363i \(-0.903559\pi\)
−0.954453 + 0.298363i \(0.903559\pi\)
\(42\) 0 0
\(43\) 1.35192e9 1.40240 0.701202 0.712963i \(-0.252647\pi\)
0.701202 + 0.712963i \(0.252647\pi\)
\(44\) −5.39101e7 9.33751e7i −0.0492811 0.0853574i
\(45\) 0 0
\(46\) 6.11728e8 1.05954e9i 0.437916 0.758492i
\(47\) 3.25084e7 + 5.63062e7i 0.0206756 + 0.0358111i 0.876178 0.481988i \(-0.160085\pi\)
−0.855502 + 0.517799i \(0.826752\pi\)
\(48\) 0 0
\(49\) 1.42275e9 + 1.37317e9i 0.719531 + 0.694460i
\(50\) 1.03713e9 0.469353
\(51\) 0 0
\(52\) −7.41438e7 + 1.28421e8i −0.0270431 + 0.0468400i
\(53\) −2.08376e9 + 3.60918e9i −0.684432 + 1.18547i 0.289183 + 0.957274i \(0.406616\pi\)
−0.973615 + 0.228197i \(0.926717\pi\)
\(54\) 0 0
\(55\) 4.26635e8 0.114304
\(56\) 1.35107e9 + 5.45653e8i 0.327827 + 0.132398i
\(57\) 0 0
\(58\) −1.93729e8 3.35548e8i −0.0387562 0.0671276i
\(59\) 4.30251e8 7.45216e8i 0.0783494 0.135705i −0.824189 0.566316i \(-0.808368\pi\)
0.902538 + 0.430610i \(0.141702\pi\)
\(60\) 0 0
\(61\) −2.59606e8 4.49651e8i −0.0393551 0.0681650i 0.845677 0.533695i \(-0.179197\pi\)
−0.885032 + 0.465530i \(0.845864\pi\)
\(62\) −3.56831e9 −0.494662
\(63\) 0 0
\(64\) 1.07374e9 0.125000
\(65\) −2.93380e8 5.08150e8i −0.0313623 0.0543211i
\(66\) 0 0
\(67\) −7.81246e9 + 1.35316e10i −0.706930 + 1.22444i 0.259060 + 0.965861i \(0.416587\pi\)
−0.965990 + 0.258578i \(0.916746\pi\)
\(68\) 3.63251e9 + 6.29170e9i 0.302976 + 0.524770i
\(69\) 0 0
\(70\) −4.54287e9 + 3.55029e9i −0.323066 + 0.252479i
\(71\) 6.55768e9 0.431350 0.215675 0.976465i \(-0.430805\pi\)
0.215675 + 0.976465i \(0.430805\pi\)
\(72\) 0 0
\(73\) −4.05303e9 + 7.02006e9i −0.228826 + 0.396338i −0.957460 0.288565i \(-0.906822\pi\)
0.728635 + 0.684902i \(0.240155\pi\)
\(74\) −4.42128e9 + 7.65788e9i −0.231619 + 0.401175i
\(75\) 0 0
\(76\) −5.87076e9 −0.265595
\(77\) 3.68914e9 2.88309e9i 0.155320 0.121383i
\(78\) 0 0
\(79\) 1.72527e10 + 2.98826e10i 0.630824 + 1.09262i 0.987383 + 0.158347i \(0.0506165\pi\)
−0.356559 + 0.934273i \(0.616050\pi\)
\(80\) −2.12435e9 + 3.67948e9i −0.0724822 + 0.125543i
\(81\) 0 0
\(82\) −2.26577e10 3.92443e10i −0.674900 1.16896i
\(83\) 1.62544e10 0.452941 0.226471 0.974018i \(-0.427281\pi\)
0.226471 + 0.974018i \(0.427281\pi\)
\(84\) 0 0
\(85\) −2.87471e10 −0.702731
\(86\) 2.16306e10 + 3.74654e10i 0.495825 + 0.858793i
\(87\) 0 0
\(88\) 1.72512e9 2.98800e9i 0.0348470 0.0603568i
\(89\) 1.95499e10 + 3.38615e10i 0.371108 + 0.642778i 0.989736 0.142906i \(-0.0456447\pi\)
−0.618628 + 0.785684i \(0.712311\pi\)
\(90\) 0 0
\(91\) −5.97082e9 2.41141e9i −0.100301 0.0405083i
\(92\) 3.91506e10 0.619306
\(93\) 0 0
\(94\) −1.04027e9 + 1.80180e9i −0.0146198 + 0.0253223i
\(95\) 1.16150e10 2.01178e10i 0.154007 0.266748i
\(96\) 0 0
\(97\) −1.29214e10 −0.152780 −0.0763898 0.997078i \(-0.524339\pi\)
−0.0763898 + 0.997078i \(0.524339\pi\)
\(98\) −1.52906e10 + 6.13991e10i −0.170876 + 0.686150i
\(99\) 0 0
\(100\) 1.65941e10 + 2.87419e10i 0.165941 + 0.287419i
\(101\) −1.96967e10 + 3.41157e10i −0.186477 + 0.322988i −0.944073 0.329736i \(-0.893040\pi\)
0.757596 + 0.652724i \(0.226374\pi\)
\(102\) 0 0
\(103\) 4.63576e10 + 8.02938e10i 0.394018 + 0.682460i 0.992975 0.118321i \(-0.0377513\pi\)
−0.598957 + 0.800781i \(0.704418\pi\)
\(104\) −4.74521e9 −0.0382447
\(105\) 0 0
\(106\) −1.33361e11 −0.967933
\(107\) −9.80632e10 1.69850e11i −0.675920 1.17073i −0.976199 0.216876i \(-0.930413\pi\)
0.300279 0.953851i \(-0.402920\pi\)
\(108\) 0 0
\(109\) −9.82277e10 + 1.70135e11i −0.611488 + 1.05913i 0.379501 + 0.925191i \(0.376096\pi\)
−0.990990 + 0.133938i \(0.957238\pi\)
\(110\) 6.82616e9 + 1.18233e10i 0.0404126 + 0.0699967i
\(111\) 0 0
\(112\) 6.49561e9 + 4.61725e10i 0.0348274 + 0.247562i
\(113\) −2.08490e9 −0.0106452 −0.00532260 0.999986i \(-0.501694\pi\)
−0.00532260 + 0.999986i \(0.501694\pi\)
\(114\) 0 0
\(115\) −7.74577e10 + 1.34161e11i −0.359109 + 0.621995i
\(116\) 6.19933e9 1.07376e10i 0.0274047 0.0474664i
\(117\) 0 0
\(118\) 2.75360e10 0.110803
\(119\) −2.48578e11 + 1.94265e11i −0.954891 + 0.746254i
\(120\) 0 0
\(121\) 1.37113e11 + 2.37486e11i 0.480571 + 0.832373i
\(122\) 8.30739e9 1.43888e10i 0.0278282 0.0481999i
\(123\) 0 0
\(124\) −5.70930e10 9.88880e10i −0.174889 0.302917i
\(125\) −3.29169e11 −0.964747
\(126\) 0 0
\(127\) 8.43468e10 0.226542 0.113271 0.993564i \(-0.463867\pi\)
0.113271 + 0.993564i \(0.463867\pi\)
\(128\) 1.71799e10 + 2.97564e10i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 9.38818e9 1.62608e10i 0.0221765 0.0384108i
\(131\) −2.21933e11 3.84399e11i −0.502608 0.870542i −0.999995 0.00301363i \(-0.999041\pi\)
0.497388 0.867528i \(-0.334293\pi\)
\(132\) 0 0
\(133\) −3.55152e10 2.52452e11i −0.0739998 0.526010i
\(134\) −4.99998e11 −0.999750
\(135\) 0 0
\(136\) −1.16240e11 + 2.01334e11i −0.214236 + 0.371068i
\(137\) −1.23849e11 + 2.14513e11i −0.219245 + 0.379743i −0.954577 0.297963i \(-0.903693\pi\)
0.735332 + 0.677707i \(0.237026\pi\)
\(138\) 0 0
\(139\) −6.84023e11 −1.11812 −0.559061 0.829127i \(-0.688838\pi\)
−0.559061 + 0.829127i \(0.688838\pi\)
\(140\) −1.71075e11 6.90912e10i −0.268832 0.108572i
\(141\) 0 0
\(142\) 1.04923e11 + 1.81732e11i 0.152505 + 0.264147i
\(143\) −7.62387e9 + 1.32049e10i −0.0106617 + 0.0184666i
\(144\) 0 0
\(145\) 2.45302e10 + 4.24875e10i 0.0317817 + 0.0550475i
\(146\) −2.59394e11 −0.323608
\(147\) 0 0
\(148\) −2.82962e11 −0.327558
\(149\) 1.46183e11 + 2.53196e11i 0.163069 + 0.282444i 0.935968 0.352085i \(-0.114527\pi\)
−0.772899 + 0.634529i \(0.781194\pi\)
\(150\) 0 0
\(151\) −1.55769e11 + 2.69800e11i −0.161476 + 0.279685i −0.935398 0.353596i \(-0.884959\pi\)
0.773922 + 0.633281i \(0.218292\pi\)
\(152\) −9.39322e10 1.62695e11i −0.0939020 0.162643i
\(153\) 0 0
\(154\) 1.38925e11 + 5.61070e10i 0.129246 + 0.0521979i
