Properties

Label 126.10.g.d.109.1
Level $126$
Weight $10$
Character 126.109
Analytic conductor $64.895$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [126,10,Mod(37,126)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(126, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("126.37");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 126.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.8945153566\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 373x^{4} - 756x^{3} + 139129x^{2} - 140994x + 142884 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 5^{2}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(9.39252 + 16.2683i\) of defining polynomial
Character \(\chi\) \(=\) 126.109
Dual form 126.10.g.d.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-8.00000 - 13.8564i) q^{2} +(-128.000 + 221.703i) q^{4} +(-1070.48 - 1854.13i) q^{5} +(1163.76 + 6244.94i) q^{7} +4096.00 q^{8} +(-17127.7 + 29666.1i) q^{10} +(-38719.2 + 67063.6i) q^{11} -92014.0 q^{13} +(77222.3 - 66085.1i) q^{14} +(-32768.0 - 56755.8i) q^{16} +(328781. - 569465. i) q^{17} +(371263. + 643047. i) q^{19} +548087. q^{20} +1.23901e6 q^{22} +(-3231.59 - 5597.28i) q^{23} +(-1.31530e6 + 2.27817e6i) q^{25} +(736112. + 1.27498e6i) q^{26} +(-1.53348e6 - 541344. i) q^{28} +2.55350e6 q^{29} +(-431646. + 747632. i) q^{31} +(-524288. + 908093. i) q^{32} -1.05210e7 q^{34} +(1.03331e7 - 8.84286e6i) q^{35} +(3.87152e6 + 6.70567e6i) q^{37} +(5.94021e6 - 1.02888e7i) q^{38} +(-4.38470e6 - 7.59451e6i) q^{40} -2.13515e7 q^{41} +1.01098e7 q^{43} +(-9.91211e6 - 1.71683e7i) q^{44} +(-51705.5 + 89556.5i) q^{46} +(1.31759e7 + 2.28213e7i) q^{47} +(-3.76449e7 + 1.45352e7i) q^{49} +4.20897e7 q^{50} +(1.17778e7 - 2.03997e7i) q^{52} +(-1.19254e7 + 2.06555e7i) q^{53} +1.65793e8 q^{55} +(4.76676e6 + 2.55793e7i) q^{56} +(-2.04280e7 - 3.53823e7i) q^{58} +(7.76530e7 - 1.34499e8i) q^{59} +(-4.28559e7 - 7.42286e7i) q^{61} +1.38127e7 q^{62} +1.67772e7 q^{64} +(9.84994e7 + 1.70606e8i) q^{65} +(1.11224e8 - 1.92646e8i) q^{67} +(8.41678e7 + 1.45783e8i) q^{68} +(-2.05195e8 - 7.24373e7i) q^{70} -2.65826e8 q^{71} +(1.87429e8 - 3.24637e8i) q^{73} +(6.19443e7 - 1.07291e8i) q^{74} -1.90087e8 q^{76} +(-4.63868e8 - 1.63753e8i) q^{77} +(-4.81092e6 - 8.33275e6i) q^{79} +(-7.01551e7 + 1.21512e8i) q^{80} +(1.70812e8 + 2.95855e8i) q^{82} -5.90221e8 q^{83} -1.40782e9 q^{85} +(-8.08785e7 - 1.40086e8i) q^{86} +(-1.58594e8 + 2.74692e8i) q^{88} +(-2.74589e8 - 4.75603e8i) q^{89} +(-1.07082e8 - 5.74622e8i) q^{91} +1.65458e6 q^{92} +(2.10814e8 - 3.65140e8i) q^{94} +(7.94862e8 - 1.37674e9i) q^{95} +6.67265e8 q^{97} +(5.02565e8 + 4.05342e8i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 48 q^{2} - 768 q^{4} - 361 q^{5} + 12509 q^{7} + 24576 q^{8} - 5776 q^{10} - 37799 q^{11} - 441172 q^{13} - 38752 q^{14} - 196608 q^{16} + 781816 q^{17} - 620154 q^{19} + 184832 q^{20} + 1209568 q^{22}+ \cdots + 2185772400 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/126\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −8.00000 13.8564i −0.353553 0.612372i
\(3\) 0 0
\(4\) −128.000 + 221.703i −0.250000 + 0.433013i
\(5\) −1070.48 1854.13i −0.765975 1.32671i −0.939730 0.341918i \(-0.888923\pi\)
0.173755 0.984789i \(-0.444410\pi\)
\(6\) 0 0
\(7\) 1163.76 + 6244.94i 0.183199 + 0.983076i
\(8\) 4096.00 0.353553
\(9\) 0 0
\(10\) −17127.7 + 29666.1i −0.541626 + 0.938124i
\(11\) −38719.2 + 67063.6i −0.797368 + 1.38108i 0.123956 + 0.992288i \(0.460442\pi\)
−0.921324 + 0.388795i \(0.872892\pi\)
\(12\) 0 0
\(13\) −92014.0 −0.893530 −0.446765 0.894651i \(-0.647424\pi\)
−0.446765 + 0.894651i \(0.647424\pi\)
\(14\) 77222.3 66085.1i 0.537238 0.459756i
\(15\) 0 0
\(16\) −32768.0 56755.8i −0.125000 0.216506i
\(17\) 328781. 569465.i 0.954742 1.65366i 0.219785 0.975548i \(-0.429464\pi\)
0.734957 0.678113i \(-0.237202\pi\)
\(18\) 0 0
\(19\) 371263. + 643047.i 0.653568 + 1.13201i 0.982251 + 0.187573i \(0.0600621\pi\)
−0.328682 + 0.944441i \(0.606605\pi\)
\(20\) 548087. 0.765975
\(21\) 0 0
\(22\) 1.23901e6 1.12765
\(23\) −3231.59 5597.28i −0.00240792 0.00417063i 0.864819 0.502084i \(-0.167433\pi\)
−0.867227 + 0.497913i \(0.834100\pi\)
\(24\) 0 0
\(25\) −1.31530e6 + 2.27817e6i −0.673435 + 1.16642i
\(26\) 736112. + 1.27498e6i 0.315910 + 0.547173i
\(27\) 0 0
\(28\) −1.53348e6 541344.i −0.471484 0.166442i
\(29\) 2.55350e6 0.670416 0.335208 0.942144i \(-0.391193\pi\)
0.335208 + 0.942144i \(0.391193\pi\)
\(30\) 0 0
\(31\) −431646. + 747632.i −0.0839460 + 0.145399i −0.904942 0.425536i \(-0.860086\pi\)
0.820996 + 0.570934i \(0.193419\pi\)
