Properties

Label 126.12.g.a
Level $126$
Weight $12$
Character orbit 126.g
Analytic conductor $96.811$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,12,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(96.8112407505\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 6891x^{4} + 48890x^{3} + 47451100x^{2} + 144690000x + 441000000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 32 \beta_1 - 32) q^{2} + 1024 \beta_1 q^{4} + ( - 3 \beta_{5} + 2 \beta_{4} + \cdots - 443) q^{5} + ( - 14 \beta_{4} - 7 \beta_{2} + \cdots - 25550) q^{7} + 32768 q^{8} + (128 \beta_{5} - 32 \beta_{3} + \cdots + 14176 \beta_1) q^{10}+ \cdots + ( - 18823840 \beta_{5} + \cdots - 22878539040) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 96 q^{2} - 3072 q^{4} - 1331 q^{5} - 83545 q^{7} + 196608 q^{8} - 42592 q^{10} + 356381 q^{11} - 1954348 q^{13} - 2010176 q^{14} - 3145728 q^{16} - 1732024 q^{17} - 5289402 q^{19} + 2725888 q^{20}+ \cdots - 74023098912 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 6891x^{4} + 48890x^{3} + 47451100x^{2} + 144690000x + 441000000 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 1582633 \nu^{5} - 1583333 \nu^{4} + 10910747703 \nu^{3} + 44134810670 \nu^{2} + \cdots + 101297700000 ) / 228991154070000 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 46112581 \nu^{5} + 23344597581 \nu^{4} - 573814081671 \nu^{3} + 159263780250910 \nu^{2} + \cdots + 73\!\cdots\!00 ) / 686973462210000 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 241981569 \nu^{5} - 869130531 \nu^{4} - 1643859979879 \nu^{3} - 22038577909510 \nu^{2} + \cdots - 69\!\cdots\!00 ) / 32713022010000 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 726436177 \nu^{5} - 779328177 \nu^{4} + 5370350467707 \nu^{3} + 42794941611530 \nu^{2} + \cdots + 11\!\cdots\!00 ) / 98139066030000 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 242464639 \nu^{5} - 2459704839 \nu^{4} + 1683749107549 \nu^{3} - 883624967490 \nu^{2} + \cdots - 34\!\cdots\!00 ) / 32713022010000 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{5} - \beta_{3} - 3\beta_{2} - 27\beta_1 ) / 84 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 98\beta_{5} + 33\beta_{4} - 229\beta_{3} - 33\beta_{2} - 385857\beta _1 - 385857 ) / 84 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -7021\beta_{5} + 20703\beta_{4} + 13682\beta_{3} - 2335887 ) / 84 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -1550149\beta_{5} + 930611\beta_{3} + 311073\beta_{2} + 2661457617\beta_1 ) / 84 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 91591442 \beta_{5} - 143647743 \beta_{4} - 39535141 \beta_{3} + 143647743 \beta_{2} + \cdots + 26858716047 ) / 84 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(-1 - \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1
−1.52669 2.64430i
42.4914 + 73.5973i
−40.4648 70.0870i
−1.52669 + 2.64430i
42.4914 73.5973i
−40.4648 + 70.0870i
−16.0000 + 27.7128i 0 −512.000 886.810i −2779.47 + 4814.19i 0 −30437.5 + 32417.4i 32768.0 0 −88943.2 154054.i
37.2 −16.0000 + 27.7128i 0 −512.000 886.810i −1601.94 + 2774.64i 0 33098.6 + 29695.3i 32768.0 0 −51262.1 88788.6i
37.3 −16.0000 + 27.7128i 0 −512.000 886.810i 3715.92 6436.15i 0 −44433.6 1727.34i 32768.0 0 118909. + 205957.i
109.1 −16.0000 27.7128i 0 −512.000 + 886.810i −2779.47 4814.19i 0 −30437.5 32417.4i 32768.0 0 −88943.2 + 154054.i
109.2 −16.0000 27.7128i 0 −512.000 + 886.810i −1601.94 2774.64i 0 33098.6 29695.3i 32768.0 0 −51262.1 + 88788.6i
109.3 −16.0000 27.7128i 0 −512.000 + 886.810i 3715.92 + 6436.15i 0 −44433.6 + 1727.34i 32768.0 0 118909. 205957.i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 37.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 126.12.g.a 6
3.b odd 2 1 42.12.e.b 6
7.c even 3 1 inner 126.12.g.a 6
21.h odd 6 1 42.12.e.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.12.e.b 6 3.b odd 2 1
42.12.e.b 6 21.h odd 6 1
126.12.g.a 6 1.a even 1 1 trivial
126.12.g.a 6 7.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 1331 T_{5}^{5} + 49085221 T_{5}^{4} + 201750551940 T_{5}^{3} + \cdots + 17\!\cdots\!00 \) acting on \(S_{12}^{\mathrm{new}}(126, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 32 T + 1024)^{3} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + \cdots + 17\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 77\!\cdots\!07 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( (T^{3} + \cdots - 15\!\cdots\!60)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 64\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 61\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 49\!\cdots\!00 \) Copy content Toggle raw display
$29$ \( (T^{3} + \cdots - 27\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 57\!\cdots\!25 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 86\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( (T^{3} + \cdots - 18\!\cdots\!80)^{2} \) Copy content Toggle raw display
$43$ \( (T^{3} + \cdots + 16\!\cdots\!50)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 10\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 37\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 69\!\cdots\!96 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 78\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( (T^{3} + \cdots - 37\!\cdots\!72)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 11\!\cdots\!64 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 83\!\cdots\!49 \) Copy content Toggle raw display
$83$ \( (T^{3} + \cdots + 47\!\cdots\!00)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T^{3} + \cdots - 49\!\cdots\!68)^{2} \) Copy content Toggle raw display
show more
show less