\(155\) 4.51824e11 0.405644
\(156\) 0 0
\(157\) −7.11430e11 + 1.23223e12i −0.595229 + 1.03097i 0.398285 + 0.917262i \(0.369605\pi\)
−0.993514 + 0.113706i \(0.963728\pi\)
\(158\) −5.52087e11 + 9.56243e11i −0.446060 + 0.772599i
\(159\) 0 0
\(160\) −1.35958e11 −0.102505
\(161\) 2.36842e11 + 1.68353e12i 0.172550 + 1.22653i
\(162\) 0 0
\(163\) 6.15917e11 + 1.06680e12i 0.419267 + 0.726191i 0.995866 0.0908359i \(-0.0289539\pi\)
−0.576599 + 0.817027i \(0.695621\pi\)
\(164\) 7.25046e11 1.25582e12i 0.477226 0.826580i
\(165\) 0 0
\(166\) 2.60071e11 + 4.50456e11i 0.160139 + 0.277369i
\(167\) 3.18702e12 1.89864 0.949322 0.314305i \(-0.101771\pi\)
0.949322 + 0.314305i \(0.101771\pi\)
\(168\) 0 0
\(169\) −1.77119e12 −0.988299
\(170\) −4.59953e11 7.96662e11i −0.248453 0.430333i
\(171\) 0 0
\(172\) −6.92181e11 + 1.19889e12i −0.350601 + 0.607259i
\(173\) 9.21668e11 + 1.59638e12i 0.452190 + 0.783216i 0.998522 0.0543531i \(-0.0173096\pi\)
−0.546332 + 0.837569i \(0.683976\pi\)
\(174\) 0 0
\(175\) −1.13556e12 + 8.87447e11i −0.522998 + 0.408727i
\(176\) 1.10408e11 0.0492811
\(177\) 0 0
\(178\) −6.25598e11 + 1.08357e12i −0.262413 + 0.454512i
\(179\) −1.28675e12 + 2.22871e12i −0.523360 + 0.906487i 0.476270 + 0.879299i \(0.341988\pi\)
−0.999630 + 0.0271876i \(0.991345\pi\)
\(180\) 0 0
\(181\) −2.56519e12 −0.981495 −0.490747 0.871302i \(-0.663276\pi\)
−0.490747 + 0.871302i \(0.663276\pi\)
\(182\) −2.87062e10 2.04051e11i −0.0106557 0.0757436i
\(183\) 0 0
\(184\) 6.26410e11 + 1.08497e12i 0.218958 + 0.379246i
\(185\) 5.59827e11 9.69649e11i 0.189937 0.328980i
\(186\) 0 0
\(187\) 3.73515e11 + 6.46947e11i 0.119448 + 0.206890i
\(188\) −6.65772e10 −0.0206756
\(189\) 0 0
\(190\) 7.43363e11 0.217799
\(191\) 1.67834e12 + 2.90697e12i 0.477745 + 0.827478i 0.999675 0.0255101i \(-0.00812099\pi\)
−0.521930 + 0.852989i \(0.674788\pi\)
\(192\) 0 0
\(193\) 3.22781e12 5.59073e12i 0.867647 1.50281i 0.00325223 0.999995i \(-0.498965\pi\)
0.864395 0.502814i \(-0.167702\pi\)
\(194\) −2.06743e11 3.58089e11i −0.0540158 0.0935580i
\(195\) 0 0
\(196\) −1.94619e12 + 5.58642e11i −0.480593 + 0.137951i
\(197\) −1.83594e12 −0.440852 −0.220426 0.975404i \(-0.570745\pi\)
−0.220426 + 0.975404i \(0.570745\pi\)
\(198\) 0 0
\(199\) 2.33660e12 4.04710e12i 0.530752 0.919290i −0.468604 0.883408i \(-0.655243\pi\)
0.999356 0.0358815i \(-0.0114239\pi\)
\(200\) −5.31012e11 + 9.19741e11i −0.117338 + 0.203236i
\(201\) 0 0
\(202\) −1.26059e12 −0.263719
\(203\) 4.99234e11 + 2.01624e11i 0.101643 + 0.0410500i
\(204\) 0 0
\(205\) 2.86894e12 + 4.96915e12i 0.553446 + 0.958597i
\(206\) −1.48344e12 + 2.56940e12i −0.278613 + 0.482572i
\(207\) 0 0
\(208\) −7.59233e10 1.31503e11i −0.0135216 0.0234200i
\(209\) −6.03664e11 −0.104711
\(210\) 0 0
\(211\) −3.79876e12 −0.625300 −0.312650 0.949868i \(-0.601217\pi\)
−0.312650 + 0.949868i \(0.601217\pi\)
\(212\) −2.13377e12 3.69580e12i −0.342216 0.592735i
\(213\) 0 0
\(214\) 3.13802e12 5.43521e12i 0.477948 0.827830i
\(215\) −2.73890e12 4.74391e12i −0.406597 0.704247i
\(216\) 0 0
\(217\) 3.90695e12 3.05331e12i 0.551200 0.430767i
\(218\) −6.28657e12 −0.864775
\(219\) 0 0
\(220\) −2.18437e11 + 3.78344e11i −0.0285760 + 0.0494951i
\(221\) 5.13703e11 8.89760e11i 0.0655473 0.113531i
\(222\) 0 0
\(223\) 8.19004e12 0.994511 0.497255 0.867604i \(-0.334341\pi\)
0.497255 + 0.867604i \(0.334341\pi\)
\(224\) −1.17564e12 + 9.18772e11i −0.139287 + 0.108854i
\(225\) 0 0
\(226\) −3.33584e10 5.77784e10i −0.00376364 0.00651882i
\(227\) 5.11838e12 8.86530e12i 0.563625 0.976228i −0.433551 0.901129i \(-0.642739\pi\)
0.997176 0.0750987i \(-0.0239272\pi\)
\(228\) 0 0
\(229\) 7.22941e12 + 1.25217e13i 0.758592 + 1.31392i 0.943569 + 0.331176i \(0.107445\pi\)
−0.184977 + 0.982743i \(0.559221\pi\)
\(230\) −4.95729e12 −0.507857
\(231\) 0 0
\(232\) 3.96757e11 0.0387562
\(233\) 1.25785e12 + 2.17866e12i 0.119997 + 0.207841i 0.919766 0.392467i \(-0.128378\pi\)
−0.799769 + 0.600308i \(0.795045\pi\)
\(234\) 0 0
\(235\) 1.31720e11 2.28146e11i 0.0119889 0.0207653i
\(236\) 4.40577e11 + 7.63101e11i 0.0391747 + 0.0678525i
\(237\) 0 0
\(238\) −9.36088e12 3.78054e12i −0.794590 0.320908i
\(239\) 1.73543e13 1.43952 0.719762 0.694221i \(-0.244251\pi\)
0.719762 + 0.694221i \(0.244251\pi\)
\(240\) 0 0
\(241\) 1.01743e13 1.76225e13i 0.806144 1.39628i −0.109371 0.994001i \(-0.534884\pi\)
0.915516 0.402282i \(-0.131783\pi\)
\(242\) −4.38760e12 + 7.59955e12i −0.339815 + 0.588577i
\(243\) 0 0
\(244\) 5.31673e11 0.0393551
\(245\) 1.93611e12 7.77443e12i 0.140125 0.562672i
\(246\) 0 0
\(247\) 4.15116e11 + 7.19002e11i 0.0287301 + 0.0497619i
\(248\) 1.82698e12 3.16442e12i 0.123666 0.214195i
\(249\) 0 0
\(250\) −5.26670e12 9.12219e12i −0.341089 0.590784i
\(251\) 7.04025e12 0.446049 0.223024 0.974813i \(-0.428407\pi\)
0.223024 + 0.974813i \(0.428407\pi\)
\(252\) 0 0
\(253\) 4.02568e12 0.244161
\(254\) 1.34955e12 + 2.33749e12i 0.0800946 + 0.138728i
\(255\) 0 0
\(256\) −5.49756e11 + 9.52205e11i −0.0312500 + 0.0541266i
\(257\) −1.42096e13 2.46117e13i −0.790587 1.36934i −0.925604 0.378493i \(-0.876442\pi\)
0.135017 0.990843i \(-0.456891\pi\)
\(258\) 0 0
\(259\) −1.71178e12 1.21678e13i −0.0912639 0.648728i
\(260\) 6.00843e11 0.0313623
\(261\) 0 0
\(262\) 7.10184e12 1.23008e13i 0.355397 0.615566i
\(263\) −5.01802e12 + 8.69147e12i −0.245910 + 0.425929i −0.962387 0.271682i \(-0.912420\pi\)
0.716477 + 0.697611i \(0.245753\pi\)
\(264\) 0 0
\(265\) 1.68863e13 0.793745
\(266\) 6.42790e12 5.02345e12i 0.295951 0.231288i
\(267\) 0 0
\(268\) −7.99996e12 1.38563e13i −0.353465 0.612220i
\(269\) 1.63911e13 2.83902e13i 0.709530 1.22894i −0.255502 0.966809i \(-0.582241\pi\)
0.965032 0.262133i \(-0.0844260\pi\)
\(270\) 0 0
\(271\) −3.21299e12 5.56506e12i −0.133530 0.231280i 0.791505 0.611163i \(-0.209298\pi\)