\(32\) −524288. + 908093.i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) −1.05210e7 −1.35021
\(35\) 1.03331e7 8.84286e6i 1.16393 0.996062i
\(36\) 0 0
\(37\) 3.87152e6 + 6.70567e6i 0.339605 + 0.588213i 0.984358 0.176178i \(-0.0563733\pi\)
−0.644754 + 0.764390i \(0.723040\pi\)
\(38\) 5.94021e6 1.02888e7i 0.462143 0.800454i
\(39\) 0 0
\(40\) −4.38470e6 7.59451e6i −0.270813 0.469062i
\(41\) −2.13515e7 −1.18005 −0.590025 0.807385i \(-0.700882\pi\)
−0.590025 + 0.807385i \(0.700882\pi\)
\(42\) 0 0
\(43\) 1.01098e7 0.450957 0.225478 0.974248i \(-0.427606\pi\)
0.225478 + 0.974248i \(0.427606\pi\)
\(44\) −9.91211e6 1.71683e7i −0.398684 0.690541i
\(45\) 0 0
\(46\) −51705.5 + 89556.5i −0.00170265 + 0.00294908i
\(47\) 1.31759e7 + 2.28213e7i 0.393857 + 0.682180i 0.992955 0.118496i \(-0.0378072\pi\)
−0.599098 + 0.800676i \(0.704474\pi\)
\(48\) 0 0
\(49\) −3.76449e7 + 1.45352e7i −0.932876 + 0.360196i
\(50\) 4.20897e7 0.952380
\(51\) 0 0
\(52\) 1.17778e7 2.03997e7i 0.223382 0.386910i
\(53\) −1.19254e7 + 2.06555e7i −0.207603 + 0.359578i −0.950959 0.309317i \(-0.899899\pi\)
0.743356 + 0.668896i \(0.233233\pi\)
\(54\) 0 0
\(55\) 1.65793e8 2.44306
\(56\) 4.76676e6 + 2.55793e7i 0.0647705 + 0.347570i
\(57\) 0 0
\(58\) −2.04280e7 3.53823e7i −0.237028 0.410544i
\(59\) 7.76530e7 1.34499e8i 0.834303 1.44506i −0.0602929 0.998181i \(-0.519203\pi\)
0.894596 0.446875i \(-0.147463\pi\)
\(60\) 0 0
\(61\) −4.28559e7 7.42286e7i −0.396302 0.686415i 0.596964 0.802268i \(-0.296373\pi\)
−0.993266 + 0.115853i \(0.963040\pi\)
\(62\) 1.38127e7 0.118718
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) 9.84994e7 + 1.70606e8i 0.684421 + 1.18545i
\(66\) 0 0
\(67\) 1.11224e8 1.92646e8i 0.674317 1.16795i −0.302352 0.953196i \(-0.597772\pi\)
0.976668 0.214754i \(-0.0688950\pi\)
\(68\) 8.41678e7 + 1.45783e8i 0.477371 + 0.826831i
\(69\) 0 0
\(70\) −2.05195e8 7.24373e7i −1.02147 0.360596i
\(71\) −2.65826e8 −1.24147 −0.620734 0.784022i \(-0.713165\pi\)
−0.620734 + 0.784022i \(0.713165\pi\)
\(72\) 0 0
\(73\) 1.87429e8 3.24637e8i 0.772475 1.33797i −0.163728 0.986505i \(-0.552352\pi\)
0.936203 0.351460i \(-0.114315\pi\)
\(74\) 6.19443e7 1.07291e8i 0.240137 0.415929i
\(75\) 0 0
\(76\) −1.90087e8 −0.653568
\(77\) −4.63868e8 1.63753e8i −1.50379 0.530861i
\(78\) 0 0
\(79\) −4.81092e6 8.33275e6i −0.0138965 0.0240695i 0.858994 0.511986i \(-0.171090\pi\)
−0.872890 + 0.487917i \(0.837757\pi\)
\(80\) −7.01551e7 + 1.21512e8i −0.191494 + 0.331677i
\(81\) 0 0
\(82\) 1.70812e8 + 2.95855e8i 0.417211 + 0.722630i
\(83\) −5.90221e8 −1.36510 −0.682548 0.730841i \(-0.739128\pi\)
−0.682548 + 0.730841i \(0.739128\pi\)
\(84\) 0 0
\(85\) −1.40782e9 −2.92523
\(86\) −8.08785e7 1.40086e8i −0.159437 0.276153i
\(87\) 0 0
\(88\) −1.58594e8 + 2.74692e8i −0.281912 + 0.488286i
\(89\) −2.74589e8 4.75603e8i −0.463904 0.803506i 0.535247 0.844696i \(-0.320219\pi\)
−0.999151 + 0.0411896i \(0.986885\pi\)
\(90\) 0 0
\(91\) −1.07082e8 5.74622e8i −0.163693 0.878407i
\(92\) 1.65458e6 0.00240792
\(93\) 0 0
\(94\) 2.10814e8 3.65140e8i 0.278499 0.482374i
\(95\) 7.94862e8 1.37674e9i 1.00123 1.73419i
\(96\) 0 0
\(97\) 6.67265e8 0.765289 0.382644 0.923896i \(-0.375013\pi\)
0.382644 + 0.923896i \(0.375013\pi\)
\(98\) 5.02565e8 + 4.05342e8i 0.550396 + 0.443919i
\(99\) 0 0
\(100\) −3.36717e8 5.83211e8i −0.336717 0.583211i
\(101\) 7.45596e8 1.29141e9i 0.712947 1.23486i −0.250799 0.968039i \(-0.580693\pi\)
0.963746 0.266821i \(-0.0859734\pi\)
\(102\) 0 0
\(103\) −5.17697e8 8.96677e8i −0.453219 0.784998i 0.545365 0.838199i \(-0.316391\pi\)
−0.998584 + 0.0532006i \(0.983058\pi\)
\(104\) −3.76889e8 −0.315910
\(105\) 0 0
\(106\) 3.81614e8 0.293595
\(107\) 6.40566e8 + 1.10949e9i 0.472429 + 0.818272i 0.999502 0.0315484i \(-0.0100438\pi\)
−0.527073 + 0.849820i \(0.676710\pi\)
\(108\) 0 0
\(109\) −9.66590e7 + 1.67418e8i −0.0655878 + 0.113601i −0.896955 0.442123i \(-0.854226\pi\)
0.831367 + 0.555724i \(0.187559\pi\)
\(110\) −1.32634e9 2.29729e9i −0.863751 1.49606i
\(111\) 0 0
\(112\) 3.16303e8 2.70684e8i 0.189942 0.162548i
\(113\) −2.50261e9 −1.44391 −0.721955 0.691940i \(-0.756756\pi\)
−0.721955 + 0.691940i \(0.756756\pi\)
\(114\) 0 0
\(115\) −6.91872e6 + 1.19836e7i −0.00368880 + 0.00638920i
\(116\) −3.26848e8 + 5.66117e8i −0.167604 + 0.290299i
\(117\) 0 0
\(118\) −2.48490e9 −1.17988
\(119\) 3.93889e9 + 1.39049e9i 1.80058 + 0.635635i
\(120\) 0 0
\(121\) −1.81937e9 3.15125e9i −0.771593 1.33644i
\(122\) −6.85694e8 + 1.18766e9i −0.280228 + 0.485369i
\(123\) 0 0
\(124\) −1.10501e8 1.91394e8i −0.0419730 0.0726993i
\(125\) 1.45046e9 0.531386
\(126\) 0 0
\(127\) 1.61401e9 0.550540 0.275270 0.961367i \(-0.411233\pi\)
