Properties

Label 126.10.g.d.37.3
Level $126$
Weight $10$
Character 126.37
Analytic conductor $64.895$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,10,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.8945153566\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 373x^{4} - 756x^{3} + 139129x^{2} - 140994x + 142884 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 5^{2}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.3
Root \(0.508109 - 0.880071i\) of defining polynomial
Character \(\chi\) \(=\) 126.37
Dual form 126.10.g.d.109.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.00000 + 13.8564i) q^{2} +(-128.000 - 221.703i) q^{4} +(1126.21 - 1950.65i) q^{5} +(5935.39 - 2263.80i) q^{7} +4096.00 q^{8} +(18019.3 + 31210.4i) q^{10} +(29000.0 + 50229.5i) q^{11} -123815. q^{13} +(-16115.0 + 100354. i) q^{14} +(-32768.0 + 56755.8i) q^{16} +(193518. + 335182. i) q^{17} +(-322875. + 559237. i) q^{19} -576619. q^{20} -928000. q^{22} +(-729071. + 1.26279e6i) q^{23} +(-1.56013e6 - 2.70222e6i) q^{25} +(990522. - 1.71564e6i) q^{26} +(-1.26162e6 - 1.02612e6i) q^{28} +7.13633e6 q^{29} +(3.83843e6 + 6.64835e6i) q^{31} +(-524288. - 908093. i) q^{32} -6.19256e6 q^{34} +(2.26860e6 - 1.41274e7i) q^{35} +(-2.14853e6 + 3.72137e6i) q^{37} +(-5.16601e6 - 8.94778e6i) q^{38} +(4.61295e6 - 7.98986e6i) q^{40} +2.96407e7 q^{41} -1.12086e7 q^{43} +(7.42400e6 - 1.28587e7i) q^{44} +(-1.16651e7 - 2.02046e7i) q^{46} +(-2.14828e7 + 3.72093e7i) q^{47} +(3.01040e7 - 2.68731e7i) q^{49} +4.99241e7 q^{50} +(1.58484e7 + 2.74502e7i) q^{52} +(3.49518e6 + 6.05383e6i) q^{53} +1.30640e8 q^{55} +(2.43113e7 - 9.27253e6i) q^{56} +(-5.70907e7 + 9.88839e7i) q^{58} +(-5.81810e7 - 1.00772e8i) q^{59} +(8.40279e6 - 1.45541e7i) q^{61} -1.22830e8 q^{62} +1.67772e7 q^{64} +(-1.39442e8 + 2.41520e8i) q^{65} +(-6.23234e7 - 1.07947e8i) q^{67} +(4.95405e7 - 8.58067e7i) q^{68} +(1.77606e8 + 1.44454e8i) q^{70} -1.67870e7 q^{71} +(1.26280e8 + 2.18724e8i) q^{73} +(-3.43765e7 - 5.95419e7i) q^{74} +1.65312e8 q^{76} +(2.85836e8 + 2.32481e8i) q^{77} +(-5.19052e6 + 8.99025e6i) q^{79} +(7.38072e7 + 1.27838e8i) q^{80} +(-2.37126e8 + 4.10714e8i) q^{82} -2.71782e8 q^{83} +8.71765e8 q^{85} +(8.96684e7 - 1.55310e8i) q^{86} +(1.18784e8 + 2.05740e8i) q^{88} +(3.52986e8 - 6.11390e8i) q^{89} +(-7.34892e8 + 2.80293e8i) q^{91} +3.73285e8 q^{92} +(-3.43725e8 - 5.95349e8i) q^{94} +(7.27250e8 + 1.25963e9i) q^{95} -1.76754e8 q^{97} +(1.31532e8 + 6.32118e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 48 q^{2} - 768 q^{4} - 361 q^{5} + 12509 q^{7} + 24576 q^{8} - 5776 q^{10} - 37799 q^{11} - 441172 q^{13} - 38752 q^{14} - 196608 q^{16} + 781816 q^{17} - 620154 q^{19} + 184832 q^{20} + 1209568 q^{22}+ \cdots + 2185772400 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 + 13.8564i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −128.000 221.703i −0.250000 0.433013i
\(5\) 1126.21 1950.65i 0.805849 1.39577i −0.109867 0.993946i \(-0.535043\pi\)
0.915716 0.401825i \(-0.131624\pi\)
\(6\) 0 0
\(7\) 5935.39 2263.80i 0.934346 0.356367i
\(8\) 4096.00 0.353553
\(9\) 0 0
\(10\) 18019.3 + 31210.4i 0.569821 + 0.986960i
\(11\) 29000.0 + 50229.5i 0.597215 + 1.03441i 0.993230 + 0.116163i \(0.0370594\pi\)
−0.396015 + 0.918244i \(0.629607\pi\)
\(12\) 0 0
\(13\) −123815. −1.20235 −0.601173 0.799119i \(-0.705300\pi\)
−0.601173 + 0.799119i \(0.705300\pi\)
\(14\) −16115.0 + 100354.i −0.112112 + 0.698162i
\(15\) 0 0
\(16\) −32768.0 + 56755.8i −0.125000 + 0.216506i
\(17\) 193518. + 335182.i 0.561954 + 0.973332i 0.997326 + 0.0730816i \(0.0232834\pi\)
−0.435372 + 0.900250i \(0.643383\pi\)
\(18\) 0 0
\(19\) −322875. + 559237.i −0.568386 + 0.984474i 0.428339 + 0.903618i \(0.359099\pi\)
−0.996726 + 0.0808562i \(0.974235\pi\)
\(20\) −576619. −0.805849
\(21\) 0 0
\(22\) −928000. −0.844590
\(23\) −729071. + 1.26279e6i −0.543244 + 0.940926i 0.455471 + 0.890250i \(0.349471\pi\)
−0.998715 + 0.0506754i \(0.983863\pi\)
\(24\) 0 0
\(25\) −1.56013e6 2.70222e6i −0.798786 1.38354i
\(26\) 990522. 1.71564e6i 0.425093 0.736283i
\(27\) 0 0
\(28\) −1.26162e6 1.02612e6i −0.387898 0.315492i
\(29\) 7.13633e6 1.87363 0.936816 0.349823i \(-0.113758\pi\)
0.936816 + 0.349823i \(0.113758\pi\)
\(30\) 0 0
\(31\) 3.83843e6 + 6.64835e6i 0.746493 + 1.29296i 0.949494 + 0.313785i \(0.101597\pi\)
−0.203001 + 0.979178i \(0.565070\pi\)
\(32\) −524288. 908093.i −0.0883883 0.153093i
\(33\) 0 0
\(34\) −6.19256e6 −0.794722
\(35\) 2.26860e6 1.41274e7i 0.255536 1.59131i
\(36\) 0 0
\(37\) −2.14853e6 + 3.72137e6i −0.188467 + 0.326434i −0.944739 0.327823i \(-0.893685\pi\)
0.756273 + 0.654257i \(0.227018\pi\)
\(38\) −5.16601e6 8.94778e6i −0.401910 0.696128i
\(39\) 0 0
\(40\) 4.61295e6 7.98986e6i 0.284911 0.493480i
\(41\) 2.96407e7 1.63818 0.819089 0.573666i \(-0.194479\pi\)
0.819089 + 0.573666i \(0.194479\pi\)
\(42\) 0 0
\(43\) −1.12086e7 −0.499967 −0.249984 0.968250i \(-0.580425\pi\)
−0.249984 + 0.968250i \(0.580425\pi\)
\(44\) 7.42400e6 1.28587e7i 0.298608 0.517203i
\(45\) 0 0
\(46\) −1.16651e7 2.02046e7i −0.384131 0.665335i
\(47\) −2.14828e7 + 3.72093e7i −0.642171 + 1.11227i 0.342776 + 0.939417i \(0.388633\pi\)
−0.984947 + 0.172856i \(0.944701\pi\)
\(48\) 0 0
\(49\) 3.01040e7 2.68731e7i 0.746006 0.665939i
\(50\) 4.99241e7 1.12965
\(51\) 0 0
\(52\) 1.58484e7 + 2.74502e7i 0.300586 + 0.520631i
\(53\) 3.49518e6 + 6.05383e6i 0.0608455 + 0.105387i 0.894844 0.446380i \(-0.147287\pi\)
−0.833998 + 0.551767i \(0.813954\pi\)
\(54\) 0 0
\(55\) 1.30640e8 1.92506
\(56\) 2.43113e7 9.27253e6i 0.330341 0.125995i
\(57\) 0 0
\(58\) −5.70907e7 + 9.88839e7i −0.662429 + 1.14736i
\(59\) −5.81810e7 1.00772e8i −0.625096 1.08270i −0.988522 0.151075i \(-0.951726\pi\)
0.363426 0.931623i \(-0.381607\pi\)
\(60\) 0 0
\(61\) 8.40279e6 1.45541e7i 0.0777032 0.134586i −0.824555 0.565781i \(-0.808575\pi\)
0.902259 + 0.431195i \(0.141908\pi\)
\(62\) −1.22830e8 −1.05570
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) −1.39442e8 + 2.41520e8i −0.968909 + 1.67820i
\(66\) 0 0
\(67\) −6.23234e7 1.07947e8i −0.377846 0.654448i 0.612903 0.790158i \(-0.290002\pi\)
−0.990749 + 0.135710i \(0.956668\pi\)
\(68\) 4.95405e7 8.58067e7i 0.280977 0.486666i
\(69\) 0 0
\(70\) 1.77606e8 + 1.44454e8i 0.884130 + 0.719097i
\(71\) −1.67870e7 −0.0783991 −0.0391995 0.999231i \(-0.512481\pi\)