−0.925035 + 0.379882i \(0.875965\pi\)
\(272\) −7.43939e12 −0.302976
\(273\) 0 0
\(274\) −7.92634e12 −0.310059
\(275\) 1.70630e12 + 2.95540e12i 0.0654223 + 0.113315i
\(276\) 0 0
\(277\) 1.69865e13 2.94214e13i 0.625842 1.08399i −0.362536 0.931970i \(-0.618089\pi\)
0.988377 0.152020i \(-0.0485778\pi\)
\(278\) −1.09444e13 1.89562e13i −0.395316 0.684707i
\(279\) 0 0
\(280\) −8.22481e11 5.84642e12i −0.0285599 0.203011i
\(281\) 3.07171e13 1.04591 0.522956 0.852360i \(-0.324829\pi\)
0.522956 + 0.852360i \(0.324829\pi\)
\(282\) 0 0
\(283\) −1.22425e13 + 2.12046e13i −0.400907 + 0.694391i −0.993836 0.110864i \(-0.964638\pi\)
0.592929 + 0.805255i \(0.297972\pi\)
\(284\) −3.35753e12 + 5.81542e12i −0.107837 + 0.186780i
\(285\) 0 0
\(286\) −4.87928e11 −0.0150780
\(287\) 5.83882e13 + 2.35810e13i 1.77000 + 0.714845i
\(288\) 0 0
\(289\) −8.03181e12 1.39115e13i −0.234356 0.405916i
\(290\) −7.84966e11 + 1.35960e12i −0.0224730 + 0.0389244i
\(291\) 0 0
\(292\) −4.15031e12 7.18854e12i −0.114413 0.198169i
\(293\) −3.60691e13 −0.975806 −0.487903 0.872898i \(-0.662238\pi\)
−0.487903 + 0.872898i \(0.662238\pi\)
\(294\) 0 0
\(295\) −3.48664e12 −0.0908629
\(296\) −4.52739e12 7.84167e12i −0.115809 0.200588i
\(297\) 0 0
\(298\) −4.67785e12 + 8.10227e12i −0.115307 + 0.199718i
\(299\) −2.76830e12 4.79484e12i −0.0669918 0.116033i
\(300\) 0 0
\(301\) −5.57415e13 2.25121e13i −1.30036 0.525170i
\(302\) −9.96923e12 −0.228362
\(303\) 0 0
\(304\) 3.00583e12 5.20625e12i 0.0663987 0.115006i
\(305\) −1.05189e12 + 1.82193e12i −0.0228203 + 0.0395260i
\(306\) 0 0
\(307\) 3.34874e13 0.700842 0.350421 0.936592i \(-0.386039\pi\)
0.350421 + 0.936592i \(0.386039\pi\)
\(308\) 6.67914e11 + 4.74771e12i 0.0137307 + 0.0976012i
\(309\) 0 0
\(310\) 7.22918e12 + 1.25213e13i 0.143417 + 0.248405i
\(311\) 1.18427e12 2.05121e12i 0.0230817 0.0399787i −0.854254 0.519856i \(-0.825986\pi\)
0.877336 + 0.479877i \(0.159319\pi\)
\(312\) 0 0
\(313\) 3.86507e13 + 6.69450e13i 0.727216 + 1.25958i 0.958055 + 0.286584i \(0.0925196\pi\)
−0.230839 + 0.972992i \(0.574147\pi\)
\(314\) −4.55315e13 −0.841781
\(315\) 0 0
\(316\) −3.53336e13 −0.630824
\(317\) 2.39639e13 + 4.15068e13i 0.420467 + 0.728271i 0.995985 0.0895184i \(-0.0285328\pi\)
−0.575518 + 0.817789i \(0.695199\pi\)
\(318\) 0 0
\(319\) 6.37449e11 1.10409e12i 0.0108043 0.0187136i
\(320\) −2.17533e12 3.76779e12i −0.0362411 0.0627714i
\(321\) 0 0
\(322\) −4.28660e13 + 3.35001e13i −0.690090 + 0.539310i
\(323\) 4.06754e13 0.643751
\(324\) 0 0
\(325\) 2.34671e12 4.06462e12i 0.0359006 0.0621816i
\(326\) −1.97093e13 + 3.41376e13i −0.296466 + 0.513495i
\(327\) 0 0
\(328\) 4.64029e13 0.674900
\(329\) −4.02759e11 2.86292e12i −0.00576061 0.0409479i
\(330\) 0 0
\(331\) 3.32211e13 + 5.75407e13i 0.459579 + 0.796015i 0.998939 0.0460610i \(-0.0146669\pi\)
−0.539359 + 0.842076i \(0.681334\pi\)
\(332\) −8.32226e12 + 1.44146e13i −0.113235 + 0.196129i
\(333\) 0 0
\(334\) 5.09922e13 + 8.83212e13i 0.671272 + 1.16268i
\(335\) 6.33103e13 0.819837
\(336\) 0 0
\(337\) 8.31081e13 1.04155 0.520773 0.853695i \(-0.325644\pi\)
0.520773 + 0.853695i \(0.325644\pi\)
\(338\) −2.83390e13 4.90847e13i −0.349416 0.605207i
\(339\) 0 0
\(340\) 1.47185e13 2.54932e13i 0.175683 0.304292i
\(341\) −5.87061e12 1.01682e13i −0.0689500 0.119425i
\(342\) 0 0
\(343\) −3.57960e13 8.03097e13i −0.407114 0.913377i
\(344\) −4.42996e13 −0.495825
\(345\) 0 0
\(346\) −2.94934e13 + 5.10840e13i −0.319746 + 0.553817i
\(347\) −5.80583e13 + 1.00560e14i −0.619516 + 1.07303i 0.370059 + 0.929008i \(0.379338\pi\)
−0.989574 + 0.144024i \(0.953996\pi\)
\(348\) 0 0
\(349\) 8.26069e13 0.854037 0.427018 0.904243i \(-0.359564\pi\)
0.427018 + 0.904243i \(0.359564\pi\)
\(350\) −4.27626e13 1.72704e13i −0.435201 0.175763i
\(351\) 0 0
\(352\) 1.76653e12 + 3.05972e12i 0.0174235 + 0.0301784i
\(353\) −8.51580e13 + 1.47498e14i −0.826922 + 1.43227i 0.0735190 + 0.997294i \(0.476577\pi\)
−0.900441 + 0.434978i \(0.856756\pi\)
\(354\) 0 0
\(355\) −1.32855e13 2.30111e13i −0.125061 0.216611i
\(356\) −4.00383e13 −0.371108
\(357\) 0 0
\(358\) −8.23517e13 −0.740143
\(359\) 4.99740e13 + 8.65575e13i 0.442308 + 0.766099i 0.997860 0.0653820i \(-0.0208266\pi\)
−0.555553 + 0.831481i \(0.687493\pi\)
\(360\) 0 0
\(361\) 4.18105e13 7.24179e13i 0.358919 0.621665i
\(362\) −4.10431e13 7.10887e13i −0.347011 0.601040i
\(363\) 0 0
\(364\) 5.19553e12 4.06034e12i 0.0426159 0.0333047i
\(365\) 3.28448e13 0.265372
\(366\) 0 0
\(367\) −8.57782e13 + 1.48572e14i −0.672533 + 1.16486i 0.304651 + 0.952464i \(0.401460\pi\)
−0.977183 + 0.212397i \(0.931873\pi\)
\(368\) −2.00451e13 + 3.47191e13i −0.154827 + 0.268167i
\(369\) 0 0
\(370\) 3.58289e13 0.268611
\(371\) 1.46017e14 1.14113e14i 1.07856 0.842905i
\(372\) 0 0
\(373\) 3.03239e13 + 5.25225e13i 0.217463 + 0.376658i 0.954032 0.299705i \(-0.0968884\pi\)
−0.736568 + 0.676363i \(0.763555\pi\)
\(374\) −1.19525e13 + 2.07023e13i −0.0844625 + 0.146293i
\(375\) 0 0
\(376\) −1.06524e12 1.84504e12i −0.00730992 0.0126611i
\(377\) −1.75339e12 −0.0118578
\(378\) 0 0
\(379\) −2.96338e14 −1.94658 −0.973289 0.229584i \(-0.926263\pi\)
−0.973289 + 0.229584i \(0.926263\pi\)
\(380\) 1.18938e13 + 2.06007e13i 0.0770036 + 0.133374i
\(381\) 0 0
\(382\) −5.37068e13 + 9.30230e13i −0.337817 + 0.585116i
\(383\) −6.42064e13 1.11209e14i −0.398093 0.689518i 0.595397 0.803431i \(-0.296995\pi\)
−0.993491 + 0.113913i \(0.963661\pi\)
\(384\) 0 0
\(385\) −1.75908e13 7.10433e12i −0.105987 0.0428045i
\(386\) 2.06580e14 1.22704
\(387\) 0 0
\(388\) 6.61576e12 1.14588e13i 0.0381949 0.0661555i
\(389\) −1.45561e14 + 2.52119e14i −0.828556 + 1.43510i 0.0706147 + 0.997504i \(0.477504\pi\)
−0.899171 + 0.437598i \(0.855829\pi\)
\(390\) 0 0
\(391\) −2.71254e14 −1.50108