0.275270 + 0.961367i \(0.411233\pi\)
\(128\) −1.34218e8 2.32472e8i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 1.57599e9 2.72969e9i 0.483959 0.838241i
\(131\) −1.67488e9 2.90098e9i −0.496893 0.860644i 0.503101 0.864228i \(-0.332192\pi\)
−0.999994 + 0.00358415i \(0.998859\pi\)
\(132\) 0 0
\(133\) −3.58373e9 + 3.06687e9i −0.993122 + 0.849891i
\(134\) −3.55918e9 −0.953628
\(135\) 0 0
\(136\) 1.34669e9 2.33253e9i 0.337552 0.584658i
\(137\) −2.61593e9 + 4.53093e9i −0.634430 + 1.09887i 0.352205 + 0.935923i \(0.385432\pi\)
−0.986636 + 0.162943i \(0.947901\pi\)
\(138\) 0 0
\(139\) 4.86927e9 1.10636 0.553181 0.833061i \(-0.313414\pi\)
0.553181 + 0.833061i \(0.313414\pi\)
\(140\) 6.37842e8 + 3.42277e9i 0.140326 + 0.753011i
\(141\) 0 0
\(142\) 2.12661e9 + 3.68340e9i 0.438925 + 0.760240i
\(143\) 3.56271e9 6.17079e9i 0.712472 1.23404i
\(144\) 0 0
\(145\) −2.73347e9 4.73451e9i −0.513522 0.889446i
\(146\) −5.99773e9 −1.09244
\(147\) 0 0
\(148\) −1.98222e9 −0.339605
\(149\) 4.28903e8 + 7.42882e8i 0.0712888 + 0.123476i 0.899466 0.436990i \(-0.143955\pi\)
−0.828178 + 0.560466i \(0.810622\pi\)
\(150\) 0 0
\(151\) 7.13023e8 1.23499e9i 0.111611 0.193316i −0.804809 0.593534i \(-0.797732\pi\)
0.916420 + 0.400218i \(0.131066\pi\)
\(152\) 1.52069e9 + 2.63392e9i 0.231071 + 0.400227i
\(153\) 0 0
\(154\) 1.44191e9 + 7.73756e9i 0.206584 + 1.10856i
\(155\) 1.84828e9 0.257202
\(156\) 0 0
\(157\) 5.43197e9 9.40846e9i 0.713525 1.23586i −0.250001 0.968246i \(-0.580431\pi\)
0.963526 0.267616i \(-0.0862359\pi\)
\(158\) −7.69746e7 + 1.33324e8i −0.00982632 + 0.0170197i
\(159\) 0 0
\(160\) 2.24496e9 0.270813
\(161\) 3.11939e7 2.66950e7i 0.00365892 0.00313122i
\(162\) 0 0
\(163\) 4.46717e9 + 7.73737e9i 0.495665 + 0.858518i 0.999988 0.00499805i \(-0.00159094\pi\)
−0.504322 + 0.863516i \(0.668258\pi\)
\(164\) 2.73299e9 4.73367e9i 0.295012 0.510976i
\(165\) 0 0
\(166\) 4.72177e9 + 8.17834e9i 0.482634 + 0.835947i
\(167\) 1.45791e10 1.45046 0.725231 0.688505i \(-0.241733\pi\)
0.725231 + 0.688505i \(0.241733\pi\)
\(168\) 0 0
\(169\) −2.13792e9 −0.201605
\(170\) 1.12625e10 + 1.95073e10i 1.03423 + 1.79133i
\(171\) 0 0
\(172\) −1.29406e9 + 2.24137e9i −0.112739 + 0.195270i
\(173\) −1.95829e9 3.39186e9i −0.166215 0.287892i 0.770871 0.636991i \(-0.219821\pi\)
−0.937086 + 0.349099i \(0.886488\pi\)
\(174\) 0 0
\(175\) −1.57577e10 5.56274e9i −1.27005 0.448350i
\(176\) 5.07500e9 0.398684
\(177\) 0 0
\(178\) −4.39343e9 + 7.60964e9i −0.328030 + 0.568165i
\(179\) 2.25086e9 3.89861e9i 0.163874 0.283838i −0.772381 0.635160i \(-0.780934\pi\)
0.936255 + 0.351322i \(0.114268\pi\)
\(180\) 0 0
\(181\) 6.07935e9 0.421021 0.210510 0.977592i \(-0.432487\pi\)
0.210510 + 0.977592i \(0.432487\pi\)
\(182\) −7.10554e9 + 6.08075e9i −0.480038 + 0.410805i
\(183\) 0 0
\(184\) −1.32366e7 2.29265e7i −0.000851327 0.00147454i
\(185\) 8.28879e9 1.43566e10i 0.520257 0.901112i
\(186\) 0 0
\(187\) 2.54602e10 + 4.40984e10i 1.52256 + 2.63716i
\(188\) −6.74604e9 −0.393857
\(189\) 0 0
\(190\) −2.54356e10 −1.41596
\(191\) −4.49180e9 7.78003e9i −0.244214 0.422991i 0.717696 0.696356i \(-0.245197\pi\)
−0.961910 + 0.273365i \(0.911863\pi\)
\(192\) 0 0
\(193\) 6.07803e9 1.05275e10i 0.315322 0.546154i −0.664184 0.747569i \(-0.731221\pi\)
0.979506 + 0.201415i \(0.0645540\pi\)
\(194\) −5.33812e9 9.24589e9i −0.270570 0.468642i
\(195\) 0 0
\(196\) 1.59606e9 1.02065e10i 0.0772495 0.493996i
\(197\) 2.25902e10 1.06862 0.534308 0.845290i \(-0.320572\pi\)
0.534308 + 0.845290i \(0.320572\pi\)
\(198\) 0 0
\(199\) −1.40098e9 + 2.42658e9i −0.0633278 + 0.109687i −0.895951 0.444153i \(-0.853505\pi\)
0.832623 + 0.553840i \(0.186838\pi\)
\(200\) −5.38748e9 + 9.33138e9i −0.238095 + 0.412393i
\(201\) 0 0
\(202\) −2.38591e10 −1.00826
\(203\) 2.97166e9 + 1.59464e10i 0.122819 + 0.659070i
\(204\) 0 0
\(205\) 2.28564e10 + 3.95884e10i 0.903888 + 1.56558i
\(206\) −8.28315e9 + 1.43468e10i −0.320474 + 0.555077i
\(207\) 0 0
\(208\) 3.01512e9 + 5.22233e9i 0.111691 + 0.193455i
\(209\) −5.75001e10 −2.08454
\(210\) 0 0
\(211\) 1.43493e9 0.0498380 0.0249190 0.999689i \(-0.492067\pi\)
0.0249190 + 0.999689i \(0.492067\pi\)
\(212\) −3.05291e9 5.28780e9i −0.103801 0.179789i
\(213\) 0 0
\(214\) 1.02491e10 1.77519e10i 0.334058 0.578605i
\(215\) −1.08224e10 1.87449e10i −0.345421 0.598287i
\(216\) 0 0
\(217\) −5.17125e9 1.82554e9i −0.158317 0.0558884i
\(218\) 3.09309e9 0.0927552
\(219\) 0 0
\(220\) −2.12215e10 + 3.67567e10i −0.610764 + 1.05787i
\(221\) −3.02524e10 + 5.23987e10i −0.853090 + 1.47760i
\(222\) 0 0
\(223\) −2.50519e9 −0.0678372 −0.0339186 0.999425i \(-0.510799\pi\)
−0.0339186 + 0.999425i \(0.510799\pi\)