−0.0391995 + 0.999231i \(0.512481\pi\)
\(72\) 0 0
\(73\) 1.26280e8 + 2.18724e8i 0.520454 + 0.901453i 0.999717 + 0.0237817i \(0.00757067\pi\)
−0.479263 + 0.877671i \(0.659096\pi\)
\(74\) −3.43765e7 5.95419e7i −0.133266 0.230823i
\(75\) 0 0
\(76\) 1.65312e8 0.568386
\(77\) 2.85836e8 + 2.32481e8i 0.926634 + 0.753667i
\(78\) 0 0
\(79\) −5.19052e6 + 8.99025e6i −0.0149930 + 0.0259687i −0.873425 0.486959i \(-0.838106\pi\)
0.858432 + 0.512928i \(0.171439\pi\)
\(80\) 7.38072e7 + 1.27838e8i 0.201462 + 0.348943i
\(81\) 0 0
\(82\) −2.37126e8 + 4.10714e8i −0.579184 + 1.00318i
\(83\) −2.71782e8 −0.628593 −0.314296 0.949325i \(-0.601769\pi\)
−0.314296 + 0.949325i \(0.601769\pi\)
\(84\) 0 0
\(85\) 8.71765e8 1.81140
\(86\) 8.96684e7 1.55310e8i 0.176765 0.306166i
\(87\) 0 0
\(88\) 1.18784e8 + 2.05740e8i 0.211147 + 0.365718i
\(89\) 3.52986e8 6.11390e8i 0.596352 1.03291i −0.397002 0.917818i \(-0.629950\pi\)
0.993355 0.115095i \(-0.0367171\pi\)
\(90\) 0 0
\(91\) −7.34892e8 + 2.80293e8i −1.12341 + 0.428476i
\(92\) 3.73285e8 0.543244
\(93\) 0 0
\(94\) −3.43725e8 5.95349e8i −0.454083 0.786496i
\(95\) 7.27250e8 + 1.25963e9i 0.916067 + 1.58668i
\(96\) 0 0
\(97\) −1.76754e8 −0.202720 −0.101360 0.994850i \(-0.532319\pi\)
−0.101360 + 0.994850i \(0.532319\pi\)
\(98\) 1.31532e8 + 6.32118e8i 0.144050 + 0.692279i
\(99\) 0 0
\(100\) −3.99393e8 + 6.91769e8i −0.399393 + 0.691769i
\(101\) 2.77453e8 + 4.80563e8i 0.265304 + 0.459520i 0.967643 0.252322i \(-0.0811944\pi\)
−0.702339 + 0.711842i \(0.747861\pi\)
\(102\) 0 0
\(103\) −2.29436e8 + 3.97395e8i −0.200861 + 0.347901i −0.948806 0.315860i \(-0.897707\pi\)
0.747945 + 0.663760i \(0.231041\pi\)
\(104\) −5.07147e8 −0.425093
\(105\) 0 0
\(106\) −1.11846e8 −0.0860485
\(107\) −2.31927e8 + 4.01709e8i −0.171050 + 0.296268i −0.938787 0.344497i \(-0.888049\pi\)
0.767737 + 0.640765i \(0.221383\pi\)
\(108\) 0 0
\(109\) 1.21755e9 + 2.10886e9i 0.826167 + 1.43096i 0.901024 + 0.433769i \(0.142817\pi\)
−0.0748571 + 0.997194i \(0.523850\pi\)
\(110\) −1.04512e9 + 1.81020e9i −0.680612 + 1.17885i
\(111\) 0 0
\(112\) −6.60069e7 + 4.11048e8i −0.0396377 + 0.246838i
\(113\) 1.85359e9 1.06945 0.534726 0.845025i \(-0.320415\pi\)
0.534726 + 0.845025i \(0.320415\pi\)
\(114\) 0 0
\(115\) 1.64217e9 + 2.84433e9i 0.875545 + 1.51649i
\(116\) −9.13451e8 1.58214e9i −0.468408 0.811306i
\(117\) 0 0
\(118\) 1.86179e9 0.884019
\(119\) 1.90739e9 + 1.55135e9i 0.871922 + 0.709168i
\(120\) 0 0
\(121\) −5.03025e8 + 8.71265e8i −0.213332 + 0.369501i
\(122\) 1.34445e8 + 2.32865e8i 0.0549445 + 0.0951666i
\(123\) 0 0
\(124\) 9.82637e8 1.70198e9i 0.373246 0.646482i
\(125\) −2.62887e9 −0.963104
\(126\) 0 0
\(127\) 1.67106e9 0.570001 0.285000 0.958527i \(-0.408006\pi\)
0.285000 + 0.958527i \(0.408006\pi\)
\(128\) −1.34218e8 + 2.32472e8i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −2.23107e9 3.86433e9i −0.685122 1.18667i
\(131\) 7.98748e8 1.38347e9i 0.236968 0.410440i −0.722875 0.690979i \(-0.757180\pi\)
0.959843 + 0.280539i \(0.0905131\pi\)
\(132\) 0 0
\(133\) −6.50390e8 + 4.05021e9i −0.180236 + 1.12239i
\(134\) 1.99435e9 0.534355
\(135\) 0 0
\(136\) 7.92648e8 + 1.37291e9i 0.198681 + 0.344125i
\(137\) −8.88612e8 1.53912e9i −0.215511 0.373276i 0.737919 0.674889i \(-0.235808\pi\)
−0.953431 + 0.301613i \(0.902475\pi\)
\(138\) 0 0
\(139\) −1.73884e9 −0.395088 −0.197544 0.980294i \(-0.563297\pi\)
−0.197544 + 0.980294i \(0.563297\pi\)
\(140\) −3.42245e9 + 1.30535e9i −0.752942 + 0.287178i
\(141\) 0 0
\(142\) 1.34296e8 2.32608e8i 0.0277183 0.0480094i
\(143\) −3.59064e9 6.21918e9i −0.718059 1.24371i
\(144\) 0 0
\(145\) 8.03700e9 1.39205e10i 1.50986 2.61516i
\(146\) −4.04097e9 −0.736033
\(147\) 0 0
\(148\) 1.10005e9 0.188467
\(149\) 3.77688e9 6.54175e9i 0.627763 1.08732i −0.360237 0.932861i \(-0.617304\pi\)
0.988000 0.154456i \(-0.0493624\pi\)
\(150\) 0 0
\(151\) 4.55323e9 + 7.88643e9i 0.712728 + 1.23448i 0.963829 + 0.266520i \(0.0858738\pi\)
−0.251102 + 0.967961i \(0.580793\pi\)
\(152\) −1.32250e9 + 2.29063e9i −0.200955 + 0.348064i
\(153\) 0 0
\(154\) −5.50804e9 + 2.10081e9i −0.789139 + 0.300983i
\(155\) 1.72915e10 2.40624
\(156\) 0 0
\(157\) −6.21362e9 1.07623e10i −0.816200 1.41370i −0.908463 0.417965i \(-0.862743\pi\)
0.0922632 0.995735i \(-0.470590\pi\)
\(158\) −8.30484e7 1.43844e8i −0.0106017 0.0183626i
\(159\) 0 0
\(160\) −2.36183e9 −0.284911
\(161\) −1.46862e9 + 9.14561e9i −0.172263 + 1.07274i
\(162\) 0 0
\(163\) −2.02713e9 + 3.51109e9i −0.224925 + 0.389581i −0.956297 0.292397i \(-0.905547\pi\)
0.731372 + 0.681979i \(0.238880\pi\)
\(164\) −3.79401e9 6.57142e9i −0.409545 0.709352i
\(165\) 0 0
\(166\) 2.17426e9 3.76592e9i 0.222241 0.384933i
\(167\) −2.87424e9 −0.285955 −0.142978 0.989726i \(-0.545668\pi\)
−0.142978 + 0.989726i \(0.545668\pi\)
\(168\) 0 0
\(169\) 4.72573e9 0.445634
\(170\) −6.97412e9 + 1.20795e10i −0.640426 + 1.10925i
\(171\) 0 0
\(172\) 1.43469e9 + 2.48496e9i 0.124992 + 0.216492i
\(173\) 3.10666e9 5.38089e9i 0.263685 0.456716i −0.703533 0.710662i \(-0.748395\pi\)
0.967218 + 0.253946i \(0.0817287\pi\)
\(174\) 0 0
\(175\) −1.53773e10 1.25069e10i −1.23939 1.00804i
\(176\) −3.80109e9 −0.298608
\(177\) 0 0
\(178\) 5.64778e9 + 9.78224e9i 0.421685 + 0.730379i
\(179\) −7.50964e9 1.30071e10i −0.546740 0.946981i −0.998495 0.0548389i \(-0.982535\pi\)
0.451756 0.892142i \(-0.350798\pi\)
\(180\) 0 0
\(181\) 2.99148e9 0.207173 0.103586 0.994620i \(-0.466968\pi\)
0.103586 + 0.994620i \(0.466968\pi\)
\(182\) 1.99528e9 1.24253e10i 0.134798 0.839432i
\(183\) 0 0
\(184\) −2.98628e9 + 5.17238e9i −0.192066 + 0.332668i
\(185\) 4.83939e9 + 8.38207e9i 0.303751 + 0.526112i
\(186\) 0 0
\(187\) −1.12240e10 + 1.94406e10i −0.671214 + 1.16258i
\(188\) 1.09992e10 0.642171
\(189\) 0 0
\(190\) −2.32720e10 −1.29551
\(191\) −1.16557e10 + 2.01883e10i −0.633706 + 1.09761i 0.353081 + 0.935593i \(0.385134\pi\)
−0.986788 + 0.162019i \(0.948199\pi\)
\(192\) 0 0
\(193\) −4.88839e9 8.46694e9i −0.253605 0.439257i 0.710911 0.703282i \(-0.248283\pi\)
−0.964516 + 0.264025i \(0.914950\pi\)
\(194\) 1.41403e9 2.44918e9i 0.0716724 0.124140i
\(195\) 0 0
\(196\) −9.81114e9 3.23439e9i −0.474862 0.156545i
\(197\) 2.16185e10 1.02265 0.511325 0.859387i \(-0.329155\pi\)
0.511325 + 0.859387i \(0.329155\pi\)
\(198\) 0 0
\(199\) −1.81008e10 3.13515e10i −0.818200 1.41716i −0.907007 0.421115i \(-0.861639\pi\)