\(392\) −4.66206e13 4.49962e13i −0.254393 0.245529i
\(393\) 0 0
\(394\) −2.93750e13 5.08789e13i −0.155865 0.269966i
\(395\) 6.99059e13 1.21081e14i 0.365788 0.633564i
\(396\) 0 0
\(397\) 1.47254e14 + 2.55052e14i 0.749411 + 1.29802i 0.948105 + 0.317956i \(0.102997\pi\)
−0.198694 + 0.980062i \(0.563670\pi\)
\(398\) 1.49542e14 0.750597
\(399\) 0 0
\(400\) −3.39848e13 −0.165941
\(401\) −9.46182e13 1.63884e14i −0.455702 0.789298i 0.543027 0.839715i \(-0.317278\pi\)
−0.998728 + 0.0504171i \(0.983945\pi\)
\(402\) 0 0
\(403\) −8.07399e12 + 1.39846e13i −0.0378364 + 0.0655347i
\(404\) −2.01694e13 3.49344e13i −0.0932386 0.161494i
\(405\) 0 0
\(406\) 2.40018e12 + 1.70611e13i 0.0107982 + 0.0767565i
\(407\) −2.90957e13 −0.129140
\(408\) 0 0
\(409\) −1.66115e14 + 2.87719e14i −0.717679 + 1.24306i 0.244238 + 0.969715i \(0.421462\pi\)
−0.961917 + 0.273342i \(0.911871\pi\)
\(410\) −9.18061e13 + 1.59013e14i −0.391346 + 0.677830i
\(411\) 0 0
\(412\) −9.49404e13 −0.394018
\(413\) −3.01492e13 + 2.35618e13i −0.123467 + 0.0964904i
\(414\) 0 0
\(415\) −3.29304e13 5.70372e13i −0.131321 0.227454i
\(416\) 2.42955e12 4.20810e12i 0.00956118 0.0165605i
\(417\) 0 0
\(418\) −9.65862e12 1.67292e13i −0.0370208 0.0641219i
\(419\) 1.68918e14 0.638997 0.319498 0.947587i \(-0.396486\pi\)
0.319498 + 0.947587i \(0.396486\pi\)
\(420\) 0 0
\(421\) −3.02870e14 −1.11610 −0.558052 0.829806i \(-0.688451\pi\)
−0.558052 + 0.829806i \(0.688451\pi\)
\(422\) −6.07802e13 1.05274e14i −0.221077 0.382916i
\(423\) 0 0
\(424\) 6.82806e13 1.18265e14i 0.241983 0.419127i
\(425\) −1.14972e14 1.99137e14i −0.402210 0.696648i
\(426\) 0 0
\(427\) 3.21636e12 + 2.28627e13i 0.0109651 + 0.0779426i
\(428\) 2.00833e14 0.675920
\(429\) 0 0
\(430\) 8.76447e13 1.51805e14i 0.287507 0.497978i
\(431\) −9.44616e13 + 1.63612e14i −0.305936 + 0.529897i −0.977469 0.211078i \(-0.932303\pi\)
0.671533 + 0.740974i \(0.265636\pi\)
\(432\) 0 0
\(433\) 1.47708e14 0.466359 0.233180 0.972434i \(-0.425087\pi\)
0.233180 + 0.972434i \(0.425087\pi\)
\(434\) 1.47127e14 + 5.94196e13i 0.458668 + 0.185241i
\(435\) 0 0
\(436\) −1.00585e14 1.74219e14i −0.305744 0.529564i
\(437\) 1.09598e14 1.89830e14i 0.328969 0.569791i
\(438\) 0 0
\(439\) −1.48497e14 2.57205e14i −0.434674 0.752877i 0.562595 0.826732i \(-0.309803\pi\)
−0.997269 + 0.0738555i \(0.976470\pi\)
\(440\) −1.39800e13 −0.0404126
\(441\) 0 0
\(442\) 3.28770e13 0.0926979
\(443\) −2.93183e13 5.07807e13i −0.0816428 0.141409i 0.822313 0.569036i \(-0.192683\pi\)
−0.903956 + 0.427626i \(0.859350\pi\)
\(444\) 0 0
\(445\) 7.92139e13 1.37202e14i 0.215190 0.372719i
\(446\) 1.31041e14 + 2.26969e14i 0.351613 + 0.609011i
\(447\) 0 0
\(448\) −4.42720e13 1.78800e13i −0.115904 0.0468099i
\(449\) −6.20981e14 −1.60592 −0.802959 0.596035i \(-0.796742\pi\)
−0.802959 + 0.596035i \(0.796742\pi\)
\(450\) 0 0
\(451\) 7.45532e13 1.29130e14i 0.188146 0.325879i
\(452\) 1.06747e12 1.84891e12i 0.00266130 0.00460950i
\(453\) 0 0
\(454\) 3.27577e14 0.797087
\(455\) 3.63481e12 + 2.58372e13i 0.00873813 + 0.0621129i
\(456\) 0 0
\(457\) 2.59807e14 + 4.49998e14i 0.609693 + 1.05602i 0.991291 + 0.131691i \(0.0420406\pi\)
−0.381598 + 0.924328i \(0.624626\pi\)
\(458\) −2.31341e14 + 4.00695e14i −0.536405 + 0.929081i
\(459\) 0 0
\(460\) −7.93167e13 1.37381e14i −0.179555 0.310998i
\(461\) −1.08562e14 −0.242841 −0.121421 0.992601i \(-0.538745\pi\)
−0.121421 + 0.992601i \(0.538745\pi\)
\(462\) 0 0
\(463\) 6.91128e14 1.50960 0.754802 0.655953i \(-0.227733\pi\)
0.754802 + 0.655953i \(0.227733\pi\)
\(464\) 6.34811e12 + 1.09953e13i 0.0137024 + 0.0237332i
\(465\) 0 0
\(466\) −4.02511e13 + 6.97170e13i −0.0848507 + 0.146966i
\(467\) −8.50470e13 1.47306e14i −0.177181 0.306886i 0.763733 0.645532i \(-0.223364\pi\)
−0.940914 + 0.338646i \(0.890031\pi\)
\(468\) 0 0
\(469\) 5.47448e14 4.27834e14i 1.11402 0.870613i
\(470\) 8.43008e12 0.0169548
\(471\) 0 0
\(472\) −1.40985e13 + 2.44192e13i −0.0277007 + 0.0479790i
\(473\) −7.11738e13 + 1.23277e14i −0.138224 + 0.239411i
\(474\) 0 0
\(475\) 1.85814e14 0.352586
\(476\) −4.50046e13 3.19905e14i −0.0844149 0.600043i
\(477\) 0 0
\(478\) 2.77669e14 + 4.80937e14i 0.508948 + 0.881524i
\(479\) 3.00492e14 5.20467e14i 0.544487 0.943079i −0.454152 0.890924i \(-0.650058\pi\)
0.998639 0.0521549i \(-0.0166090\pi\)
\(480\) 0 0
\(481\) 2.00080e13 + 3.46548e13i 0.0354328 + 0.0613714i
\(482\) 6.51158e14 1.14006
\(483\) 0 0
\(484\) −2.80806e14 −0.480571
\(485\) 2.61780e13 + 4.53416e13i 0.0442952 + 0.0767215i
\(486\) 0 0
\(487\) −4.94440e13 + 8.56394e13i −0.0817907 + 0.141666i −0.904019 0.427492i \(-0.859397\pi\)
0.822228 + 0.569158i \(0.192731\pi\)
\(488\) 8.50677e12 + 1.47342e13i 0.0139141 + 0.0241000i
\(489\) 0 0
\(490\) 2.46429e14 7.07359e13i 0.394106 0.113126i
\(491\) −9.24926e14 −1.46271 −0.731356 0.681996i \(-0.761112\pi\)
−0.731356 + 0.681996i \(0.761112\pi\)
\(492\) 0 0
\(493\) −4.29519e13 + 7.43948e13i −0.0664238 + 0.115049i
\(494\) −1.32837e13 + 2.30081e13i −0.0203152 + 0.0351870i
\(495\) 0 0
\(496\) 1.16926e14 0.174889
\(497\) −2.70383e14 1.09199e14i −0.399963 0.161531i
\(498\) 0 0
\(499\) −3.80904e14 6.59746e14i −0.551141 0.954604i −0.998193 0.0600962i \(-0.980859\pi\)
0.447051 0.894508i \(-0.352474\pi\)
\(500\) 1.68534e14 2.91910e14i 0.241187 0.417748i
\(501\) 0 0
\(502\) 1.12644e14 + 1.95105e14i 0.157702 + 0.273148i
\(503\) 9.31585e14 1.29003 0.645013 0.764172i \(-0.276852\pi\)
0.645013 + 0.764172i \(0.276852\pi\)
\(504\) 0 0
\(505\) 1.59617e14 0.216260
\(506\) 6.44108e13 + 1.11563e14i 0.0863239 + 0.149517i
\(507\) 0 0
\(508\) −4.31856e13 + 7.47996e13i −0.0566354 + 0.0980954i
\(509\) 3.94996e13 + 6.84153e13i 0.0512442 + 0.0887575i 0.890510 0.454964i \(-0.150348\pi\)
−0.839265 + 0.543722i \(0.817015\pi\)
\(510\) 0 0
\(511\) 2.84011e14 2.21957e14i 0.360595 0.281808i