\(224\) −6.28113e9 2.21734e9i −0.166695 0.0588460i
\(225\) 0 0
\(226\) 2.00209e10 + 3.46772e10i 0.510499 + 0.884210i
\(227\) 3.25982e9 5.64618e9i 0.0814850 0.141136i −0.822403 0.568905i \(-0.807367\pi\)
0.903888 + 0.427769i \(0.140700\pi\)
\(228\) 0 0
\(229\) 2.69070e9 + 4.66043e9i 0.0646556 + 0.111987i 0.896541 0.442960i \(-0.146072\pi\)
−0.831886 + 0.554947i \(0.812738\pi\)
\(230\) 2.21399e8 0.00521676
\(231\) 0 0
\(232\) 1.04591e10 0.237028
\(233\) −2.78378e10 4.82164e10i −0.618775 1.07175i −0.989710 0.143091i \(-0.954296\pi\)
0.370935 0.928659i \(-0.379037\pi\)
\(234\) 0 0
\(235\) 2.82090e10 4.88595e10i 0.603369 1.04507i
\(236\) 1.98792e10 + 3.44317e10i 0.417152 + 0.722528i
\(237\) 0 0
\(238\) −1.22439e10 6.57029e10i −0.247357 1.32736i
\(239\) 9.46283e10 1.87599 0.937995 0.346648i \(-0.112680\pi\)
0.937995 + 0.346648i \(0.112680\pi\)
\(240\) 0 0
\(241\) 1.39422e10 2.41485e10i 0.266228 0.461120i −0.701657 0.712515i \(-0.747556\pi\)
0.967885 + 0.251395i \(0.0808893\pi\)
\(242\) −2.91100e10 + 5.04200e10i −0.545598 + 0.945004i
\(243\) 0 0
\(244\) 2.19422e10 0.396302
\(245\) 6.72484e10 + 5.42389e10i 1.19243 + 0.961753i
\(246\) 0 0
\(247\) −3.41614e10 5.91694e10i −0.583983 1.01149i
\(248\) −1.76802e9 + 3.06230e9i −0.0296794 + 0.0514062i
\(249\) 0 0
\(250\) −1.16037e10 2.00981e10i −0.187873 0.325406i
\(251\) −3.03736e10 −0.483019 −0.241509 0.970398i \(-0.577642\pi\)
−0.241509 + 0.970398i \(0.577642\pi\)
\(252\) 0 0
\(253\) 5.00498e8 0.00767998
\(254\) −1.29121e10 2.23643e10i −0.194645 0.337135i
\(255\) 0 0
\(256\) −2.14748e9 + 3.71955e9i −0.0312500 + 0.0541266i
\(257\) 4.50692e10 + 7.80621e10i 0.644437 + 1.11620i 0.984431 + 0.175771i \(0.0562417\pi\)
−0.339994 + 0.940428i \(0.610425\pi\)
\(258\) 0 0
\(259\) −3.73710e10 + 3.19812e10i −0.516043 + 0.441617i
\(260\) −5.04317e10 −0.684421
\(261\) 0 0
\(262\) −2.67981e10 + 4.64156e10i −0.351356 + 0.608567i
\(263\) 4.06474e10 7.04033e10i 0.523880 0.907386i −0.475734 0.879589i \(-0.657817\pi\)
0.999614 0.0277971i \(-0.00884922\pi\)
\(264\) 0 0
\(265\) 5.10639e10 0.636074
\(266\) 7.11656e10 + 2.51226e10i 0.871571 + 0.307679i
\(267\) 0 0
\(268\) 2.84735e10 + 4.93175e10i 0.337158 + 0.583975i
\(269\) 5.35167e10 9.26936e10i 0.623166 1.07935i −0.365727 0.930722i \(-0.619179\pi\)
0.988892 0.148633i \(-0.0474872\pi\)
\(270\) 0 0
\(271\) 3.35168e10 + 5.80527e10i 0.377485 + 0.653824i 0.990696 0.136096i \(-0.0434555\pi\)
−0.613210 + 0.789920i \(0.710122\pi\)
\(272\) −4.30939e10 −0.477371
\(273\) 0 0
\(274\) 8.37098e10 0.897220
\(275\) −1.01855e11 1.76418e11i −1.07395 1.86014i
\(276\) 0 0
\(277\) 7.05918e10 1.22269e11i 0.720436 1.24783i −0.240389 0.970677i \(-0.577275\pi\)
0.960825 0.277155i \(-0.0893916\pi\)
\(278\) −3.89542e10 6.74706e10i −0.391158 0.677506i
\(279\) 0 0
\(280\) 4.23246e10 3.62204e10i 0.411511 0.352161i
\(281\) 7.98623e10 0.764123 0.382061 0.924137i \(-0.375214\pi\)
0.382061 + 0.924137i \(0.375214\pi\)
\(282\) 0 0
\(283\) −4.40429e10 + 7.62846e10i −0.408166 + 0.706965i −0.994684 0.102971i \(-0.967165\pi\)
0.586518 + 0.809936i \(0.300498\pi\)
\(284\) 3.40258e10 5.89343e10i 0.310367 0.537571i
\(285\) 0 0
\(286\) −1.14007e11 −1.00759
\(287\) −2.48480e10 1.33339e11i −0.216184 1.16008i
\(288\) 0 0
\(289\) −1.56899e11 2.71758e11i −1.32306 2.29162i
\(290\) −4.37356e10 + 7.57522e10i −0.363115 + 0.628933i
\(291\) 0 0
\(292\) 4.79819e10 + 8.31070e10i 0.386237 + 0.668983i
\(293\) 7.12696e10 0.564937 0.282469 0.959277i \(-0.408847\pi\)
0.282469 + 0.959277i \(0.408847\pi\)
\(294\) 0 0
\(295\) −3.32505e11 −2.55622
\(296\) 1.58577e10 + 2.74664e10i 0.120068 + 0.207965i
\(297\) 0 0
\(298\) 6.86245e9 1.18861e10i 0.0504088 0.0873105i
\(299\) 2.97352e8 + 5.15028e8i 0.00215154 + 0.00372658i
\(300\) 0 0
\(301\) 1.17654e10 + 6.31351e10i 0.0826147 + 0.443325i
\(302\) −2.28167e10 −0.157842
\(303\) 0 0
\(304\) 2.43311e10 4.21427e10i 0.163392 0.283003i
\(305\) −9.17529e10 + 1.58921e11i −0.607115 + 1.05155i
\(306\) 0 0
\(307\) −1.31777e10 −0.0846677 −0.0423338 0.999104i \(-0.513479\pi\)
−0.0423338 + 0.999104i \(0.513479\pi\)
\(308\) 9.56795e10 8.18803e10i 0.605816 0.518443i
\(309\) 0 0
\(310\) −1.47862e10 2.56105e10i −0.0909346 0.157503i
\(311\) −1.10435e11 + 1.91279e11i −0.669400 + 1.15943i 0.308673 + 0.951168i \(0.400115\pi\)
−0.978072 + 0.208266i \(0.933218\pi\)
\(312\) 0 0
\(313\) 1.50518e10 + 2.60704e10i 0.0886417 + 0.153532i 0.906937 0.421266i \(-0.138414\pi\)
−0.818296 + 0.574798i \(0.805081\pi\)
\(314\) −1.73823e11 −1.00908
\(315\) 0 0
\(316\) 2.46319e9 0.0138965
\(317\) −4.56593e10 7.90843e10i −0.253959 0.439869i 0.710654 0.703542i \(-0.248399\pi\)