0.0888074 0.996049i \(-0.471694\pi\)
\(200\) −6.39028e9 1.10683e10i −0.282413 0.489154i
\(201\) 0 0
\(202\) −8.87850e9 −0.375196
\(203\) 4.23569e10 1.61552e10i 1.75062 0.667700i
\(204\) 0 0
\(205\) 3.33816e10 5.78186e10i 1.32012 2.28652i
\(206\) −3.67098e9 6.35833e9i −0.142030 0.246003i
\(207\) 0 0
\(208\) 4.05718e9 7.02724e9i 0.150293 0.260315i
\(209\) −3.74535e10 −1.35780
\(210\) 0 0
\(211\) −2.26761e10 −0.787584 −0.393792 0.919200i \(-0.628837\pi\)
−0.393792 + 0.919200i \(0.628837\pi\)
\(212\) 8.94766e8 1.54978e9i 0.0304227 0.0526937i
\(213\) 0 0
\(214\) −3.71083e9 6.42734e9i −0.120951 0.209493i
\(215\) −1.26232e10 + 2.18640e10i −0.402898 + 0.697840i
\(216\) 0 0
\(217\) 3.78331e10 + 3.07711e10i 1.15825 + 0.942050i
\(218\) −3.89616e10 −1.16838
\(219\) 0 0
\(220\) −1.67219e10 2.89632e10i −0.481265 0.833576i
\(221\) −2.39604e10 4.15007e10i −0.675662 1.17028i
\(222\) 0 0
\(223\) −3.15180e10 −0.853466 −0.426733 0.904378i \(-0.640336\pi\)
−0.426733 + 0.904378i \(0.640336\pi\)
\(224\) −5.16759e9 4.20300e9i −0.137143 0.111543i
\(225\) 0 0
\(226\) −1.48287e10 + 2.56841e10i −0.378109 + 0.654903i
\(227\) 3.53578e10 + 6.12415e10i 0.883830 + 1.53084i 0.847049 + 0.531515i \(0.178377\pi\)
0.0367808 + 0.999323i \(0.488290\pi\)
\(228\) 0 0
\(229\) 2.25668e10 3.90868e10i 0.542263 0.939226i −0.456511 0.889718i \(-0.650901\pi\)
0.998774 0.0495087i \(-0.0157655\pi\)
\(230\) −5.25495e10 −1.23821
\(231\) 0 0
\(232\) 2.92304e10 0.662429
\(233\) −3.97897e9 + 6.89177e9i −0.0884441 + 0.153190i −0.906854 0.421446i \(-0.861523\pi\)
0.818410 + 0.574635i \(0.194856\pi\)
\(234\) 0 0
\(235\) 4.83882e10 + 8.38109e10i 1.03499 + 1.79265i
\(236\) −1.48943e10 + 2.57977e10i −0.312548 + 0.541349i
\(237\) 0 0
\(238\) −3.67553e10 + 1.40187e10i −0.742546 + 0.283212i
\(239\) 1.62139e10 0.321438 0.160719 0.987000i \(-0.448619\pi\)
0.160719 + 0.987000i \(0.448619\pi\)
\(240\) 0 0
\(241\) 4.69601e10 + 8.13372e10i 0.896710 + 1.55315i 0.831674 + 0.555264i \(0.187383\pi\)
0.0650356 + 0.997883i \(0.479284\pi\)
\(242\) −8.04840e9 1.39402e10i −0.150848 0.261277i
\(243\) 0 0
\(244\) −4.30223e9 −0.0777032
\(245\) −1.85165e10 8.89871e10i −0.328331 1.57790i
\(246\) 0 0
\(247\) 3.99769e10 6.92420e10i 0.683397 1.18368i
\(248\) 1.57222e10 + 2.72316e10i 0.263925 + 0.457132i
\(249\) 0 0
\(250\) 2.10309e10 3.64266e10i 0.340509 0.589779i
\(251\) 1.05570e10 0.167884 0.0839420 0.996471i \(-0.473249\pi\)
0.0839420 + 0.996471i \(0.473249\pi\)
\(252\) 0 0
\(253\) −8.45722e10 −1.29773
\(254\) −1.33685e10 + 2.31549e10i −0.201526 + 0.349053i
\(255\) 0 0
\(256\) −2.14748e9 3.71955e9i −0.0312500 0.0541266i
\(257\) −2.68280e10 + 4.64675e10i −0.383610 + 0.664432i −0.991575 0.129532i \(-0.958653\pi\)
0.607965 + 0.793964i \(0.291986\pi\)
\(258\) 0 0
\(259\) −4.32794e9 + 2.69516e10i −0.0597630 + 0.372165i
\(260\) 7.13942e10 0.968909
\(261\) 0 0
\(262\) 1.27800e10 + 2.21356e10i 0.167561 + 0.290225i
\(263\) 4.57417e10 + 7.92270e10i 0.589538 + 1.02111i 0.994293 + 0.106684i \(0.0340235\pi\)
−0.404755 + 0.914425i \(0.632643\pi\)
\(264\) 0 0
\(265\) 1.57452e10 0.196129
\(266\) −5.09182e10 4.14138e10i −0.623600 0.507198i
\(267\) 0 0
\(268\) −1.59548e10 + 2.76345e10i −0.188923 + 0.327224i
\(269\) 3.21537e9 + 5.56918e9i 0.0374408 + 0.0648494i 0.884139 0.467225i \(-0.154746\pi\)
−0.846698 + 0.532074i \(0.821413\pi\)
\(270\) 0 0
\(271\) 2.86845e10 4.96831e10i 0.323062 0.559560i −0.658056 0.752969i \(-0.728621\pi\)
0.981118 + 0.193409i \(0.0619544\pi\)
\(272\) −2.53647e10 −0.280977
\(273\) 0 0
\(274\) 2.84356e10 0.304779
\(275\) 9.04874e10 1.56729e11i 0.954094 1.65254i
\(276\) 0 0
\(277\) 3.21069e10 + 5.56109e10i 0.327673 + 0.567545i 0.982050 0.188623i \(-0.0604024\pi\)
−0.654377 + 0.756168i \(0.727069\pi\)
\(278\) 1.39107e10 2.40941e10i 0.139685 0.241941i
\(279\) 0 0
\(280\) 9.29219e9 5.78657e10i 0.0903456 0.562614i
\(281\) 4.95099e10 0.473711 0.236855 0.971545i \(-0.423883\pi\)
0.236855 + 0.971545i \(0.423883\pi\)
\(282\) 0 0
\(283\) −2.63003e10 4.55534e10i −0.243737 0.422164i 0.718039 0.696003i \(-0.245040\pi\)
−0.961776 + 0.273839i \(0.911707\pi\)
\(284\) 2.14874e9 + 3.72172e9i 0.0195998 + 0.0339478i
\(285\) 0 0
\(286\) 1.14901e11 1.01549
\(287\) 1.75929e11 6.71006e10i 1.53063 0.583792i
\(288\) 0 0
\(289\) −1.56042e10 + 2.70273e10i −0.131583 + 0.227909i
\(290\) 1.28592e11 + 2.22728e11i 1.06764 + 1.84920i
\(291\) 0 0
\(292\) 3.23277e10 5.59933e10i 0.260227 0.450727i
\(293\) 9.36052e9 0.0741986 0.0370993 0.999312i \(-0.488188\pi\)
0.0370993 + 0.999312i \(0.488188\pi\)
\(294\) 0 0
\(295\) −2.62096e11 −2.01493
\(296\) −8.80039e9 + 1.52427e10i −0.0666330 + 0.115412i
\(297\) 0 0
\(298\) 6.04301e10 + 1.04668e11i 0.443895 + 0.768849i
\(299\) 9.02702e10 1.56353e11i 0.653167 1.13132i
\(300\) 0 0
\(301\) −6.65271e10 + 2.53739e10i −0.467142 + 0.178172i
\(302\) −1.45703e11 −1.00795
\(303\) 0 0
\(304\) −2.11600e10 3.66501e10i −0.142097 0.246119i
\(305\) −1.89266e10 3.27818e10i −0.125234 0.216912i
\(306\) 0 0
\(307\) 1.06487e11 0.684187 0.342093 0.939666i \(-0.388864\pi\)
0.342093 + 0.939666i \(0.388864\pi\)
\(308\) 1.49547e10 9.31280e10i 0.0946888 0.589661i
\(309\) 0 0
\(310\) −1.38332e11 + 2.39598e11i −0.850735 + 1.47352i
\(311\) −1.38512e10 2.39910e10i −0.0839588 0.145421i 0.820988 0.570945i \(-0.193423\pi\)
−0.904947 + 0.425524i \(0.860090\pi\)
\(312\) 0 0
\(313\) −7.31791e9 + 1.26750e10i −0.0430960 + 0.0746445i −0.886769 0.462213i \(-0.847055\pi\)
0.843673 + 0.536858i \(0.180389\pi\)
\(314\) 1.98836e11 1.15428
\(315\) 0 0
\(316\) 2.65755e9 0.0149930
\(317\) −1.30946e11 + 2.26805e11i −0.728325 + 1.26150i 0.229266 + 0.973364i \(0.426367\pi\)
−0.957591 + 0.288132i \(0.906966\pi\)
\(318\) 0 0
\(319\) 2.06954e11 + 3.58454e11i 1.11896 + 1.93810i
\(320\) 1.88946e10 3.27265e10i 0.100731 0.174471i
\(321\) 0 0
\(322\) −1.14976e11 9.35147e10i −0.596015 0.484762i
\(323\) −2.49928e11 −1.27763
\(324\) 0 0
\(325\) 1.93168e11 + 3.34576e11i 0.960416 + 1.66349i
\(326\) −3.24341e10 5.61775e10i −0.159046 0.275476i
\(327\) 0 0
\(328\) 1.21408e11 0.579184
\(329\) −4.32743e10 + 2.69484e11i −0.203633 + 1.26810i
\(330\) 0 0
\(331\) 5.46508e10 9.46580e10i 0.250248 0.433443i −0.713346 0.700812i \(-0.752821\pi\)
0.963594 + 0.267370i \(0.0861545\pi\)
\(332\) 3.47881e10 + 6.02548e10i 0.157148 + 0.272189i