\(512\) −3.51844e13 −0.0441942
\(513\) 0 0
\(514\) 4.54707e14 7.87576e14i 0.559029 0.968267i
\(515\) 1.87835e14 3.25340e14i 0.228474 0.395729i
\(516\) 0 0
\(517\) −6.84583e12 −0.00815132
\(518\) 3.09815e14 2.42123e14i 0.364997 0.285248i
\(519\) 0 0
\(520\) 9.61349e12 + 1.66511e13i 0.0110882 + 0.0192054i
\(521\) −3.72402e14 + 6.45019e14i −0.425015 + 0.736147i −0.996422 0.0845194i \(-0.973064\pi\)
0.571407 + 0.820667i \(0.306398\pi\)
\(522\) 0 0
\(523\) −5.72376e14 9.91385e14i −0.639620 1.10786i −0.985516 0.169582i \(-0.945758\pi\)
0.345896 0.938273i \(-0.387575\pi\)
\(524\) 4.54518e14 0.502608
\(525\) 0 0
\(526\) −3.21154e14 −0.347769
\(527\) 3.95567e14 + 6.85143e14i 0.423899 + 0.734214i
\(528\) 0 0
\(529\) −2.54476e14 + 4.40766e14i −0.267080 + 0.462596i
\(530\) 2.70180e14 + 4.67966e14i 0.280631 + 0.486068i
\(531\) 0 0
\(532\) 2.42060e14 + 9.77600e13i 0.246269 + 0.0994597i
\(533\) −2.05069e14 −0.206491
\(534\) 0 0
\(535\) −3.97340e14 + 6.88213e14i −0.391937 + 0.678855i
\(536\) 2.55999e14 4.43403e14i 0.249938 0.432905i
\(537\) 0 0
\(538\) 1.04903e15 1.00343
\(539\) −2.00118e14 + 5.74426e13i −0.189473 + 0.0543871i
\(540\) 0 0
\(541\) −8.16840e14 1.41481e15i −0.757795 1.31254i −0.943973 0.330024i \(-0.892943\pi\)
0.186178 0.982516i \(-0.440390\pi\)
\(542\) 1.02816e14 1.78082e14i 0.0944198 0.163540i
\(543\) 0 0
\(544\) −1.19030e14 2.06166e14i −0.107118 0.185534i
\(545\) 7.96013e14 0.709152
\(546\) 0 0
\(547\) −4.36207e14 −0.380857 −0.190429 0.981701i \(-0.560988\pi\)
−0.190429 + 0.981701i \(0.560988\pi\)
\(548\) −1.26821e14 2.19661e14i −0.109622 0.189872i
\(549\) 0 0
\(550\) −5.46016e13 + 9.45727e13i −0.0462605 + 0.0801256i
\(551\) −3.47088e13 6.01174e13i −0.0291142 0.0504274i
\(552\) 0 0
\(553\) −2.13751e14 1.51940e15i −0.175760 1.24935i
\(554\) 1.08713e15 0.885074
\(555\) 0 0
\(556\) 3.50220e14 6.06598e14i 0.279530 0.484161i
\(557\) 5.72978e14 9.92427e14i 0.452829 0.784323i −0.545731 0.837960i \(-0.683748\pi\)
0.998561 + 0.0536370i \(0.0170814\pi\)
\(558\) 0 0
\(559\) 1.95774e14 0.151701
\(560\) 1.48861e14 1.16336e14i 0.114221 0.0892647i
\(561\) 0 0
\(562\) 4.91473e14 + 8.51257e14i 0.369786 + 0.640488i
\(563\) −2.36853e14 + 4.10241e14i −0.176475 + 0.305663i −0.940671 0.339321i \(-0.889803\pi\)
0.764196 + 0.644984i \(0.223136\pi\)
\(564\) 0 0
\(565\) 4.22388e12 + 7.31597e12i 0.00308635 + 0.00534571i
\(566\) −7.83518e14 −0.566968
\(567\) 0 0
\(568\) −2.14882e14 −0.152505
\(569\) 8.50002e14 + 1.47225e15i 0.597451 + 1.03482i 0.993196 + 0.116455i \(0.0371531\pi\)
−0.395745 + 0.918360i \(0.629514\pi\)
\(570\) 0 0
\(571\) −1.04664e15 + 1.81284e15i −0.721604 + 1.24986i 0.238752 + 0.971081i \(0.423262\pi\)
−0.960356 + 0.278775i \(0.910072\pi\)
\(572\) −7.80685e12 1.35219e13i −0.00533086 0.00923332i
\(573\) 0 0
\(574\) 2.80715e14 + 1.99540e15i 0.188040 + 1.33664i
\(575\) −1.23915e15 −0.822148
\(576\) 0 0
\(577\) 1.03914e15 1.79985e15i 0.676408 1.17157i −0.299648 0.954050i \(-0.596869\pi\)
0.976055 0.217522i \(-0.0697975\pi\)
\(578\) 2.57018e14 4.45168e14i 0.165714 0.287026i
\(579\) 0 0
\(580\) −5.02378e13 −0.0317817
\(581\) −6.70194e14 2.70669e14i −0.419983 0.169617i
\(582\) 0 0
\(583\) −2.19406e14 3.80022e14i −0.134918 0.233685i
\(584\) 1.32810e14 2.30033e14i 0.0809021 0.140126i
\(585\) 0 0
\(586\) −5.77106e14 9.99576e14i −0.344999 0.597557i
\(587\) −8.10690e14 −0.480115 −0.240057 0.970759i \(-0.577166\pi\)
−0.240057 + 0.970759i \(0.577166\pi\)
\(588\) 0 0
\(589\) −6.39304e14 −0.371598
\(590\) −5.57863e13 9.66247e13i −0.0321249 0.0556419i
\(591\) 0 0
\(592\) 1.44876e14 2.50933e14i 0.0818895 0.141837i
\(593\) −6.65707e14 1.15304e15i −0.372805 0.645718i 0.617191 0.786814i \(-0.288271\pi\)
−0.989996 + 0.141096i \(0.954937\pi\)
\(594\) 0 0
\(595\) 1.18528e15 + 4.78696e14i 0.651597 + 0.263158i
\(596\) −2.99382e14 −0.163069
\(597\) 0 0
\(598\) 8.85857e13 1.53435e14i 0.0473704 0.0820479i
\(599\) −2.64501e14 + 4.58130e14i −0.140146 + 0.242740i −0.927551 0.373696i \(-0.878090\pi\)
0.787406 + 0.616435i \(0.211424\pi\)
\(600\) 0 0
\(601\) −1.87111e15 −0.973399 −0.486699 0.873570i \(-0.661799\pi\)
−0.486699 + 0.873570i \(0.661799\pi\)
\(602\) −2.67991e14 1.90495e15i −0.138146 0.981979i
\(603\) 0 0
\(604\) −1.59508e14 2.76275e14i −0.0807381 0.139842i
\(605\) 5.55563e14 9.62263e14i 0.278663 0.482658i
\(606\) 0 0
\(607\) 1.42289e15 + 2.46452e15i 0.700864 + 1.21393i 0.968164 + 0.250318i \(0.0805352\pi\)
−0.267300 + 0.963613i \(0.586131\pi\)
\(608\) 1.92373e14 0.0939020
\(609\) 0 0
\(610\) −6.73210e13 −0.0322728
\(611\) 4.70761e12 + 8.15382e12i 0.00223653 + 0.00387378i
\(612\) 0 0
\(613\) −1.52101e15 + 2.63446e15i −0.709739 + 1.22930i 0.255214 + 0.966885i \(0.417854\pi\)
−0.964954 + 0.262420i \(0.915479\pi\)
\(614\) 5.35798e14 + 9.28029e14i 0.247785 + 0.429176i
\(615\) 0 0
\(616\) −1.20886e14 + 9.44731e13i −0.0549138 + 0.0429155i
\(617\) −3.00980e15 −1.35509 −0.677546 0.735481i \(-0.736956\pi\)
−0.677546 + 0.735481i \(0.736956\pi\)
\(618\) 0 0
\(619\) 1.77621e15 3.07648e15i 0.785589 1.36068i −0.143057 0.989714i \(-0.545693\pi\)
0.928646 0.370966i \(-0.120973\pi\)
\(620\) −2.31334e14 + 4.00682e14i −0.101411 + 0.175649i
\(621\) 0 0
\(622\) 7.57932e13 0.0326425
\(623\) −2.42212e14 1.72171e15i −0.103398 0.734978i
\(624\) 0 0
\(625\) −1.24395e14 2.15459e14i −0.0521751 0.0903700i
\(626\) −1.23682e15 + 2.14224e15i −0.514220 + 0.890654i
\(627\) 0 0
\(628\) −7.28505e14 1.26181e15i −0.297615 0.515484i
\(629\) 1.96049e15 0.793938
\(630\) 0 0
\(631\) 4.61646e15 1.83716 0.918582 0.395230i \(-0.129335\pi\)
0.918582 + 0.395230i \(0.129335\pi\)
\(632\) −5.65337e14 9.79193e14i −0.223030 0.386300i
\(633\) 0 0
\(634\) −7.66846e14 + 1.32822e15i −0.297315 + 0.514965i