−0.964612 + 0.263673i \(0.915066\pi\)
\(318\) 0 0
\(319\) −9.88693e10 + 1.71247e11i −0.534568 + 0.925900i
\(320\) −1.79597e10 3.11071e10i −0.0957468 0.165838i
\(321\) 0 0
\(322\) −6.19448e8 2.18675e8i −0.00321110 0.00113357i
\(323\) 4.88257e11 2.49596
\(324\) 0 0
\(325\) 1.21026e11 2.09624e11i 0.601734 1.04223i
\(326\) 7.14748e10 1.23798e11i 0.350488 0.607064i
\(327\) 0 0
\(328\) −8.74556e10 −0.417211
\(329\) −1.27184e11 + 1.08841e11i −0.598481 + 0.512166i
\(330\) 0 0
\(331\) −7.24179e10 1.25432e11i −0.331604 0.574356i 0.651222 0.758887i \(-0.274257\pi\)
−0.982827 + 0.184531i \(0.940923\pi\)
\(332\) 7.55483e10 1.30853e11i 0.341274 0.591104i
\(333\) 0 0
\(334\) −1.16633e11 2.02014e11i −0.512816 0.888223i
\(335\) −4.76255e11 −2.06604
\(336\) 0 0
\(337\) 4.40381e11 1.85992 0.929959 0.367664i \(-0.119842\pi\)
0.929959 + 0.367664i \(0.119842\pi\)
\(338\) 1.71034e10 + 2.96239e10i 0.0712781 + 0.123457i
\(339\) 0 0
\(340\) 1.80200e11 3.12116e11i 0.731308 1.26666i
\(341\) −3.34259e10 5.78954e10i −0.133872 0.231873i
\(342\) 0 0
\(343\) −1.34581e11 2.18175e11i −0.525002 0.851101i
\(344\) 4.14098e10 0.159437
\(345\) 0 0
\(346\) −3.13326e10 + 5.42697e10i −0.117531 + 0.203571i
\(347\) 6.60794e10 1.14453e11i 0.244672 0.423784i −0.717368 0.696695i \(-0.754653\pi\)
0.962039 + 0.272911i \(0.0879865\pi\)
\(348\) 0 0
\(349\) 1.26079e11 0.454911 0.227456 0.973788i \(-0.426959\pi\)
0.227456 + 0.973788i \(0.426959\pi\)
\(350\) 4.89823e10 + 2.62847e11i 0.174475 + 0.936262i
\(351\) 0 0
\(352\) −4.06000e10 7.03213e10i −0.140956 0.244143i
\(353\) −1.44777e11 + 2.50762e11i −0.496266 + 0.859557i −0.999991 0.00430667i \(-0.998629\pi\)
0.503725 + 0.863864i \(0.331962\pi\)
\(354\) 0 0
\(355\) 2.84562e11 + 4.92876e11i 0.950933 + 1.64706i
\(356\) 1.40590e11 0.463904
\(357\) 0 0
\(358\) −7.20276e10 −0.231753
\(359\) 1.05817e11 + 1.83280e11i 0.336225 + 0.582359i 0.983719 0.179711i \(-0.0575164\pi\)
−0.647494 + 0.762070i \(0.724183\pi\)
\(360\) 0 0
\(361\) −1.14329e11 + 1.98024e11i −0.354303 + 0.613671i
\(362\) −4.86348e10 8.42379e10i −0.148853 0.257821i
\(363\) 0 0
\(364\) 1.41102e11 + 4.98112e10i 0.421285 + 0.148721i
\(365\) −8.02558e11 −2.36678
\(366\) 0 0
\(367\) 3.00433e11 5.20365e11i 0.864471 1.49731i −0.00310083 0.999995i \(-0.500987\pi\)
0.867572 0.497312i \(-0.165680\pi\)
\(368\) −2.11786e8 + 3.66823e8i −0.000601979 + 0.00104266i
\(369\) 0 0
\(370\) −2.65241e11 −0.735755
\(371\) −1.42871e11 5.04356e10i −0.391525 0.138215i
\(372\) 0 0
\(373\) 7.00479e10 + 1.21326e11i 0.187372 + 0.324538i 0.944373 0.328875i \(-0.106670\pi\)
−0.757001 + 0.653414i \(0.773336\pi\)
\(374\) 4.07364e11 7.05575e11i 1.07661 1.86475i
\(375\) 0 0
\(376\) 5.39683e10 + 9.34759e10i 0.139249 + 0.241187i
\(377\) −2.34958e11 −0.599037
\(378\) 0 0
\(379\) −5.87185e11 −1.46183 −0.730917 0.682466i \(-0.760907\pi\)
−0.730917 + 0.682466i \(0.760907\pi\)
\(380\) 2.03485e11 + 3.52446e11i 0.500617 + 0.867094i
\(381\) 0 0
\(382\) −7.18689e10 + 1.24481e11i −0.172685 + 0.299100i
\(383\) 1.94963e11 + 3.37685e11i 0.462975 + 0.801895i 0.999108 0.0422381i \(-0.0134488\pi\)
−0.536133 + 0.844134i \(0.680115\pi\)
\(384\) 0 0
\(385\) 1.92943e11 + 1.03537e12i 0.447565 + 2.40171i
\(386\) −1.94497e11 −0.445933
\(387\) 0 0
\(388\) −8.54099e10 + 1.47934e11i −0.191322 + 0.331380i
\(389\) 6.76642e10 1.17198e11i 0.149826 0.259506i −0.781337 0.624109i \(-0.785462\pi\)
0.931163 + 0.364603i \(0.118795\pi\)
\(390\) 0 0
\(391\) −4.24994e9 −0.00919575
\(392\) −1.54194e11 + 5.95363e10i −0.329822 + 0.127349i
\(393\) 0 0
\(394\) −1.80721e11 3.13019e11i −0.377813 0.654391i
\(395\) −1.03000e10 + 1.78401e10i −0.0212888 + 0.0368732i
\(396\) 0 0
\(397\) −3.85624e11 6.67920e11i −0.779124 1.34948i −0.932447 0.361306i \(-0.882331\pi\)
0.153324 0.988176i \(-0.451002\pi\)
\(398\) 4.48315e10 0.0895590
\(399\) 0 0
\(400\) 1.72399e11 0.336717
\(401\) −5.59446e10 9.68988e10i −0.108046 0.187141i 0.806933 0.590643i \(-0.201126\pi\)
−0.914979 + 0.403502i \(0.867793\pi\)
\(402\) 0 0
\(403\) 3.97175e10 6.87926e10i 0.0750082 0.129918i
\(404\) 1.90873e11 + 3.30601e11i 0.356474 + 0.617430i
\(405\) 0 0
\(406\) 1.97187e11 1.68748e11i 0.360173 0.308228i
\(407\) −5.99608e11 −1.08316
\(408\) 0 0
\(409\) −5.18709e11 + 8.98430e11i −0.916576 + 1.58756i −0.111999 + 0.993708i \(0.535725\pi\)
−0.804577 + 0.593848i \(0.797608\pi\)
\(410\) 3.65702e11 6.33414e11i 0.639145 1.10703i
\(411\) 0 0
\(412\) 2.65061e11 0.453219
\(413\) 9.30307e11 + 3.28414e11i 1.57344 + 0.555451i
\(414\) 0 0
\(415\) 6.31821e11 + 1.09435e12i 1.04563 + 1.81108i
\(416\) 4.82418e10 8.35573e10i 0.0789776 0.136793i
\(417\) 0 0