\(333\) 0 0
\(334\) 2.29939e10 3.98266e10i 0.101100 0.175111i
\(335\) −2.80757e11 −1.21795
\(336\) 0 0
\(337\) 2.28449e11 0.964839 0.482419 0.875940i \(-0.339758\pi\)
0.482419 + 0.875940i \(0.339758\pi\)
\(338\) −3.78058e10 + 6.54816e10i −0.157556 + 0.272894i
\(339\) 0 0
\(340\) −1.11586e11 1.93272e11i −0.452850 0.784359i
\(341\) −2.22629e11 + 3.85604e11i −0.891633 + 1.54435i
\(342\) 0 0
\(343\) 1.17844e11 2.27651e11i 0.459709 0.888070i
\(344\) −4.59102e10 −0.176765
\(345\) 0 0
\(346\) 4.97065e10 + 8.60942e10i 0.186454 + 0.322947i
\(347\) 2.45799e11 + 4.25736e11i 0.910117 + 1.57637i 0.813897 + 0.581009i \(0.197342\pi\)
0.0962200 + 0.995360i \(0.469325\pi\)
\(348\) 0 0
\(349\) −2.48686e11 −0.897299 −0.448650 0.893708i \(-0.648095\pi\)
−0.448650 + 0.893708i \(0.648095\pi\)
\(350\) 2.96319e11 1.13018e11i 1.05549 0.402571i
\(351\) 0 0
\(352\) 3.04087e10 5.26694e10i 0.105574 0.182859i
\(353\) −2.18204e11 3.77941e11i −0.747958 1.29550i −0.948800 0.315877i \(-0.897701\pi\)
0.200842 0.979624i \(-0.435632\pi\)
\(354\) 0 0
\(355\) −1.89057e10 + 3.27456e10i −0.0631778 + 0.109427i
\(356\) −1.80729e11 −0.596352
\(357\) 0 0
\(358\) 2.40308e11 0.773206
\(359\) −1.02506e11 + 1.77546e11i −0.325706 + 0.564139i −0.981655 0.190666i \(-0.938935\pi\)
0.655949 + 0.754805i \(0.272269\pi\)
\(360\) 0 0
\(361\) −4.71532e10 8.16717e10i −0.146126 0.253098i
\(362\) −2.39318e10 + 4.14511e10i −0.0732465 + 0.126867i
\(363\) 0 0
\(364\) 1.56208e11 + 1.27050e11i 0.466387 + 0.379331i
\(365\) 5.68871e11 1.67763
\(366\) 0 0
\(367\) −2.34956e11 4.06955e11i −0.676066 1.17098i −0.976156 0.217069i \(-0.930350\pi\)
0.300090 0.953911i \(-0.402983\pi\)
\(368\) −4.77804e10 8.27581e10i −0.135811 0.235231i
\(369\) 0 0
\(370\) −1.54861e11 −0.429569
\(371\) 3.44499e10 + 2.80194e10i 0.0944073 + 0.0767851i
\(372\) 0 0
\(373\) −2.07053e11 + 3.58626e11i −0.553849 + 0.959295i 0.444143 + 0.895956i \(0.353508\pi\)
−0.997992 + 0.0633393i \(0.979825\pi\)
\(374\) −1.79584e11 3.11049e11i −0.474620 0.822066i
\(375\) 0 0
\(376\) −8.79936e10 + 1.52409e11i −0.227042 + 0.393248i
\(377\) −8.83587e11 −2.25275
\(378\) 0 0
\(379\) −5.62652e10 −0.140076 −0.0700379 0.997544i \(-0.522312\pi\)
−0.0700379 + 0.997544i \(0.522312\pi\)
\(380\) 1.86176e11 3.22466e11i 0.458034 0.793338i
\(381\) 0 0
\(382\) −1.86491e11 3.23012e11i −0.448098 0.776129i
\(383\) 3.76926e11 6.52855e11i 0.895080 1.55032i 0.0613741 0.998115i \(-0.480452\pi\)
0.833706 0.552209i \(-0.186215\pi\)
\(384\) 0 0
\(385\) 7.75400e11 2.95743e11i 1.79867 0.686027i
\(386\) 1.56429e11 0.358652
\(387\) 0 0
\(388\) 2.26245e10 + 3.91868e10i 0.0506800 + 0.0877804i
\(389\) 3.97828e10 + 6.89059e10i 0.0880891 + 0.152575i 0.906703 0.421769i \(-0.138591\pi\)
−0.818614 + 0.574344i \(0.805257\pi\)
\(390\) 0 0
\(391\) −5.64353e11 −1.22111
\(392\) 1.23306e11 1.10072e11i 0.263753 0.235445i
\(393\) 0 0
\(394\) −1.72948e11 + 2.99555e11i −0.361562 + 0.626243i
\(395\) 1.16912e10 + 2.02498e10i 0.0241642 + 0.0418537i
\(396\) 0 0
\(397\) 2.78539e11 4.82444e11i 0.562768 0.974742i −0.434486 0.900679i \(-0.643070\pi\)
0.997254 0.0740637i \(-0.0235968\pi\)
\(398\) 5.79226e11 1.15711
\(399\) 0 0
\(400\) 2.04489e11 0.399393
\(401\) −9.40464e10 + 1.62893e11i −0.181632 + 0.314596i −0.942436 0.334385i \(-0.891471\pi\)
0.760804 + 0.648981i \(0.224805\pi\)
\(402\) 0 0
\(403\) −4.75256e11 8.23167e11i −0.897542 1.55459i
\(404\) 7.10280e10 1.23024e11i 0.132652 0.229760i
\(405\) 0 0
\(406\) −1.15002e11 + 7.16156e11i −0.210057 + 1.30810i
\(407\) −2.49230e11 −0.450220
\(408\) 0 0
\(409\) −2.63478e11 4.56357e11i −0.465575 0.806399i 0.533653 0.845704i \(-0.320819\pi\)
−0.999227 + 0.0393049i \(0.987486\pi\)
\(410\) 5.34106e11 + 9.25098e11i 0.933469 + 1.61682i
\(411\) 0 0
\(412\) 1.17471e11 0.200861
\(413\) −5.73455e11 4.66413e11i −0.969894 0.788852i
\(414\) 0 0
\(415\) −3.06083e11 + 5.30152e11i −0.506551 + 0.877372i
\(416\) 6.49149e10 + 1.12436e11i 0.106273 + 0.184071i
\(417\) 0 0
\(418\) 2.99628e11 5.18971e11i 0.480053 0.831477i
\(419\) −5.68924e11 −0.901760 −0.450880 0.892585i \(-0.648890\pi\)
−0.450880 + 0.892585i \(0.648890\pi\)
\(420\) 0 0
\(421\) −1.20331e12 −1.86684 −0.933421 0.358783i \(-0.883192\pi\)
−0.933421 + 0.358783i \(0.883192\pi\)
\(422\) 1.81409e11 3.14209e11i 0.278453 0.482295i
\(423\) 0 0
\(424\) 1.43163e10 + 2.47965e10i 0.0215121 + 0.0372601i
\(425\) 6.03825e11 1.04585e12i 0.897761 1.55497i
\(426\) 0 0
\(427\) 1.69263e10 1.05406e11i 0.0246398 0.153441i
\(428\) 1.18747e11 0.171050
\(429\) 0 0
\(430\) −2.01971e11 3.49823e11i −0.284892 0.493447i
\(431\) −1.88761e11 3.26944e11i −0.263490 0.456379i 0.703677 0.710520i \(-0.251540\pi\)
−0.967167 + 0.254142i \(0.918207\pi\)
\(432\) 0 0
\(433\) −7.52013e11 −1.02809 −0.514043 0.857764i \(-0.671853\pi\)
−0.514043 + 0.857764i \(0.671853\pi\)
\(434\) −7.29041e11 + 2.78062e11i −0.986390 + 0.376216i
\(435\) 0 0
\(436\) 3.11693e11 5.39868e11i 0.413084 0.715482i
\(437\) −4.70798e11 8.15447e11i −0.617545 1.06962i
\(438\) 0 0
\(439\) −3.58606e11 + 6.21123e11i −0.460815 + 0.798155i −0.999002 0.0446706i \(-0.985776\pi\)
0.538187 + 0.842826i \(0.319110\pi\)
\(440\) 5.35102e11 0.680612
\(441\) 0 0
\(442\) 7.66734e11 0.955531
\(443\) −4.78364e11 + 8.28551e11i −0.590122 + 1.02212i 0.404093 + 0.914718i \(0.367587\pi\)
−0.994215 + 0.107404i \(0.965746\pi\)
\(444\) 0 0
\(445\) −7.95072e11 1.37711e12i −0.961140 1.66474i
\(446\) 2.52144e11 4.36726e11i 0.301746 0.522639i
\(447\) 0 0
\(448\) 9.95793e10 3.79803e10i 0.116793 0.0445458i
\(449\) 9.36350e11 1.08725 0.543626 0.839328i \(-0.317051\pi\)
0.543626 + 0.839328i \(0.317051\pi\)
\(450\) 0 0
\(451\) 8.59580e11 + 1.48884e12i 0.978345 + 1.69454i
\(452\) −2.37260e11 4.10946e11i −0.267363 0.463087i
\(453\) 0 0
\(454\) −1.13145e12 −1.24992
\(455\) −2.80887e11 + 1.74919e12i −0.307242 + 1.91331i
\(456\) 0 0
\(457\) 2.60052e11 4.50423e11i 0.278893 0.483057i −0.692217 0.721689i \(-0.743366\pi\)
0.971110 + 0.238633i \(0.0766992\pi\)
\(458\) 3.61068e11 + 6.25389e11i 0.383438 + 0.664133i
\(459\) 0 0
\(460\) 4.20396e11 7.28147e11i 0.437772 0.758244i
\(461\) 6.01482e11 0.620253 0.310126 0.950695i \(-0.399629\pi\)
0.310126 + 0.950695i \(0.399629\pi\)
\(462\) 0 0
\(463\) 1.12146e11 0.113414 0.0567072 0.998391i \(-0.481940\pi\)
0.0567072 + 0.998391i \(0.481940\pi\)
