Properties

Label 126.12.g
Level $126$
Weight $12$
Character orbit 126.g
Rep. character $\chi_{126}(37,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $72$
Newform subspaces $8$
Sturm bound $288$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 8 \)
Sturm bound: \(288\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(126, [\chi])\).

Total New Old
Modular forms 544 72 472
Cusp forms 512 72 440
Eisenstein series 32 0 32

Trace form

\( 72 q - 36864 q^{4} - 1188 q^{5} + 76732 q^{7} + 281728 q^{10} + 504864 q^{11} - 3595760 q^{13} - 2318976 q^{14} - 37748736 q^{16} - 11747772 q^{17} + 8284944 q^{19} + 2433024 q^{20} - 33541120 q^{22} - 41214276 q^{23}+ \cdots - 383791094784 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(126, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
126.12.g.a 126.g 7.c $6$ $96.811$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 42.12.e.b \(-96\) \(0\) \(-1331\) \(-83545\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2^{5}-2^{5}\beta _{1})q^{2}+2^{10}\beta _{1}q^{4}+(-443+\cdots)q^{5}+\cdots\)
126.12.g.b 126.g 7.c $6$ $96.811$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 42.12.e.a \(96\) \(0\) \(-1045\) \(45731\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2^{5}+2^{5}\beta _{2})q^{2}+2^{10}\beta _{2}q^{4}+(-350+\cdots)q^{5}+\cdots\)
126.12.g.c 126.g 7.c $8$ $96.811$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 14.12.c.b \(-128\) \(0\) \(-3808\) \(110328\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2^{5}-2^{5}\beta _{2})q^{2}+2^{10}\beta _{2}q^{4}+(-952+\cdots)q^{5}+\cdots\)
126.12.g.d 126.g 7.c $8$ $96.811$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 42.12.e.d \(-128\) \(0\) \(1420\) \(-66362\) $\mathrm{SU}(2)[C_{3}]$ \(q-2^{5}\beta _{1}q^{2}+(-2^{10}+2^{10}\beta _{1})q^{4}+\cdots\)
126.12.g.e 126.g 7.c $8$ $96.811$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 14.12.c.a \(128\) \(0\) \(-7504\) \(-42224\) $\mathrm{SU}(2)[C_{3}]$ \(q+2^{5}\beta _{2}q^{2}+(-2^{10}+2^{10}\beta _{2})q^{4}+\cdots\)
126.12.g.f 126.g 7.c $8$ $96.811$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 42.12.e.c \(128\) \(0\) \(11080\) \(31758\) $\mathrm{SU}(2)[C_{3}]$ \(q+2^{5}\beta _{1}q^{2}+(-2^{10}+2^{10}\beta _{1})q^{4}+\cdots\)
126.12.g.g 126.g 7.c $14$ $96.811$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 126.12.g.g \(-224\) \(0\) \(7527\) \(40523\) $\mathrm{SU}(2)[C_{3}]$ \(q+2^{5}\beta _{2}q^{2}+(-2^{10}-2^{10}\beta _{2})q^{4}+\cdots\)
126.12.g.h 126.g 7.c $14$ $96.811$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 126.12.g.g \(224\) \(0\) \(-7527\) \(40523\) $\mathrm{SU}(2)[C_{3}]$ \(q-2^{5}\beta _{2}q^{2}+(-2^{10}-2^{10}\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(126, [\chi])\) into lower level spaces

\( S_{12}^{\mathrm{old}}(126, [\chi]) \simeq \) \(S_{12}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)