\(418\) 4.60000e11 + 7.96744e11i 0.736996 + 1.27651i
\(419\) 3.17331e11 0.502978 0.251489 0.967860i \(-0.419080\pi\)
0.251489 + 0.967860i \(0.419080\pi\)
\(420\) 0 0
\(421\) −7.33305e11 −1.13767 −0.568833 0.822453i \(-0.692605\pi\)
−0.568833 + 0.822453i \(0.692605\pi\)
\(422\) −1.14795e10 1.98830e10i −0.0176204 0.0305194i
\(423\) 0 0
\(424\) −4.88466e10 + 8.46048e10i −0.0733986 + 0.127130i
\(425\) 8.64892e11 + 1.49804e12i 1.28591 + 2.22727i
\(426\) 0 0
\(427\) 4.13679e11 3.54017e11i 0.602196 0.515345i
\(428\) −3.27970e11 −0.472429
\(429\) 0 0
\(430\) −1.73158e11 + 2.99918e11i −0.244250 + 0.423053i
\(431\) 6.55600e11 1.13553e12i 0.915148 1.58508i 0.108463 0.994100i \(-0.465407\pi\)
0.806685 0.590982i \(-0.201260\pi\)
\(432\) 0 0
\(433\) 5.23536e11 0.715734 0.357867 0.933773i \(-0.383504\pi\)
0.357867 + 0.933773i \(0.383504\pi\)
\(434\) 1.60746e10 + 8.62592e10i 0.0217489 + 0.116708i
\(435\) 0 0
\(436\) −2.47447e10 4.28591e10i −0.0327939 0.0568007i
\(437\) 2.39954e9 4.15613e9i 0.00314747 0.00545159i
\(438\) 0 0
\(439\) 2.15186e11 + 3.72714e11i 0.276519 + 0.478945i 0.970517 0.241032i \(-0.0774859\pi\)
−0.693998 + 0.719977i \(0.744153\pi\)
\(440\) 6.79087e11 0.863751
\(441\) 0 0
\(442\) 9.68078e11 1.20645
\(443\) 9.97795e10 + 1.72823e11i 0.123091 + 0.213199i 0.920985 0.389598i \(-0.127386\pi\)
−0.797894 + 0.602797i \(0.794053\pi\)
\(444\) 0 0
\(445\) −5.87886e11 + 1.01825e12i −0.710678 + 1.23093i
\(446\) 2.00415e10 + 3.47129e10i 0.0239841 + 0.0415417i
\(447\) 0 0
\(448\) 1.95247e10 + 1.04773e11i 0.0228998 + 0.122884i
\(449\) 1.34444e11 0.156111 0.0780555 0.996949i \(-0.475129\pi\)
0.0780555 + 0.996949i \(0.475129\pi\)
\(450\) 0 0
\(451\) 8.26711e11 1.43191e12i 0.940934 1.62975i
\(452\) 3.20334e11 5.54835e11i 0.360977 0.625231i
\(453\) 0 0
\(454\) −1.04314e11 −0.115237
\(455\) −9.50794e11 + 8.13667e11i −1.04000 + 0.890011i
\(456\) 0 0
\(457\) −1.05963e11 1.83534e11i −0.113640 0.196831i 0.803595 0.595176i \(-0.202918\pi\)
−0.917235 + 0.398346i \(0.869584\pi\)
\(458\) 4.30513e10 7.45670e10i 0.0457184 0.0791866i
\(459\) 0 0
\(460\) −1.77119e9 3.06780e9i −0.00184440 0.00319460i
\(461\) 1.04842e12 1.08114 0.540570 0.841299i \(-0.318209\pi\)
0.540570 + 0.841299i \(0.318209\pi\)
\(462\) 0 0
\(463\) 4.22312e11 0.427089 0.213545 0.976933i \(-0.431499\pi\)
0.213545 + 0.976933i \(0.431499\pi\)
\(464\) −8.36730e10 1.44926e11i −0.0838020 0.145149i
\(465\) 0 0
\(466\) −4.45404e11 + 7.71463e11i −0.437540 + 0.757841i
\(467\) 2.43784e10 + 4.22246e10i 0.0237180 + 0.0410808i 0.877641 0.479319i \(-0.159116\pi\)
−0.853923 + 0.520400i \(0.825783\pi\)
\(468\) 0 0
\(469\) 1.33250e12 + 4.70396e11i 1.27172 + 0.448937i
\(470\) −9.02689e11 −0.853292
\(471\) 0 0
\(472\) 3.18067e11 5.50907e11i 0.294971 0.510904i
\(473\) −3.91443e11 + 6.78000e11i −0.359579 + 0.622808i
\(474\) 0 0
\(475\) −1.95329e12 −1.76054
\(476\) −8.12455e11 + 6.95279e11i −0.725384 + 0.620766i
\(477\) 0 0
\(478\) −7.57027e11 1.31121e12i −0.663263 1.14881i
\(479\) −2.01070e11 + 3.48263e11i −0.174517 + 0.302272i −0.939994 0.341191i \(-0.889170\pi\)
0.765477 + 0.643463i \(0.222503\pi\)
\(480\) 0 0
\(481\) −3.56234e11 6.17016e11i −0.303447 0.525586i
\(482\) −4.46149e11 −0.376503
\(483\) 0 0
\(484\) 9.31520e11 0.771593
\(485\) −7.14295e11 1.23720e12i −0.586192 1.01531i
\(486\) 0 0
\(487\) −4.97415e11 + 8.61548e11i −0.400718 + 0.694063i −0.993813 0.111069i \(-0.964572\pi\)
0.593095 + 0.805132i \(0.297906\pi\)
\(488\) −1.75538e11 3.04040e11i −0.140114 0.242684i
\(489\) 0 0
\(490\) 2.13569e11 1.36573e12i 0.167361 1.07025i
\(491\) −1.77339e11 −0.137702 −0.0688508 0.997627i \(-0.521933\pi\)
−0.0688508 + 0.997627i \(0.521933\pi\)
\(492\) 0 0
\(493\) 8.39540e11 1.45413e12i 0.640074 1.10864i
\(494\) −5.46583e11 + 9.46710e11i −0.412938 + 0.715230i
\(495\) 0 0
\(496\) 5.65767e10 0.0419730
\(497\) −3.09358e11 1.66007e12i −0.227435 1.22046i
\(498\) 0 0
\(499\) 5.12949e10 + 8.88454e10i 0.0370358 + 0.0641479i 0.883949 0.467583i \(-0.154875\pi\)
−0.846913 + 0.531731i \(0.821542\pi\)
\(500\) −1.85659e11 + 3.21570e11i −0.132846 + 0.230097i
\(501\) 0 0
\(502\) 2.42988e11 + 4.20868e11i 0.170773 + 0.295787i
\(503\) −2.35796e12 −1.64241 −0.821203 0.570637i \(-0.806696\pi\)
−0.821203 + 0.570637i \(0.806696\pi\)
\(504\) 0 0
\(505\) −3.19259e12 −2.18440
\(506\) −4.00399e9 6.93511e9i −0.00271528 0.00470301i
\(507\) 0 0
\(508\) −2.06593e11 + 3.57829e11i −0.137635 + 0.238391i
\(509\) 3.05373e11 + 5.28922e11i 0.201651 + 0.349270i 0.949061 0.315094i \(-0.102036\pi\)
−0.747409 + 0.664364i \(0.768703\pi\)
\(510\) 0 0
\(511\) 2.24546e12 + 7.92684e11i 1.45684 + 0.514288i
\(512\) 6.87195e10 0.0441942