\(464\) −2.33843e11 + 4.05029e11i −0.234204 + 0.405653i
\(465\) 0 0
\(466\) −6.36635e10 1.10268e11i −0.0625394 0.108321i
\(467\) 8.07872e11 1.39928e12i 0.785990 1.36137i −0.142416 0.989807i \(-0.545487\pi\)
0.928406 0.371567i \(-0.121179\pi\)
\(468\) 0 0
\(469\) −6.14285e11 4.99621e11i −0.586262 0.476830i
\(470\) −1.54842e12 −1.46369
\(471\) 0 0
\(472\) −2.38309e11 4.12764e11i −0.221005 0.382792i
\(473\) −3.25048e11 5.62999e11i −0.298588 0.517169i
\(474\) 0 0
\(475\) 2.01491e12 1.81608
\(476\) 9.97929e10 6.21446e11i 0.0890981 0.554845i
\(477\) 0 0
\(478\) −1.29711e11 + 2.24666e11i −0.113645 + 0.196840i
\(479\) 6.50890e10 + 1.12738e11i 0.0564934 + 0.0978495i 0.892889 0.450277i \(-0.148675\pi\)
−0.836396 + 0.548126i \(0.815341\pi\)
\(480\) 0 0
\(481\) 2.66021e11 4.60762e11i 0.226602 0.392486i
\(482\) −1.50272e12 −1.26814
\(483\) 0 0
\(484\) 2.57549e11 0.213332
\(485\) −1.99062e11 + 3.44785e11i −0.163362 + 0.282951i
\(486\) 0 0
\(487\) 5.56957e11 + 9.64678e11i 0.448685 + 0.777145i 0.998301 0.0582724i \(-0.0185592\pi\)
−0.549616 + 0.835418i \(0.685226\pi\)
\(488\) 3.44178e10 5.96134e10i 0.0274722 0.0475833i
\(489\) 0 0
\(490\) 1.38117e12 + 4.55324e11i 1.08235 + 0.356811i
\(491\) −6.75227e11 −0.524304 −0.262152 0.965027i \(-0.584432\pi\)
−0.262152 + 0.965027i \(0.584432\pi\)
\(492\) 0 0
\(493\) 1.38101e12 + 2.39197e12i 1.05289 + 1.82367i
\(494\) 6.39631e11 + 1.10787e12i 0.483235 + 0.836987i
\(495\) 0 0
\(496\) −5.03110e11 −0.373246
\(497\) −9.96374e10 + 3.80024e10i −0.0732519 + 0.0279388i
\(498\) 0 0
\(499\) 8.34220e11 1.44491e12i 0.602321 1.04325i −0.390147 0.920752i \(-0.627576\pi\)
0.992469 0.122499i \(-0.0390908\pi\)
\(500\) 3.36495e11 + 5.82826e11i 0.240776 + 0.417036i
\(501\) 0 0
\(502\) −8.44561e10 + 1.46282e11i −0.0593560 + 0.102808i
\(503\) −3.46503e11 −0.241352 −0.120676 0.992692i \(-0.538506\pi\)
−0.120676 + 0.992692i \(0.538506\pi\)
\(504\) 0 0
\(505\) 1.24988e12 0.855180
\(506\) 6.76578e11 1.17187e12i 0.458818 0.794696i
\(507\) 0 0
\(508\) −2.13896e11 3.70478e11i −0.142500 0.246818i
\(509\) 1.20259e12 2.08295e12i 0.794124 1.37546i −0.129271 0.991609i \(-0.541264\pi\)
0.923394 0.383853i \(-0.125403\pi\)
\(510\) 0 0
\(511\) 1.24467e12 + 1.01234e12i 0.807532 + 0.656797i
\(512\) 6.87195e10 0.0441942
\(513\) 0 0
\(514\) −4.29249e11 7.43481e11i −0.271253 0.469824i
\(515\) 5.16786e11 + 8.95100e11i 0.323727 + 0.560711i
\(516\) 0 0
\(517\) −2.49200e12 −1.53406
\(518\) −3.38829e11 2.75583e11i −0.206774 0.168177i
\(519\) 0 0
\(520\) −5.71154e11 + 9.89267e11i −0.342561 + 0.593333i
\(521\) 7.32058e11 + 1.26796e12i 0.435287 + 0.753940i 0.997319 0.0731760i \(-0.0233135\pi\)
−0.562032 + 0.827116i \(0.689980\pi\)
\(522\) 0 0
\(523\) −9.52063e11 + 1.64902e12i −0.556427 + 0.963759i 0.441364 + 0.897328i \(0.354495\pi\)
−0.997791 + 0.0664313i \(0.978839\pi\)
\(524\) −4.08959e11 −0.236968
\(525\) 0 0
\(526\) −1.46374e12 −0.833732
\(527\) −1.48561e12 + 2.57315e12i −0.838988 + 1.45317i
\(528\) 0 0
\(529\) −1.62514e11 2.81482e11i −0.0902276 0.156279i
\(530\) −1.25962e11 + 2.18172e11i −0.0693421 + 0.120104i
\(531\) 0 0
\(532\) 9.81192e11 3.74234e11i 0.531070 0.202554i
\(533\) −3.66997e12 −1.96966
\(534\) 0 0
\(535\) 5.22396e11 + 9.04816e11i 0.275682 + 0.477494i
\(536\) −2.55277e11 4.42152e11i −0.133589 0.231382i
\(537\) 0 0
\(538\) −1.02892e11 −0.0529493
\(539\) 2.22284e12 + 7.32790e11i 1.13438 + 0.373964i
\(540\) 0 0
\(541\) −1.14872e12 + 1.98965e12i −0.576537 + 0.998592i 0.419336 + 0.907831i \(0.362263\pi\)
−0.995873 + 0.0907604i \(0.971070\pi\)
\(542\) 4.58953e11 + 7.94929e11i 0.228439 + 0.395669i
\(543\) 0 0
\(544\) 2.02918e11 3.51464e11i 0.0993403 0.172062i
\(545\) 5.48486e12 2.66306
\(546\) 0 0
\(547\) −2.86900e12 −1.37021 −0.685105 0.728444i \(-0.740244\pi\)
−0.685105 + 0.728444i \(0.740244\pi\)
\(548\) −2.27485e11 + 3.94015e11i −0.107756 + 0.186638i
\(549\) 0 0
\(550\) 1.44780e12 + 2.50766e12i 0.674646 + 1.16852i
\(551\) −2.30415e12 + 3.99090e12i −1.06495 + 1.84454i
\(552\) 0 0
\(553\) −1.04556e10 + 6.51109e10i −0.00475431 + 0.0296068i
\(554\) −1.02742e12 −0.463399
\(555\) 0 0
\(556\) 2.22572e11 + 3.85506e11i 0.0987720 + 0.171078i
\(557\) 9.59606e10 + 1.66209e11i 0.0422420 + 0.0731653i 0.886373 0.462971i \(-0.153217\pi\)
−0.844131 + 0.536136i \(0.819883\pi\)
\(558\) 0 0
\(559\) 1.38779e12 0.601133
\(560\) 7.27473e11 + 5.91682e11i 0.312587 + 0.254239i
\(561\) 0 0
\(562\) −3.96079e11 + 6.86029e11i −0.167482 + 0.290087i
\(563\) −6.12000e11 1.06002e12i −0.256723 0.444656i 0.708639 0.705571i \(-0.249309\pi\)
−0.965362 + 0.260914i \(0.915976\pi\)
\(564\) 0 0
\(565\) 2.08753e12 3.61571e12i 0.861817 1.49271i
\(566\) 8.41608e11 0.344696
\(567\) 0 0
\(568\) −6.87596e10 −0.0277183
\(569\) 1.11297e12 1.92771e12i 0.445119 0.770969i −0.552941 0.833220i \(-0.686495\pi\)
0.998061 + 0.0622510i \(0.0198279\pi\)
\(570\) 0 0
\(571\) −5.69461e11 9.86336e11i −0.224183 0.388296i 0.731891 0.681421i \(-0.238638\pi\)
−0.956074 + 0.293126i \(0.905305\pi\)
\(572\) −9.19204e11 + 1.59211e12i −0.359029 + 0.621857i
\(573\) 0 0
\(574\) −4.77659e11 + 2.97455e12i −0.183660 + 1.14371i
\(575\) 4.54978e12 1.73574
\(576\) 0 0
\(577\) 1.79762e12 + 3.11357e12i 0.675160 + 1.16941i 0.976422 + 0.215870i \(0.0692586\pi\)
−0.301263 + 0.953541i \(0.597408\pi\)
\(578\) −2.49667e11 4.32436e11i −0.0930436 0.161156i
\(579\) 0 0
\(580\) −4.11494e12 −1.50986
\(581\) −1.61313e12 + 6.15260e11i −0.587323 + 0.224009i
\(582\) 0 0
\(583\) −2.02720e11 + 3.51122e11i −0.0726757 + 0.125878i
\(584\) 5.17244e11 + 8.95893e11i 0.184008 + 0.318712i
\(585\) 0 0
\(586\) −7.48841e10 + 1.29703e11i −0.0262332 + 0.0454372i
\(587\) 3.32627e11 0.115634 0.0578170 0.998327i \(-0.481586\pi\)
0.0578170 + 0.998327i \(0.481586\pi\)
\(588\) 0 0
\(589\) −4.95733e12 −1.69719
\(590\) 2.09676e12 3.63170e12i 0.712386 1.23389i
\(591\) 0 0
\(592\) −1.40806e11 2.43884e11i −0.0471166 0.0816084i
\(593\) 3.89298e11 6.74284e11i 0.129281 0.223922i −0.794117 0.607765i \(-0.792066\pi\)
0.923398 + 0.383843i \(0.125400\pi\)
\(594\) 0 0
\(595\) 5.17426e12 1.97350e12i 1.69247 0.645522i
\(596\) −1.93376e12 −0.627763
\(597\) 0 0
\(598\) 1.44432e12 + 2.50164e12i 0.461859 + 0.799962i
\(599\) 9.21805e11 + 1.59661e12i 0.292562 + 0.506733i 0.974415 0.224757i \(-0.0721588\pi\)
−0.681853 + 0.731490i \(0.738825\pi\)
\(600\) 0 0