\(635\) −1.70881e14 2.95975e14i −0.0656809 0.113763i
\(636\) 0 0
\(637\) 2.06031e14 + 1.98852e14i 0.0778334 + 0.0751215i
\(638\) 4.07967e13 0.0152796
\(639\) 0 0
\(640\) 6.96107e13 1.20569e14i 0.0256263 0.0443861i
\(641\) 5.94333e14 1.02942e15i 0.216926 0.375726i −0.736941 0.675957i \(-0.763730\pi\)
0.953867 + 0.300231i \(0.0970638\pi\)
\(642\) 0 0
\(643\) −1.96941e15 −0.706604 −0.353302 0.935509i \(-0.614941\pi\)
−0.353302 + 0.935509i \(0.614941\pi\)
\(644\) −1.61424e15 6.51936e14i −0.574243 0.231917i
\(645\) 0 0
\(646\) 6.50807e14 + 1.12723e15i 0.227600 + 0.394216i
\(647\) 8.58806e13 1.48750e14i 0.0297798 0.0515801i −0.850751 0.525568i \(-0.823853\pi\)
0.880531 + 0.473988i \(0.157186\pi\)
\(648\) 0 0
\(649\) 4.53025e13 + 7.84662e13i 0.0154446 + 0.0267508i
\(650\) 1.50190e14 0.0507711
\(651\) 0 0
\(652\) −1.26140e15 −0.419267
\(653\) 7.20449e14 + 1.24785e15i 0.237455 + 0.411283i 0.959983 0.280058i \(-0.0903536\pi\)
−0.722529 + 0.691341i \(0.757020\pi\)
\(654\) 0 0
\(655\) −8.99244e14 + 1.55754e15i −0.291441 + 0.504790i
\(656\) 7.42447e14 + 1.28596e15i 0.238613 + 0.413290i
\(657\) 0 0
\(658\) 7.28954e13 5.69683e13i 0.0230387 0.0180049i
\(659\) −5.36683e15 −1.68208 −0.841042 0.540969i \(-0.818058\pi\)
−0.841042 + 0.540969i \(0.818058\pi\)
\(660\) 0 0
\(661\) −2.14926e15 + 3.72263e15i −0.662492 + 1.14747i 0.317467 + 0.948269i \(0.397168\pi\)
−0.979959 + 0.199201i \(0.936165\pi\)
\(662\) −1.06308e15 + 1.84130e15i −0.324972 + 0.562867i
\(663\) 0 0
\(664\) −5.32625e14 −0.160139
\(665\) −8.13908e14 + 6.36075e14i −0.242693 + 0.189666i
\(666\) 0 0
\(667\) 2.31464e14 + 4.00907e14i 0.0678877 + 0.117585i
\(668\) −1.63175e15 + 2.82628e15i −0.474661 + 0.822137i
\(669\) 0 0
\(670\) 1.01296e15 + 1.75451e15i 0.289856 + 0.502046i
\(671\) 5.46695e13 0.0155157
\(672\) 0 0
\(673\) −1.97865e15 −0.552441 −0.276221 0.961094i \(-0.589082\pi\)
−0.276221 + 0.961094i \(0.589082\pi\)
\(674\) 1.32973e15 + 2.30316e15i 0.368242 + 0.637815i
\(675\) 0 0
\(676\) 9.06849e14 1.57071e15i 0.247075 0.427946i
\(677\) 2.74962e15 + 4.76248e15i 0.743079 + 1.28705i 0.951087 + 0.308923i \(0.0999686\pi\)
−0.208008 + 0.978127i \(0.566698\pi\)
\(678\) 0 0
\(679\) 5.32769e14 + 2.15167e14i 0.141663 + 0.0572127i
\(680\) 9.41984e14 0.248453
\(681\) 0 0
\(682\) 1.87860e14 3.25382e14i 0.0487550 0.0844462i
\(683\) −2.76887e14 + 4.79582e14i −0.0712834 + 0.123466i −0.899464 0.436995i \(-0.856043\pi\)
0.828181 + 0.560461i \(0.189376\pi\)
\(684\) 0 0
\(685\) 1.00364e15 0.254261
\(686\) 1.65287e15 2.27696e15i 0.415390 0.572233i
\(687\) 0 0
\(688\) −7.08793e14 1.22767e15i −0.175300 0.303629i
\(689\) −3.01754e14 + 5.22653e14i −0.0740367 + 0.128235i
\(690\) 0 0
\(691\) 2.90759e15 + 5.03610e15i 0.702108 + 1.21609i 0.967725 + 0.252009i \(0.0810911\pi\)
−0.265617 + 0.964079i \(0.585576\pi\)
\(692\) −1.88758e15 −0.452190
\(693\) 0 0
\(694\) −3.71573e15 −0.876127
\(695\) 1.38579e15 + 2.40025e15i 0.324175 + 0.561488i
\(696\) 0 0
\(697\) −5.02346e15 + 8.70089e15i −1.15670 + 2.00347i
\(698\) 1.32171e15 + 2.28927e15i 0.301948 + 0.522989i
\(699\) 0 0
\(700\) −2.05591e14 1.46140e15i −0.0462344 0.328647i
\(701\) 5.79768e13 0.0129362 0.00646808 0.999979i \(-0.497941\pi\)
0.00646808 + 0.999979i \(0.497941\pi\)
\(702\) 0 0
\(703\) −7.92123e14 + 1.37200e15i −0.173996 + 0.301369i
\(704\) −5.65289e13 + 9.79109e13i −0.0123203 + 0.0213394i
\(705\) 0 0
\(706\) −5.45011e15 −1.16944
\(707\) 1.38022e15 1.07865e15i 0.293860 0.229654i
\(708\) 0 0
\(709\) −1.37829e15 2.38727e15i −0.288926 0.500435i 0.684627 0.728893i \(-0.259965\pi\)
−0.973554 + 0.228458i \(0.926632\pi\)
\(710\) 4.25135e14 7.36355e14i 0.0884312 0.153167i
\(711\) 0 0
\(712\) −6.40612e14 1.10957e15i −0.131206 0.227256i
\(713\) 4.26335e15 0.866481
\(714\) 0 0
\(715\) 6.17820e13 0.0123646
\(716\) −1.31763e15 2.28220e15i −0.261680 0.453243i
\(717\) 0 0
\(718\) −1.59917e15 + 2.76984e15i −0.312759 + 0.541714i
\(719\) 1.42291e15 + 2.46456e15i 0.276165 + 0.478333i 0.970429 0.241389i \(-0.0776029\pi\)
−0.694263 + 0.719721i \(0.744270\pi\)
\(720\) 0 0
\(721\) −5.74343e14 4.08258e15i −0.109781 0.780353i
\(722\) 2.67587e15 0.507588
\(723\) 0 0
\(724\) 1.31338e15 2.27484e15i 0.245374 0.425000i
\(725\) −1.96214e14 + 3.39852e14i −0.0363806 + 0.0630131i
\(726\) 0 0
\(727\) −4.90303e15 −0.895417 −0.447708 0.894180i \(-0.647760\pi\)
−0.447708 + 0.894180i \(0.647760\pi\)
\(728\) 1.95652e14 + 7.90172e13i 0.0354619 + 0.0143218i
\(729\) 0 0
\(730\) 5.25517e14 + 9.10221e14i 0.0938233 + 0.162507i
\(731\) 4.79575e15 8.30649e15i 0.849789 1.47188i
\(732\) 0 0
\(733\) 1.74781e15 + 3.02729e15i 0.305085 + 0.528423i 0.977280 0.211951i \(-0.0679817\pi\)
−0.672195 + 0.740374i \(0.734648\pi\)
\(734\) −5.48980e15 −0.951105
\(735\) 0 0
\(736\) −1.28289e15 −0.218958
\(737\) −8.22600e14 1.42478e15i −0.139353 0.241367i
\(738\) 0 0
\(739\) 3.86353e15 6.69184e15i 0.644823 1.11687i −0.339520 0.940599i \(-0.610264\pi\)
0.984342 0.176267i \(-0.0564022\pi\)
\(740\) 5.73263e14 + 9.92921e14i 0.0949685 + 0.164490i
\(741\) 0 0
\(742\) 5.49866e15 + 2.22072e15i 0.897502 + 0.362470i
\(743\) 7.17014e15 1.16169 0.580843 0.814015i \(-0.302723\pi\)
0.580843 + 0.814015i \(0.302723\pi\)
\(744\) 0 0
\(745\) 5.92314e14 1.02592e15i 0.0945568 0.163777i
\(746\) −9.70364e14 + 1.68072e15i −0.153770 + 0.266337i
\(747\) 0 0
\(748\) −7.64958e14 −0.119448
\(749\) 1.21494e15 + 8.63614e15i 0.188324 + 1.33866i
\(750\) 0 0
\(751\) −1.30924e15 2.26768e15i −0.199987 0.346387i 0.748537 0.663093i \(-0.230757\pi\)
−0.948524 + 0.316706i \(0.897423\pi\)
\(752\) 3.40875e13 5.90413e13i 0.00516889 0.00895278i
\(753\) 0 0
\(754\) −2.80543e13 4.85915e13i −0.00419235 0.00726136i
\(755\) 1.26231e15 0.187266
\(756\) 0 0
\(757\) 2.41716e15 0.353409 0.176705 0.984264i \(-0.443456\pi\)