\(513\) 0 0
\(514\) 7.21107e11 1.24899e12i 0.455686 0.789271i
\(515\) −1.10837e12 + 1.91975e12i −0.694308 + 1.20258i
\(516\) 0 0
\(517\) −2.04063e12 −1.25620
\(518\) 7.42112e11 + 2.61978e11i 0.452883 + 0.159875i
\(519\) 0 0
\(520\) 4.03453e11 + 6.98802e11i 0.241979 + 0.419121i
\(521\) 3.24713e11 5.62419e11i 0.193077 0.334418i −0.753192 0.657801i \(-0.771487\pi\)
0.946268 + 0.323383i \(0.104820\pi\)
\(522\) 0 0
\(523\) −8.23475e11 1.42630e12i −0.481274 0.833591i 0.518495 0.855081i \(-0.326493\pi\)
−0.999769 + 0.0214893i \(0.993159\pi\)
\(524\) 8.57538e11 0.496893
\(525\) 0 0
\(526\) −1.30072e12 −0.740878
\(527\) 2.83833e11 + 4.91614e11i 0.160293 + 0.277636i
\(528\) 0 0
\(529\) 9.00555e11 1.55981e12i 0.499988 0.866005i
\(530\) −4.08511e11 7.07562e11i −0.224886 0.389514i
\(531\) 0 0
\(532\) −2.21216e11 1.18708e12i −0.119733 0.642507i
\(533\) 1.96463e12 1.05441
\(534\) 0 0
\(535\) 1.37143e12 2.37538e12i 0.723738 1.25355i
\(536\) 4.55576e11 7.89080e11i 0.238407 0.412933i
\(537\) 0 0
\(538\) −1.71253e12 −0.881290
\(539\) 4.82796e11 3.08740e12i 0.246385 1.57559i
\(540\) 0 0
\(541\) −2.50530e11 4.33931e11i −0.125740 0.217788i 0.796282 0.604925i \(-0.206797\pi\)
−0.922022 + 0.387138i \(0.873464\pi\)
\(542\) 5.36268e11 9.28844e11i 0.266923 0.462323i
\(543\) 0 0
\(544\) 3.44751e11 + 5.97127e11i 0.168776 + 0.292329i
\(545\) 4.13887e11 0.200954
\(546\) 0 0
\(547\) 1.31820e12 0.629560 0.314780 0.949165i \(-0.398069\pi\)
0.314780 + 0.949165i \(0.398069\pi\)
\(548\) −6.69679e11 1.15992e12i −0.317215 0.549433i
\(549\) 0 0
\(550\) −1.62968e12 + 2.82268e12i −0.759398 + 1.31532i
\(551\) 9.48020e11 + 1.64202e12i 0.438163 + 0.758920i
\(552\) 0 0
\(553\) 4.64388e10 3.97412e10i 0.0211163 0.0180708i
\(554\) −2.25894e12 −1.01885
\(555\) 0 0
\(556\) −6.23267e11 + 1.07953e12i −0.276591 + 0.479069i
\(557\) 1.04867e12 1.81635e12i 0.461625 0.799558i −0.537417 0.843317i \(-0.680600\pi\)
0.999042 + 0.0437586i \(0.0139332\pi\)
\(558\) 0 0
\(559\) −9.30244e11 −0.402943
\(560\) −8.40480e11 2.96703e11i −0.361145 0.127490i
\(561\) 0 0
\(562\) −6.38898e11 1.10660e12i −0.270158 0.467928i
\(563\) 1.77041e12 3.06644e12i 0.742654 1.28631i −0.208629 0.977995i \(-0.566900\pi\)
0.951283 0.308319i \(-0.0997666\pi\)
\(564\) 0 0
\(565\) 2.67900e12 + 4.64016e12i 1.10600 + 1.91565i
\(566\) 1.40937e12 0.577234
\(567\) 0 0
\(568\) −1.08882e12 −0.438925
\(569\) −1.16613e12 2.01979e12i −0.466381 0.807795i 0.532882 0.846190i \(-0.321109\pi\)
−0.999263 + 0.0383943i \(0.987776\pi\)
\(570\) 0 0
\(571\) 5.78780e11 1.00248e12i 0.227851 0.394649i −0.729320 0.684173i \(-0.760163\pi\)
0.957171 + 0.289523i \(0.0934968\pi\)
\(572\) 9.12053e11 + 1.57972e12i 0.356236 + 0.617019i
\(573\) 0 0
\(574\) −1.64881e12 + 1.41101e12i −0.633968 + 0.542534i
\(575\) 1.70021e10 0.00648629
\(576\) 0 0
\(577\) −1.85995e12 + 3.22152e12i −0.698570 + 1.20996i 0.270393 + 0.962750i \(0.412846\pi\)
−0.968962 + 0.247208i \(0.920487\pi\)
\(578\) −2.51039e12 + 4.34813e12i −0.935548 + 1.62042i
\(579\) 0 0
\(580\) 1.39954e12 0.513522
\(581\) −6.86875e11 3.68589e12i −0.250084 1.34199i
\(582\) 0 0
\(583\) −9.23486e11 1.59953e12i −0.331072 0.573433i
\(584\) 7.67710e11 1.32971e12i 0.273111 0.473042i
\(585\) 0 0
\(586\) −5.70157e11 9.87541e11i −0.199735 0.345952i
\(587\) −4.35998e12 −1.51570 −0.757849 0.652429i \(-0.773750\pi\)
−0.757849 + 0.652429i \(0.773750\pi\)
\(588\) 0 0
\(589\) −6.41017e11 −0.219458
\(590\) 2.66004e12 + 4.60732e12i 0.903761 + 1.56536i
\(591\) 0 0
\(592\) 2.53724e11 4.39463e11i 0.0849012 0.147053i
\(593\) 6.15758e11 + 1.06652e12i 0.204486 + 0.354180i 0.949969 0.312345i \(-0.101114\pi\)
−0.745483 + 0.666525i \(0.767781\pi\)
\(594\) 0 0
\(595\) −1.63836e12 8.79172e12i −0.535899 2.87573i
\(596\) −2.19598e11 −0.0712888
\(597\) 0 0
\(598\) 4.75763e9 8.24045e9i 0.00152137 0.00263509i
\(599\) 2.54603e12 4.40985e12i 0.808058 1.39960i −0.106150 0.994350i \(-0.533852\pi\)
0.914207 0.405247i \(-0.132814\pi\)
\(600\) 0 0
\(601\) −1.32105e12 −0.413033 −0.206516 0.978443i \(-0.566213\pi\)
−0.206516 + 0.978443i \(0.566213\pi\)
\(602\) 7.80703e11 6.68107e11i 0.242271 0.207330i
\(603\) 0 0
\(604\) 1.82534e11 + 3.16158e11i 0.0558055 + 0.0966580i
\(605\) −3.89522e12 + 6.74671e12i −1.18204 + 2.04735i
\(606\) 0 0
\(607\) −5.11679e11 8.86255e11i −0.152985 0.264978i 0.779338 0.626603i \(-0.215555\pi\)
−0.932324 + 0.361625i \(0.882222\pi\)
\(608\) −7.78596e11 −0.231071
\(609\) 0 0
\(610\) 2.93609e12 0.858590
\(611\) −1.21236e12 2.09988e12i −0.351923 0.609548i
\(612\) 0 0
\(613\) 2.65817e12 4.60408e12i 0.760344 1.31695i −0.182330 0.983237i \(-0.558364\pi\)
0.942674 0.333716i \(-0.108303\pi\)