\(601\) 4.75336e12 1.48616 0.743080 0.669202i \(-0.233364\pi\)
0.743080 + 0.669202i \(0.233364\pi\)
\(602\) 1.80625e11 1.12482e12i 0.0560524 0.349058i
\(603\) 0 0
\(604\) 1.16563e12 2.01893e12i 0.356364 0.617240i
\(605\) 1.13302e12 + 1.96245e12i 0.343826 + 0.595525i
\(606\) 0 0
\(607\) 2.28872e12 3.96418e12i 0.684295 1.18523i −0.289363 0.957220i \(-0.593443\pi\)
0.973658 0.228014i \(-0.0732233\pi\)
\(608\) 6.77119e11 0.200955
\(609\) 0 0
\(610\) 6.05650e11 0.177108
\(611\) 2.65990e12 4.60708e12i 0.772111 1.33734i
\(612\) 0 0
\(613\) −1.96745e12 3.40773e12i −0.562772 0.974750i −0.997253 0.0740689i \(-0.976402\pi\)
0.434481 0.900681i \(-0.356932\pi\)
\(614\) −8.51898e11 + 1.47553e12i −0.241897 + 0.418977i
\(615\) 0 0
\(616\) 1.17078e12 + 9.52242e11i 0.327614 + 0.266461i
\(617\) −1.62043e12 −0.450140 −0.225070 0.974343i \(-0.572261\pi\)
−0.225070 + 0.974343i \(0.572261\pi\)
\(618\) 0 0
\(619\) 1.53624e12 + 2.66085e12i 0.420583 + 0.728471i 0.995997 0.0893913i \(-0.0284922\pi\)
−0.575413 + 0.817863i \(0.695159\pi\)
\(620\) −2.21331e12 3.83356e12i −0.601561 1.04193i
\(621\) 0 0
\(622\) 4.43239e11 0.118736
\(623\) 7.11045e11 4.42793e12i 0.189104 1.17762i
\(624\) 0 0
\(625\) 8.64747e10 1.49778e11i 0.0226688 0.0392635i
\(626\) −1.17087e11 2.02800e11i −0.0304735 0.0527817i
\(627\) 0 0
\(628\) −1.59069e12 + 2.75515e12i −0.408100 + 0.706850i
\(629\) −1.66312e12 −0.423638
\(630\) 0 0
\(631\) −2.89789e11 −0.0727696 −0.0363848 0.999338i \(-0.511584\pi\)
−0.0363848 + 0.999338i \(0.511584\pi\)
\(632\) −2.12604e10 + 3.68241e10i −0.00530084 + 0.00918132i
\(633\) 0 0
\(634\) −2.09513e12 3.62888e12i −0.515003 0.892012i
\(635\) 1.88196e12 3.25966e12i 0.459335 0.795591i
\(636\) 0 0
\(637\) −3.72734e12 + 3.32730e12i −0.896957 + 0.800689i
\(638\) −6.62252e12 −1.58245
\(639\) 0 0
\(640\) 3.02314e11 + 5.23624e11i 0.0712277 + 0.123370i
\(641\) −3.93795e12 6.82073e12i −0.921317 1.59577i −0.797379 0.603479i \(-0.793781\pi\)
−0.123938 0.992290i \(-0.539552\pi\)
\(642\) 0 0
\(643\) 8.30296e12 1.91551 0.957754 0.287590i \(-0.0928541\pi\)
0.957754 + 0.287590i \(0.0928541\pi\)
\(644\) 2.21559e12 8.45042e11i 0.507578 0.193594i
\(645\) 0 0
\(646\) 1.99943e12 3.46311e12i 0.451709 0.782384i
\(647\) 2.94053e12 + 5.09315e12i 0.659715 + 1.14266i 0.980689 + 0.195572i \(0.0626562\pi\)
−0.320975 + 0.947088i \(0.604010\pi\)
\(648\) 0 0
\(649\) 3.37449e12 5.84480e12i 0.746634 1.29321i
\(650\) −6.18137e12 −1.35823
\(651\) 0 0
\(652\) 1.03789e12 0.224925
\(653\) −1.29217e12 + 2.23810e12i −0.278106 + 0.481694i −0.970914 0.239428i \(-0.923040\pi\)
0.692808 + 0.721122i \(0.256373\pi\)
\(654\) 0 0
\(655\) −1.79911e12 3.11616e12i −0.381920 0.661505i
\(656\) −9.71267e11 + 1.68228e12i −0.204772 + 0.354676i
\(657\) 0 0
\(658\) −3.38789e12 2.75550e12i −0.704552 0.573039i
\(659\) −6.13192e12 −1.26652 −0.633260 0.773939i \(-0.718284\pi\)
−0.633260 + 0.773939i \(0.718284\pi\)
\(660\) 0 0
\(661\) −5.64211e10 9.77243e10i −0.0114957 0.0199111i 0.860220 0.509923i \(-0.170326\pi\)
−0.871716 + 0.490011i \(0.836993\pi\)
\(662\) 8.74413e11 + 1.51453e12i 0.176952 + 0.306490i
\(663\) 0 0
\(664\) −1.11322e12 −0.222241
\(665\) 7.16807e12 + 5.83007e12i 1.42136 + 1.15605i
\(666\) 0 0
\(667\) −5.20290e12 + 9.01168e12i −1.01784 + 1.76295i
\(668\) 3.67902e11 + 6.37225e11i 0.0714888 + 0.123822i
\(669\) 0 0
\(670\) 2.24605e12 3.89028e12i 0.430609 0.745837i
\(671\) 9.74723e11 0.185622
\(672\) 0 0
\(673\) −5.40433e12 −1.01549 −0.507743 0.861509i \(-0.669520\pi\)
−0.507743 + 0.861509i \(0.669520\pi\)
\(674\) −1.82759e12 + 3.16548e12i −0.341122 + 0.590841i
\(675\) 0 0
\(676\) −6.04893e11 1.04771e12i −0.111409 0.192965i
\(677\) −9.23227e11 + 1.59908e12i −0.168912 + 0.292564i −0.938037 0.346534i \(-0.887359\pi\)
0.769126 + 0.639097i \(0.220692\pi\)
\(678\) 0 0
\(679\) −1.04910e12 + 4.00136e11i −0.189411 + 0.0722427i
\(680\) 3.57075e12 0.640426
\(681\) 0 0
\(682\) −3.56206e12 6.16967e12i −0.630480 1.09202i
\(683\) −1.48317e12 2.56892e12i −0.260793 0.451707i 0.705660 0.708551i \(-0.250651\pi\)
−0.966453 + 0.256844i \(0.917317\pi\)
\(684\) 0 0
\(685\) −4.00305e12 −0.694678
\(686\) 2.21168e12 + 3.45410e12i 0.381298 + 0.595493i
\(687\) 0 0
\(688\) 3.67282e11 6.36151e11i 0.0624959 0.108246i
\(689\) −4.32757e11 7.49557e11i −0.0731573 0.126712i
\(690\) 0 0
\(691\) 1.47397e12 2.55299e12i 0.245944 0.425988i −0.716452 0.697636i \(-0.754235\pi\)
0.962397 + 0.271648i \(0.0875687\pi\)
\(692\) −1.59061e12 −0.263685
\(693\) 0 0
\(694\) −7.86556e12 −1.28710
\(695\) −1.95830e12 + 3.39187e12i −0.318381 + 0.551452i
\(696\) 0 0
\(697\) 5.73600e12 + 9.93504e12i 0.920580 + 1.59449i
\(698\) 1.98949e12 3.44590e12i 0.317243 0.549481i
\(699\) 0 0
\(700\) −8.04525e11 + 5.01006e12i −0.126648 + 0.788682i
\(701\) 6.64689e12 1.03965 0.519826 0.854272i \(-0.325997\pi\)
0.519826 + 0.854272i \(0.325997\pi\)
\(702\) 0 0
\(703\) −1.38742e12 2.40308e12i −0.214244 0.371081i
\(704\) 4.86539e11 + 8.42710e11i 0.0746519 + 0.129301i
\(705\) 0 0
\(706\) 6.98254e12 1.05777
\(707\) 2.73469e12 + 2.22423e12i 0.411643 + 0.334805i
\(708\) 0 0
\(709\) 1.71074e12 2.96308e12i 0.254258 0.440388i −0.710436 0.703762i \(-0.751502\pi\)
0.964694 + 0.263374i \(0.0848353\pi\)
\(710\) −3.02491e11 5.23929e11i −0.0446735 0.0773767i
\(711\) 0 0
\(712\) 1.44583e12 2.50425e12i 0.210842 0.365190i
\(713\) −1.11939e13 −1.62211
\(714\) 0 0
\(715\) −1.61752e13 −2.31459
\(716\) −1.92247e12 + 3.32981e12i −0.273370 + 0.473490i
\(717\) 0 0
\(718\) −1.64010e12 2.84074e12i −0.230309 0.398907i
\(719\) −1.09736e12 + 1.90068e12i −0.153133 + 0.265234i −0.932378 0.361486i \(-0.882270\pi\)
0.779245 + 0.626720i \(0.215603\pi\)
\(720\) 0 0
\(721\) −4.62170e11 + 2.87809e12i −0.0636932 + 0.396640i
\(722\) 1.50890e12 0.206654
\(723\) 0 0
\(724\) −3.82909e11 6.63218e11i −0.0517931 0.0897083i
\(725\) −1.11336e13 1.92840e13i −1.49663 2.59224i
\(726\) 0 0
\(727\) −6.12356e12 −0.813016 −0.406508 0.913647i \(-0.633254\pi\)
−0.406508 + 0.913647i \(0.633254\pi\)
\(728\) −3.01012e12 + 1.14808e12i −0.397184 + 0.151489i
\(729\) 0 0
\(730\) −4.55097e12 + 7.88251e12i −0.593132 + 1.02733i
\(731\) −2.16905e12 3.75691e12i −0.280958 0.486634i
\(732\) 0 0
\(733\) 1.81651e11 3.14629e11i 0.0232419 0.0402561i −0.854171 0.519993i \(-0.825935\pi\)
0.877412 + 0.479737i \(0.159268\pi\)
\(734\) 7.51859e12 0.956101
\(735\) 0 0