0.176705 + 0.984264i \(0.443456\pi\)
\(758\) −4.74141e15 8.21236e15i −0.688219 1.19203i
\(759\) 0 0
\(760\) −3.80602e14 + 6.59222e14i −0.0544498 + 0.0943098i
\(761\) 2.84142e15 + 4.92148e15i 0.403571 + 0.699005i 0.994154 0.107972i \(-0.0344356\pi\)
−0.590583 + 0.806977i \(0.701102\pi\)
\(762\) 0 0
\(763\) 6.88317e15 5.37925e15i 0.963615 0.753072i
\(764\) −3.43724e15 −0.477745
\(765\) 0 0
\(766\) 2.05460e15 3.55868e15i 0.281495 0.487563i
\(767\) 6.23055e13 1.07916e14i 0.00847524 0.0146796i
\(768\) 0 0
\(769\) 1.24672e15 0.167176 0.0835880 0.996500i \(-0.473362\pi\)
0.0835880 + 0.996500i \(0.473362\pi\)
\(770\) −8.45720e13 6.01160e14i −0.0112597 0.0800371i
\(771\) 0 0
\(772\) 3.30528e15 + 5.72491e15i 0.433823 + 0.751404i
\(773\) 3.01957e15 5.23005e15i 0.393512 0.681583i −0.599398 0.800451i \(-0.704593\pi\)
0.992910 + 0.118869i \(0.0379267\pi\)
\(774\) 0 0
\(775\) 1.80704e15 + 3.12989e15i 0.232171 + 0.402132i
\(776\) 4.23409e14 0.0540158
\(777\) 0 0
\(778\) −9.31590e15 −1.17176
\(779\) −4.05938e15 7.03106e15i −0.506996 0.878142i
\(780\) 0 0
\(781\) −3.45240e14 + 5.97973e14i −0.0425148 + 0.0736378i
\(782\) −4.34006e15 7.51720e15i −0.530712 0.919219i
\(783\) 0 0
\(784\) 5.01041e14 2.01193e15i 0.0604136 0.242591i
\(785\) 5.76525e15 0.690296
\(786\) 0 0
\(787\) 3.02878e15 5.24601e15i 0.357608 0.619395i −0.629953 0.776633i \(-0.716926\pi\)
0.987561 + 0.157238i \(0.0502591\pi\)
\(788\) 9.39999e14 1.62813e15i 0.110213 0.190895i
\(789\) 0 0
\(790\) 4.47398e15 0.517303
\(791\) 8.59635e13 + 3.47177e13i 0.00987060 + 0.00398640i
\(792\) 0 0
\(793\) −3.75941e13 6.51149e13i −0.00425713 0.00737357i
\(794\) −4.71214e15 + 8.16166e15i −0.529914 + 0.917837i
\(795\) 0 0
\(796\) 2.39268e15 + 4.14424e15i 0.265376 + 0.459645i
\(797\) −1.24702e16 −1.37357 −0.686786 0.726860i \(-0.740979\pi\)
−0.686786 + 0.726860i \(0.740979\pi\)
\(798\) 0 0
\(799\) 4.61278e14 0.0501136
\(800\) −5.43757e14 9.41814e14i −0.0586691 0.101618i
\(801\) 0 0
\(802\) 3.02778e15 5.24427e15i 0.322230 0.558118i
\(803\) −4.26757e14 7.39165e14i −0.0451071 0.0781279i
\(804\) 0 0
\(805\) 5.42774e15 4.24182e15i 0.565903 0.442257i
\(806\) −5.16735e14 −0.0535088
\(807\) 0 0
\(808\) 6.45421e14 1.11790e15i 0.0659296 0.114194i
\(809\) −6.47498e15 + 1.12150e16i −0.656934 + 1.13784i 0.324471 + 0.945896i \(0.394814\pi\)
−0.981405 + 0.191948i \(0.938520\pi\)
\(810\) 0 0
\(811\) 7.45614e15 0.746276 0.373138 0.927776i \(-0.378282\pi\)
0.373138 + 0.927776i \(0.378282\pi\)
\(812\) −4.34409e14 + 3.39494e14i −0.0431858 + 0.0337500i
\(813\) 0 0
\(814\) −4.65531e14 8.06323e14i −0.0456577 0.0790815i
\(815\) 2.49562e15 4.32254e15i 0.243115 0.421087i
\(816\) 0 0
\(817\) 3.87538e15 + 6.71235e15i 0.372471 + 0.645139i
\(818\) −1.06314e16 −1.01495
\(819\) 0 0
\(820\) −5.87559e15 −0.553446
\(821\) 1.13256e15 + 1.96165e15i 0.105968 + 0.183542i 0.914133 0.405414i \(-0.132873\pi\)
−0.808165 + 0.588956i \(0.799539\pi\)
\(822\) 0 0
\(823\) 9.14381e15 1.58375e16i 0.844166 1.46214i −0.0421768 0.999110i \(-0.513429\pi\)
0.886343 0.463029i \(-0.153237\pi\)
\(824\) −1.51905e15 2.63107e15i −0.139307 0.241286i
\(825\) 0 0
\(826\) −1.13535e15 4.58530e14i −0.102740 0.0414933i
\(827\) −1.05801e16 −0.951064 −0.475532 0.879698i \(-0.657744\pi\)
−0.475532 + 0.879698i \(0.657744\pi\)
\(828\) 0 0
\(829\) 4.72854e15 8.19007e15i 0.419447 0.726503i −0.576437 0.817142i \(-0.695557\pi\)
0.995884 + 0.0906382i \(0.0288907\pi\)
\(830\) 1.05377e15 1.82519e15i 0.0928577 0.160834i
\(831\) 0 0
\(832\) 1.55491e14 0.0135216
\(833\) 1.34841e16 3.87053e15i 1.16486 0.334367i
\(834\) 0 0
\(835\) −6.45670e15 1.11833e16i −0.550471 0.953444i
\(836\) 3.09076e14 5.35335e14i 0.0261776 0.0453410i
\(837\) 0 0
\(838\) 2.70269e15 + 4.68119e15i 0.225920 + 0.391304i
\(839\) 1.26662e16 1.05186 0.525928 0.850529i \(-0.323718\pi\)
0.525928 + 0.850529i \(0.323718\pi\)
\(840\) 0 0
\(841\) −1.20539e16 −0.987984
\(842\) −4.84592e15 8.39338e15i −0.394602 0.683471i
\(843\) 0 0
\(844\) 1.94497e15 3.36878e15i 0.156325 0.270763i
\(845\) 3.58832e15 + 6.21515e15i 0.286536 + 0.496295i
\(846\) 0 0
\(847\) −1.69874e15 1.20751e16i −0.133896 0.951770i
\(848\) 4.36996e15 0.342216
\(849\) 0 0
\(850\) 3.67910e15 6.37239e15i 0.284405 0.492605i
\(851\) 5.28246e15 9.14949e15i 0.405717 0.702723i
\(852\) 0 0
\(853\) −3.71945e15 −0.282007 −0.141003 0.990009i \(-0.545033\pi\)
−0.141003 + 0.990009i \(0.545033\pi\)
\(854\) −5.82129e14 + 4.54938e14i −0.0438532 + 0.0342716i
\(855\) 0 0
\(856\) 3.21333e15 + 5.56566e15i 0.238974 + 0.413915i
\(857\) 9.04452e15 1.56656e16i 0.668330 1.15758i −0.310041 0.950723i \(-0.600343\pi\)
0.978371 0.206858i \(-0.0663238\pi\)
\(858\) 0 0
\(859\) 5.65368e15 + 9.79246e15i 0.412448 + 0.714380i 0.995157 0.0983005i \(-0.0313406\pi\)
−0.582709 + 0.812681i \(0.698007\pi\)
\(860\) 5.60926e15 0.406597
\(861\) 0 0
\(862\) −6.04554e15 −0.432659
\(863\) −1.11368e16 1.92895e16i −0.791956 1.37171i −0.924754 0.380565i \(-0.875729\pi\)
0.132798 0.991143i \(-0.457604\pi\)
\(864\) 0 0
\(865\) 3.73448e15 6.46831e15i 0.262206 0.454153i
\(866\) 2.36333e15 + 4.09340e15i 0.164883 + 0.285585i
\(867\) 0 0
\(868\) 7.07348e14 + 5.02801e15i 0.0487275 + 0.346368i
\(869\) −3.63319e15 −0.248702
\(870\) 0 0
\(871\) −1.13134e15 + 1.95954e15i −0.0764704 + 0.132451i
\(872\) 3.21872e15 5.57499e15i 0.216194 0.374459i
\(873\) 0 0
\(874\) 7.01428e15 0.465233
\(875\) 1.35721e16 + 5.48132e15i 0.894547 + 0.361277i
\(876\) 0 0
\(877\) −2.64901e15 4.58823e15i −0.172420 0.298639i 0.766846 0.641831i \(-0.221825\pi\)
−0.939265 + 0.343192i \(0.888492\pi\)
\(878\) 4.75191e15 8.23055e15i 0.307361 0.532364i
\(879\) 0 0
\(880\) −2.23680e14 3.87425e14i −0.0142880 0.0247476i
\(881\) −2.81571e16 −1.78740 −0.893698 0.448668i \(-0.851898\pi\)
−0.893698 + 0.448668i \(0.851898\pi\)