\(736\) 1.52897e12 0.192066
\(737\) 3.61476e12 6.26094e12i 0.451310 0.781692i
\(738\) 0 0
\(739\) −4.25145e12 7.36373e12i −0.524369 0.908234i −0.999597 0.0283716i \(-0.990968\pi\)
0.475228 0.879863i \(-0.342365\pi\)
\(740\) 1.23888e12 2.14581e12i 0.151876 0.263056i
\(741\) 0 0
\(742\) −6.63848e11 + 2.53197e11i −0.0803991 + 0.0306648i
\(743\) 1.21515e13 1.46278 0.731391 0.681959i \(-0.238872\pi\)
0.731391 + 0.681959i \(0.238872\pi\)
\(744\) 0 0
\(745\) −8.50712e12 1.47348e13i −1.01176 1.75243i
\(746\) −3.31285e12 5.73802e12i −0.391631 0.678324i
\(747\) 0 0
\(748\) 5.74670e12 0.671214
\(749\) −4.67186e11 + 2.90933e12i −0.0542403 + 0.337773i
\(750\) 0 0
\(751\) 2.56775e12 4.44746e12i 0.294559 0.510191i −0.680323 0.732912i \(-0.738161\pi\)
0.974882 + 0.222721i \(0.0714939\pi\)
\(752\) −1.40790e12 2.43855e12i −0.160543 0.278068i
\(753\) 0 0
\(754\) 7.06870e12 1.22433e13i 0.796468 1.37952i
\(755\) 2.05116e13 2.29740
\(756\) 0 0
\(757\) −1.43960e12 −0.159335 −0.0796675 0.996821i \(-0.525386\pi\)
−0.0796675 + 0.996821i \(0.525386\pi\)
\(758\) 4.50122e11 7.79633e11i 0.0495243 0.0857786i
\(759\) 0 0
\(760\) 2.97882e12 + 5.15946e12i 0.323879 + 0.560974i
\(761\) 1.00476e12 1.74030e12i 0.108601 0.188102i −0.806603 0.591094i \(-0.798696\pi\)
0.915204 + 0.402992i \(0.132030\pi\)
\(762\) 0 0
\(763\) 1.20007e13 + 9.76061e12i 1.28187 + 1.04260i
\(764\) 5.96772e12 0.633706
\(765\) 0 0
\(766\) 6.03082e12 + 1.04457e13i 0.632917 + 1.09624i
\(767\) 7.20369e12 + 1.24772e13i 0.751582 + 1.30178i
\(768\) 0 0
\(769\) −8.97077e12 −0.925042 −0.462521 0.886608i \(-0.653055\pi\)
−0.462521 + 0.886608i \(0.653055\pi\)
\(770\) −2.10526e12 + 1.31102e13i −0.215823 + 1.34401i
\(771\) 0 0
\(772\) −1.25143e12 + 2.16754e12i −0.126803 + 0.219628i
\(773\) −8.38920e12 1.45305e13i −0.845109 1.46377i −0.885526 0.464589i \(-0.846202\pi\)
0.0404173 0.999183i \(-0.487131\pi\)
\(774\) 0 0
\(775\) 1.19769e13 2.07446e13i 1.19258 2.06560i
\(776\) −7.23985e11 −0.0716724
\(777\) 0 0
\(778\) −1.27305e12 −0.124577
\(779\) −9.57025e12 + 1.65762e13i −0.931118 + 1.61274i
\(780\) 0 0
\(781\) −4.86823e11 8.43203e11i −0.0468211 0.0810965i
\(782\) 4.51482e12 7.81990e12i 0.431728 0.747775i
\(783\) 0 0
\(784\) 5.38754e11 + 2.58916e12i 0.0509294 + 0.244757i
\(785\) −2.79913e13 −2.63094
\(786\) 0 0
\(787\) 9.89536e12 + 1.71393e13i 0.919486 + 1.59260i 0.800197 + 0.599738i \(0.204728\pi\)
0.119290 + 0.992859i \(0.461938\pi\)
\(788\) −2.76717e12 4.79287e12i −0.255663 0.442821i
\(789\) 0 0
\(790\) −3.74119e11 −0.0341734
\(791\) 1.10018e13 4.19617e12i 0.999239 0.381117i
\(792\) 0 0
\(793\) −1.04039e12 + 1.80201e12i −0.0934261 + 0.161819i
\(794\) 4.45663e12 + 7.71911e12i 0.397937 + 0.689247i
\(795\) 0 0
\(796\) −4.63381e12 + 8.02599e12i −0.409100 + 0.708582i
\(797\) −1.91358e13 −1.67990 −0.839951 0.542663i \(-0.817416\pi\)
−0.839951 + 0.542663i \(0.817416\pi\)
\(798\) 0 0
\(799\) −1.66292e13 −1.44348
\(800\) −1.63591e12 + 2.83348e12i −0.141207 + 0.244577i
\(801\) 0 0
\(802\) −1.50474e12 2.60629e12i −0.128433 0.222453i
\(803\) −7.32425e12 + 1.26860e13i −0.621646 + 1.07672i
\(804\) 0 0
\(805\) 1.61859e13 + 1.31646e13i 1.35849 + 1.10491i
\(806\) 1.52082e13 1.26932
\(807\) 0 0
\(808\) 1.13645e12 + 1.96839e12i 0.0937991 + 0.162465i
\(809\) 4.06948e12 + 7.04855e12i 0.334019 + 0.578537i 0.983296 0.182015i \(-0.0582618\pi\)
−0.649277 + 0.760552i \(0.724928\pi\)
\(810\) 0 0
\(811\) −3.43326e12 −0.278684 −0.139342 0.990244i \(-0.544499\pi\)
−0.139342 + 0.990244i \(0.544499\pi\)
\(812\) −9.00334e12 7.32276e12i −0.726777 0.591116i
\(813\) 0 0
\(814\) 1.99384e12 3.45343e12i 0.159177 0.275702i
\(815\) 4.56594e12 + 7.90844e12i 0.362511 + 0.627887i
\(816\) 0 0
\(817\) 3.61897e12 6.26823e12i 0.284175 0.492205i
\(818\) 8.43129e12 0.658422
\(819\) 0 0
\(820\) −1.70914e13 −1.32012
\(821\) −8.81289e12 + 1.52644e13i −0.676977 + 1.17256i 0.298910 + 0.954281i \(0.403377\pi\)
−0.975887 + 0.218277i \(0.929956\pi\)
\(822\) 0 0
\(823\) 9.16295e12 + 1.58707e13i 0.696203 + 1.20586i 0.969773 + 0.244008i \(0.0784622\pi\)
−0.273570 + 0.961852i \(0.588204\pi\)
\(824\) −9.39771e11 + 1.62773e12i −0.0710150 + 0.123002i
\(825\) 0 0
\(826\) 1.10504e13 4.21472e12i 0.825980 0.315035i
\(827\) −1.66782e13 −1.23987 −0.619933 0.784655i \(-0.712840\pi\)
−0.619933 + 0.784655i \(0.712840\pi\)
\(828\) 0 0
\(829\) −1.11795e13 1.93635e13i −0.822106 1.42393i −0.904111 0.427298i \(-0.859466\pi\)
0.0820047 0.996632i \(-0.473868\pi\)
\(830\) −4.89733e12 8.48243e12i −0.358186 0.620396i
\(831\) 0 0
\(832\) −2.07728e12 −0.150293
\(833\) 1.48330e13 + 4.88993e12i 1.06740 + 0.351884i
\(834\) 0 0
\(835\) −3.23699e12 + 5.60663e12i −0.230437 + 0.399128i
\(836\) 4.79405e12 + 8.30354e12i 0.339449 + 0.587943i
\(837\) 0 0
\(838\) 4.55139e12 7.88324e12i 0.318820 0.552213i
\(839\) 4.56271e12 0.317902 0.158951 0.987286i \(-0.449189\pi\)
0.158951 + 0.987286i \(0.449189\pi\)
\(840\) 0 0
\(841\) 3.64201e13 2.51049
\(842\) 9.62647e12 1.66735e13i 0.660028 1.14320i
\(843\) 0 0
\(844\) 2.90254e12 + 5.02734e12i 0.196896 + 0.341034i
\(845\) 5.32216e12 9.21825e12i 0.359114 0.622004i
\(846\) 0 0
\(847\) −1.01328e12 + 6.31004e12i −0.0676478 + 0.421266i
\(848\) −4.58120e11 −0.0304227
\(849\) 0 0
\(850\) 9.66119e12 + 1.67337e13i 0.634813 + 1.09953i
\(851\) −3.13287e12 5.42629e12i −0.204767 0.354666i
\(852\) 0 0
\(853\) 3.32776e12 0.215219 0.107610 0.994193i \(-0.465680\pi\)
0.107610 + 0.994193i \(0.465680\pi\)
\(854\) 1.32514e12 + 1.07779e12i 0.0852514 + 0.0693382i
\(855\) 0 0
\(856\) −9.49972e11 + 1.64540e12i −0.0604754 + 0.104747i
\(857\) −1.18941e13 2.06012e13i −0.753214 1.30461i −0.946257 0.323415i \(-0.895169\pi\)
0.193043 0.981190i \(-0.438164\pi\)
\(858\) 0 0
\(859\) −9.23089e12 + 1.59884e13i −0.578461 + 1.00192i 0.417195 + 0.908817i \(0.363013\pi\)
−0.995656 + 0.0931074i \(0.970320\pi\)
\(860\) 6.46306e12 0.402898
\(861\) 0 0
\(862\) 6.04036e12 0.372632
\(863\) 3.52216e12 6.10056e12i 0.216153 0.374388i −0.737476 0.675374i \(-0.763982\pi\)
0.953629 + 0.300986i \(0.0973157\pi\)
\(864\) 0 0
\(865\) −6.99749e12 1.21200e13i −0.424981 0.736089i
\(866\) 6.01610e12 1.04202e13i 0.363484 0.629572i
\(867\) 0 0
\(868\) 1.97939e12 1.23264e13i 0.118357 0.737050i
\(869\) −6.02101e11 −0.0358162
\(870\) 0 0
\(871\) 7.71659e12 + 1.33655e13i 0.454301 + 0.786873i
\(872\) 4.98709e12 + 8.63789e12i 0.292094 + 0.505922i
\(873\) 0 0
\(874\) 1.50655e13 0.873340
\(875\) −1.56033e13 + 5.95123e12i −0.899873 + 0.343218i
\(876\) 0 0
\(877\) −5.96444e11 + 1.03307e12i −0.0340464 + 0.0589701i −0.882547 0.470225i \(-0.844173\pi\)
0.848500 + 0.529195i \(0.177506\pi\)
\(878\) −5.73769e12 9.93797e12i −0.325845 0.564381i
\(879\) 0 0
\(880\) −4.28082e12 + 7.41459e12i −0.240633 + 0.416788i
\(881\) 2.12338e13 1.18751 0.593754 0.804647i \(-0.297645\pi\)
0.593754 + 0.804647i \(0.297645\pi\)
\(882\) 0 0
\(883\) 1.08414e13 0.600155 0.300078 0.953915i \(-0.402987\pi\)
0.300078 + 0.953915i \(0.402987\pi\)
\(884\) −6.13387e12 + 1.06242e13i −0.337831 + 0.585141i
\(885\) 0 0
\(886\) −7.65383e12 1.32568e13i −0.417279 0.722749i
\(887\) 3.87438e12 6.71063e12i 0.210158 0.364005i −0.741606 0.670836i \(-0.765935\pi\)
0.951764 + 0.306831i \(0.0992688\pi\)
\(888\) 0 0
\(889\) 9.91839e12 3.78295e12i 0.532578 0.203129i
\(890\) 2.54423e13 1.35926
\(891\) 0 0
\(892\) 4.03430e12 + 6.98761e12i 0.213367 + 0.369562i
\(893\) −1.38725e13 2.40279e13i −0.730003 1.26440i
\(894\) 0 0
\(895\) −3.38297e13 −1.76236
\(896\) −2.70364e11 + 1.68365e12i −0.0140140 + 0.0872703i
\(897\) 0 0
\(898\) −7.49080e12 + 1.29745e13i −0.384401 + 0.665803i
\(899\) 2.73923e13 + 4.74448e13i 1.39865 + 2.42254i
\(900\) 0 0
\(901\) −1.35276e12 + 2.34305e12i −0.0683847 + 0.118446i
\(902\) −2.75066e13 −1.38359
\(903\) 0 0
\(904\) 7.59232e12 0.378109
\(905\) 3.36903e12 5.83533e12i 0.166950 0.289166i
\(906\) 0 0
\(907\) −2.85796e12 4.95013e12i −0.140224 0.242875i 0.787357 0.616498i \(-0.211449\pi\)
−0.927581 + 0.373622i \(0.878116\pi\)
\(908\) 9.05159e12 1.56778e13i 0.441915 0.765419i
\(909\) 0 0
\(910\) −2.19903e13 1.78856e13i −1.06303 0.864603i
\(911\) −5.49279e12 −0.264217 −0.132108 0.991235i \(-0.542175\pi\)
−0.132108 + 0.991235i \(0.542175\pi\)
\(912\) 0 0
\(913\) −7.88168e12 1.36515e13i −0.375405 0.650221i
\(914\) 4.16083e12 + 7.20677e12i 0.197207 + 0.341573i
\(915\) 0 0
\(916\) −1.15542e13 −0.542263
\(917\) 1.60897e12 1.00197e13i 0.0751428 0.467940i
\(918\) 0 0
\(919\) −1.57120e12 + 2.72140e12i −0.0726627 + 0.125856i −0.900067 0.435751i \(-0.856483\pi\)
0.827405 + 0.561606i \(0.189816\pi\)
\(920\) 6.72634e12 + 1.16504e13i 0.309552 + 0.536160i
\(921\) 0 0
\(922\) −4.81186e12 + 8.33438e12i −0.219292 + 0.379826i
\(923\) 2.07849e12 0.0942628
\(924\) 0 0
\(925\) 1.34079e13 0.602177
\(926\) −8.97165e11 + 1.55394e12i −0.0400980 + 0.0694518i
\(927\) 0 0
\(928\) −3.74149e12 6.48046e12i −0.165607 0.286840i
\(929\) −1.37546e12 + 2.38237e12i −0.0605867 + 0.104939i −0.894728 0.446612i \(-0.852630\pi\)
0.834141 + 0.551551i \(0.185964\pi\)
\(930\) 0 0
\(931\) 5.30855e12 + 2.55119e13i 0.231581 + 1.11293i
\(932\) 2.03723e12 0.0884441
\(933\) 0 0
\(934\) 1.29260e13 + 2.23884e13i 0.555779 + 0.962637i
\(935\) 2.52812e13 + 4.37883e13i 1.08179 + 1.87372i
\(936\) 0 0
\(937\) 6.32915e12 0.268236 0.134118 0.990965i \(-0.457180\pi\)
0.134118 + 0.990965i \(0.457180\pi\)
\(938\) 1.18372e13 4.51481e12i 0.499272 0.190426i
\(939\) 0 0
\(940\) 1.23874e13 2.14556e13i 0.517493 0.896324i
\(941\) 1.11972e13 + 1.93940e13i 0.465537 + 0.806334i 0.999226 0.0393470i \(-0.0125278\pi\)
−0.533688 + 0.845681i \(0.679194\pi\)
\(942\) 0 0
\(943\) −2.16102e13 + 3.74299e13i −0.889930 + 1.54140i
\(944\) 7.62590e12 0.312548
\(945\) 0 0
\(946\) 1.04015e13 0.422267
\(947\) 1.16873e13 2.02429e13i 0.472213 0.817896i −0.527282 0.849690i \(-0.676789\pi\)
0.999494 + 0.0317942i \(0.0101221\pi\)
\(948\) 0 0
\(949\) −1.56354e13 2.70813e13i −0.625766 1.08386i
\(950\) −1.61193e13 + 2.79194e13i −0.642080 + 1.11211i
\(951\) 0 0
\(952\) 7.81266e12 + 6.35434e12i 0.308271 + 0.250729i
\(953\) −2.63265e13 −1.03389 −0.516947 0.856018i \(-0.672931\pi\)
−0.516947 + 0.856018i \(0.672931\pi\)
\(954\) 0 0
\(955\) 2.62535e13 + 4.54724e13i 1.02134 + 1.76902i
\(956\) −2.07538e12 3.59466e12i −0.0803595 0.139187i
\(957\) 0 0
\(958\) −2.08285e12 −0.0798938
\(959\) −8.75852e12 7.12364e12i −0.334385 0.271968i
\(960\) 0 0
\(961\) −1.62472e13 + 2.81410e13i −0.614503 + 1.06435i
\(962\) 4.25634e12 + 7.37220e12i 0.160232 + 0.277529i
\(963\) 0 0
\(964\) 1.20218e13 2.08223e13i 0.448355 0.776573i
\(965\) −2.20214e13 −0.817470
\(966\) 0 0
\(967\) −4.79277e13 −1.76266 −0.881328 0.472505i \(-0.843350\pi\)
−0.881328 + 0.472505i \(0.843350\pi\)
\(968\) −2.06039e12 + 3.56870e12i −0.0754241 + 0.130638i
\(969\) 0 0
\(970\) −3.18499e12 5.51657e12i −0.115514 0.200077i
\(971\) 2.36803e13 4.10156e13i 0.854873 1.48068i −0.0218899 0.999760i \(-0.506968\pi\)
0.876763 0.480923i \(-0.159698\pi\)
\(972\) 0 0
\(973\) −1.03207e13 + 3.93639e12i −0.369149 + 0.140796i
\(974\) −1.78226e13 −0.634536
\(975\) 0 0
\(976\) 5.50685e11 + 9.53814e11i 0.0194258 + 0.0336465i
\(977\) 2.74088e13 + 4.74734e13i 0.962420 + 1.66696i 0.716393 + 0.697697i \(0.245792\pi\)
0.246026 + 0.969263i \(0.420875\pi\)
\(978\) 0 0
\(979\) 4.09464e13 1.42460
\(980\) −1.73585e13 + 1.54955e13i −0.601168 + 0.536647i
\(981\) 0 0
\(982\) 5.40182e12 9.35622e12i 0.185369 0.321069i
\(983\) 4.28550e12 + 7.42271e12i 0.146390 + 0.253555i 0.929891 0.367836i \(-0.119901\pi\)
−0.783501 + 0.621391i \(0.786568\pi\)
\(984\) 0 0
\(985\) 2.43469e13 4.21701e13i 0.824102 1.42739i
\(986\) −4.41922e13 −1.48902
\(987\) 0 0
\(988\) −2.04682e13 −0.683397
\(989\) 8.17183e12 1.41540e13i 0.271604 0.470432i
\(990\) 0 0
\(991\) −1.65382e13 2.86451e13i −0.544701 0.943449i −0.998626 0.0524093i \(-0.983310\pi\)
0.453925 0.891040i \(-0.350023\pi\)
\(992\) 4.02488e12 6.97130e12i 0.131963 0.228566i
\(993\) 0 0
\(994\) 2.70522e11 1.68464e12i 0.00878950 0.0547353i
\(995\) −8.15412e13 −2.63738
\(996\) 0 0
\(997\) −1.18985e12 2.06089e12i −0.0381386 0.0660581i 0.846326 0.532665i \(-0.178810\pi\)
−0.884465 + 0.466607i \(0.845476\pi\)
\(998\) 1.33475e13 + 2.31186e13i 0.425906 + 0.737690i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.10.g.d.37.3 6
3.2 odd 2 42.10.e.d.37.1 yes 6
7.4 even 3 inner 126.10.g.d.109.3 6
21.2 odd 6 294.10.a.r.1.3 3
21.5 even 6 294.10.a.u.1.1 3
21.11 odd 6 42.10.e.d.25.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.10.e.d.25.1 6 21.11 odd 6
42.10.e.d.37.1 yes 6 3.2 odd 2
126.10.g.d.37.3 6 1.1 even 1 trivial
126.10.g.d.109.3 6 7.4 even 3 inner
294.10.a.r.1.3 3 21.2 odd 6
294.10.a.u.1.1 3 21.5 even 6