\(882\) 0 0
\(883\) −2.33232e16 −1.46219 −0.731096 0.682274i \(-0.760991\pi\)
−0.731096 + 0.682274i \(0.760991\pi\)
\(884\) 5.26032e14 + 9.11114e14i 0.0327737 + 0.0567656i
\(885\) 0 0
\(886\) 9.38184e14 1.62498e15i 0.0577301 0.0999916i
\(887\) −2.78023e15 4.81550e15i −0.170020 0.294484i 0.768406 0.639962i \(-0.221050\pi\)
−0.938427 + 0.345478i \(0.887717\pi\)
\(888\) 0 0
\(889\) −3.47775e15 1.40454e15i −0.210057 0.0848351i
\(890\) 5.06969e15 0.304324
\(891\) 0 0
\(892\) −4.19330e15 + 7.26301e15i −0.248628 + 0.430636i
\(893\) −1.86376e14 + 3.22813e14i −0.0109827 + 0.0190225i
\(894\) 0 0
\(895\) 1.04275e16 0.606949
\(896\) −2.12848e14 1.51298e15i −0.0123133 0.0875265i
\(897\) 0 0
\(898\) −9.93569e15 1.72091e16i −0.567778 0.983420i
\(899\) 6.75084e14 1.16928e15i 0.0383424 0.0664110i
\(900\) 0 0
\(901\) 1.47838e16 + 2.56062e16i 0.829466 + 1.43668i
\(902\) 4.77140e15 0.266079
\(903\) 0 0
\(904\) 6.83180e13 0.00376364
\(905\) 5.19692e15 + 9.00133e15i 0.284563 + 0.492878i
\(906\) 0 0
\(907\) 3.25330e15 5.63487e15i 0.175988 0.304820i −0.764515 0.644606i \(-0.777021\pi\)
0.940503 + 0.339786i \(0.110355\pi\)
\(908\) 5.24122e15 + 9.07807e15i 0.281813 + 0.488114i
\(909\) 0 0
\(910\) −6.57864e14 + 5.14125e14i −0.0349469 + 0.0273112i
\(911\) 2.29311e16 1.21080 0.605402 0.795920i \(-0.293013\pi\)
0.605402 + 0.795920i \(0.293013\pi\)
\(912\) 0 0
\(913\) −8.55740e14 + 1.48219e15i −0.0446429 + 0.0773238i
\(914\) −8.31381e15 + 1.43999e16i −0.431118 + 0.746718i
\(915\) 0 0
\(916\) −1.48058e16 −0.758592
\(917\) 2.74961e15 + 1.95450e16i 0.140036 + 0.995413i
\(918\) 0 0
\(919\) −5.78274e15 1.00160e16i −0.291003 0.504033i 0.683044 0.730377i \(-0.260656\pi\)
−0.974047 + 0.226345i \(0.927322\pi\)
\(920\) 2.53813e15 4.39618e15i 0.126964 0.219909i
\(921\) 0 0
\(922\) −1.73699e15 3.00856e15i −0.0858574 0.148709i
\(923\) 9.49633e14 0.0466602
\(924\) 0 0
\(925\) 8.95597e15 0.434844
\(926\) 1.10580e16 + 1.91531e16i 0.533725 + 0.924440i
\(927\) 0 0
\(928\) −2.03140e14 + 3.51848e14i −0.00968904 + 0.0167819i
\(929\) 4.44320e15 + 7.69584e15i 0.210673 + 0.364897i 0.951925 0.306330i \(-0.0991011\pi\)
−0.741252 + 0.671227i \(0.765768\pi\)
\(930\) 0 0
\(931\) −2.73948e15 + 1.10004e16i −0.128364 + 0.515447i
\(932\) −2.57607e15 −0.119997
\(933\) 0 0
\(934\) 2.72150e15 4.71378e15i 0.125286 0.217001i
\(935\) 1.51344e15 2.62135e15i 0.0692628 0.119967i
\(936\) 0 0
\(937\) −3.18066e16 −1.43863 −0.719317 0.694682i \(-0.755545\pi\)
−0.719317 + 0.694682i \(0.755545\pi\)
\(938\) 2.06157e16 + 8.32596e15i 0.927004 + 0.374385i
\(939\) 0 0
\(940\) 1.34881e14 + 2.33621e14i 0.00599444 + 0.0103827i
\(941\) −3.87623e15 + 6.71383e15i −0.171264 + 0.296638i −0.938862 0.344293i \(-0.888119\pi\)
0.767598 + 0.640932i \(0.221452\pi\)
\(942\) 0 0
\(943\) 2.70710e16 + 4.68883e16i 1.18220 + 2.04762i
\(944\) −9.02301e14 −0.0391747
\(945\) 0 0
\(946\) −4.55512e15 −0.195478
\(947\) 2.01214e16 + 3.48513e16i 0.858487 + 1.48694i 0.873372 + 0.487055i \(0.161929\pi\)
−0.0148841 + 0.999889i \(0.504738\pi\)
\(948\) 0 0
\(949\) −5.86929e14 + 1.01659e15i −0.0247526 + 0.0428728i
\(950\) 2.97303e15 + 5.14944e15i 0.124658 + 0.215914i
\(951\) 0 0
\(952\) 8.14539e15 6.36568e15i 0.337605 0.263841i
\(953\) −3.88317e16 −1.60020 −0.800102 0.599864i \(-0.795222\pi\)
−0.800102 + 0.599864i \(0.795222\pi\)
\(954\) 0 0
\(955\) 6.80042e15 1.17787e16i 0.277024 0.479819i
\(956\) −8.88540e15 + 1.53900e16i −0.359881 + 0.623332i
\(957\) 0 0
\(958\) 1.92315e16 0.770021
\(959\) 8.67855e15 6.78235e15i 0.345497 0.270009i
\(960\) 0 0
\(961\) 6.48702e15 + 1.12359e16i 0.255309 + 0.442209i
\(962\) −6.40255e14 + 1.10895e15i −0.0250547 + 0.0433961i
\(963\) 0 0
\(964\) 1.04185e16 + 1.80454e16i 0.403072 + 0.698142i
\(965\) −2.61574e16 −1.00622
\(966\) 0 0
\(967\) −4.65408e16 −1.77006 −0.885031 0.465533i \(-0.845863\pi\)
−0.885031 + 0.465533i \(0.845863\pi\)
\(968\) −4.49290e15 7.78194e15i −0.169907 0.294288i
\(969\) 0 0
\(970\) −8.37695e14 + 1.45093e15i −0.0313214 + 0.0542503i
\(971\) −8.37772e15 1.45106e16i −0.311473 0.539486i 0.667209 0.744871i \(-0.267489\pi\)
−0.978681 + 0.205384i \(0.934156\pi\)
\(972\) 0 0
\(973\) 2.82033e16 + 1.13903e16i 1.03676 + 0.418713i
\(974\) −3.16441e15 −0.115670
\(975\) 0 0
\(976\) −2.72217e14 + 4.71493e14i −0.00983877 + 0.0170412i
\(977\) −1.41296e16 + 2.44733e16i −0.507822 + 0.879573i 0.492137 + 0.870518i \(0.336216\pi\)
−0.999959 + 0.00905544i \(0.997118\pi\)
\(978\) 0 0
\(979\) −4.11695e15 −0.146309
\(980\) 5.90315e15 + 5.69747e15i 0.208613 + 0.201344i
\(981\) 0 0
\(982\) −1.47988e16 2.56323e16i −0.517147 0.895724i
\(983\) 1.66234e16 2.87926e16i 0.577665 1.00054i −0.418082 0.908409i \(-0.637297\pi\)
0.995747 0.0921351i \(-0.0293692\pi\)
\(984\) 0 0
\(985\) 3.71949e15 + 6.44235e15i 0.127816 + 0.221383i
\(986\) −2.74892e15 −0.0939375
\(987\) 0 0
\(988\) −8.50158e14 −0.0287301
\(989\) −2.58439e16 4.47629e16i −0.868517 1.50432i
\(990\) 0 0
\(991\) −2.98994e16 + 5.17873e16i −0.993706 + 1.72115i −0.399840 + 0.916585i \(0.630934\pi\)
−0.593866 + 0.804564i \(0.702399\pi\)
\(992\) 1.87082e15 + 3.24036e15i 0.0618328 + 0.107098i
\(993\) 0 0
\(994\) −1.29993e15 9.24026e15i −0.0424909 0.302036i
\(995\) −1.89352e16 −0.615521
\(996\) 0 0
\(997\) 4.47658e14 7.75367e14i 0.0143921 0.0249278i −0.858740 0.512412i \(-0.828752\pi\)
0.873132 + 0.487484i \(0.162085\pi\)
\(998\) 1.21889e16 2.11119e16i 0.389716 0.675007i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.12.g.b.109.1 6
3.2 odd 2 42.12.e.a.25.3 6
7.2 even 3 inner 126.12.g.b.37.1 6
21.2 odd 6 42.12.e.a.37.3 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.12.e.a.25.3 6 3.2 odd 2
42.12.e.a.37.3 yes 6 21.2 odd 6
126.12.g.b.37.1 6 7.2 even 3 inner
126.12.g.b.109.1 6 1.1 even 1 trivial