\(614\) 1.05422e11 + 1.82596e11i 0.0299345 + 0.0518482i
\(615\) 0 0
\(616\) −1.90000e12 6.70732e11i −0.531669 0.187688i
\(617\) 1.84099e10 0.00511409 0.00255705 0.999997i \(-0.499186\pi\)
0.00255705 + 0.999997i \(0.499186\pi\)
\(618\) 0 0
\(619\) 1.01330e12 1.75509e12i 0.277415 0.480498i −0.693326 0.720624i \(-0.743856\pi\)
0.970742 + 0.240126i \(0.0771888\pi\)
\(620\) −2.36579e11 + 4.09767e11i −0.0643005 + 0.111372i
\(621\) 0 0
\(622\) 3.53392e12 0.946674
\(623\) 2.65055e12 2.26828e12i 0.704921 0.603254i
\(624\) 0 0
\(625\) 1.01626e12 + 1.76021e12i 0.266406 + 0.461429i
\(626\) 2.40828e11 4.17127e11i 0.0626791 0.108563i
\(627\) 0 0
\(628\) 1.39059e12 + 2.40856e12i 0.356763 + 0.617931i
\(629\) 5.09152e12 1.29694
\(630\) 0 0
\(631\) −2.70186e12 −0.678471 −0.339235 0.940702i \(-0.610168\pi\)
−0.339235 + 0.940702i \(0.610168\pi\)
\(632\) −1.97055e10 3.41309e10i −0.00491316 0.00850984i
\(633\) 0 0
\(634\) −7.30549e11 + 1.26535e12i −0.179576 + 0.311034i
\(635\) −1.72777e12 2.99258e12i −0.421699 0.730405i
\(636\) 0 0
\(637\) 3.46386e12 1.33744e12i 0.833553 0.321846i
\(638\) 3.16382e12 0.755994
\(639\) 0 0
\(640\) −2.87355e11 + 4.97714e11i −0.0677032 + 0.117265i
\(641\) −3.23955e12 + 5.61107e12i −0.757920 + 1.31276i 0.185989 + 0.982552i \(0.440451\pi\)
−0.943909 + 0.330205i \(0.892882\pi\)
\(642\) 0 0
\(643\) 6.59134e12 1.52063 0.760317 0.649553i \(-0.225044\pi\)
0.760317 + 0.649553i \(0.225044\pi\)
\(644\) 1.92553e9 + 1.03327e10i 0.000441127 + 0.00236716i
\(645\) 0 0
\(646\) −3.90606e12 6.76549e12i −0.882454 1.52845i
\(647\) −1.44155e12 + 2.49683e12i −0.323414 + 0.560170i −0.981190 0.193044i \(-0.938164\pi\)
0.657776 + 0.753214i \(0.271497\pi\)
\(648\) 0 0
\(649\) 6.01332e12 + 1.04154e13i 1.33049 + 2.30448i
\(650\) −3.87284e12 −0.850980
\(651\) 0 0
\(652\) −2.28719e12 −0.495665
\(653\) 2.99660e12 + 5.19027e12i 0.644941 + 1.11707i 0.984315 + 0.176419i \(0.0564514\pi\)
−0.339374 + 0.940651i \(0.610215\pi\)
\(654\) 0 0
\(655\) −3.58586e12 + 6.21089e12i −0.761215 + 1.31846i
\(656\) 6.99645e11 + 1.21182e12i 0.147506 + 0.255488i
\(657\) 0 0
\(658\) 2.52561e12 + 8.91583e11i 0.525231 + 0.185415i
\(659\) 7.08700e11 0.146379 0.0731894 0.997318i \(-0.476682\pi\)
0.0731894 + 0.997318i \(0.476682\pi\)
\(660\) 0 0
\(661\) 4.19907e12 7.27301e12i 0.855553 1.48186i −0.0205788 0.999788i \(-0.506551\pi\)
0.876131 0.482072i \(-0.160116\pi\)
\(662\) −1.15869e12 + 2.00691e12i −0.234480 + 0.406131i
\(663\) 0 0
\(664\) −2.41754e12 −0.482634
\(665\) 9.52269e12 + 3.36167e12i 1.88826 + 0.666588i
\(666\) 0 0
\(667\) −8.25186e9 1.42926e10i −0.00161431 0.00279606i
\(668\) −1.86612e12 + 3.23222e12i −0.362616 + 0.628069i
\(669\) 0 0
\(670\) 3.81004e12 + 6.59919e12i 0.730455 + 1.26518i
\(671\) 6.63738e12 1.26399
\(672\) 0 0
\(673\) −1.06217e13 −1.99584 −0.997920 0.0644576i \(-0.979468\pi\)
−0.997920 + 0.0644576i \(0.979468\pi\)
\(674\) −3.52305e12 6.10209e12i −0.657580 1.13896i
\(675\) 0 0
\(676\) 2.73654e11 4.73982e11i 0.0504012 0.0872975i
\(677\) −1.12868e12 1.95492e12i −0.206500 0.357669i 0.744110 0.668058i \(-0.232874\pi\)
−0.950610 + 0.310389i \(0.899541\pi\)
\(678\) 0 0
\(679\) 7.76536e11 + 4.16703e12i 0.140200 + 0.752337i
\(680\) −5.76641e12 −1.03423
\(681\) 0 0
\(682\) −5.34815e11 + 9.26326e11i −0.0946616 + 0.163959i
\(683\) −3.16248e12 + 5.47758e12i −0.556077 + 0.963153i 0.441742 + 0.897142i \(0.354361\pi\)
−0.997819 + 0.0660110i \(0.978973\pi\)
\(684\) 0 0
\(685\) 1.12012e13 1.94383
\(686\) −1.94647e12 + 3.61021e12i −0.335574 + 0.622406i
\(687\) 0 0
\(688\) −3.31278e11 5.73791e11i −0.0563696 0.0976350i
\(689\) 1.09731e12 1.90059e12i 0.185499 0.321294i
\(690\) 0 0
\(691\) 1.78903e12 + 3.09869e12i 0.298515 + 0.517043i 0.975796 0.218681i \(-0.0701754\pi\)
−0.677282 + 0.735724i \(0.736842\pi\)
\(692\) 1.00264e12 0.166215
\(693\) 0 0
\(694\) −2.11454e12 −0.346018
\(695\) −5.21247e12 9.02826e12i −0.847446 1.46782i
\(696\) 0 0
\(697\) −7.01995e12 + 1.21589e13i −1.12664 + 1.95140i
\(698\) −1.00863e12 1.74700e12i −0.160835 0.278575i
\(699\) 0 0
\(700\) 3.25026e12 2.78150e12i 0.511655 0.437862i
\(701\) 1.11407e12 0.174253 0.0871264 0.996197i \(-0.472232\pi\)
0.0871264 + 0.996197i \(0.472232\pi\)
\(702\) 0 0
\(703\) −2.87471e12 + 4.97914e12i −0.443910 + 0.768874i
\(704\) −6.49600e11 + 1.12514e12i −0.0996710 + 0.172635i
\(705\) 0 0
\(706\) 4.63287e12 0.701826
\(707\) 8.93247e12 + 3.15331e12i 1.34457 + 0.474656i
\(708\) 0 0
\(709\) −1.06699e12 1.84808e12i −0.158582 0.274672i 0.775776 0.631009i \(-0.217359\pi\)
−0.934357 + 0.356337i \(0.884025\pi\)
\(710\) 4.55300e12 7.88602e12i 0.672411 1.16465i
\(711\) 0 0
\(712\) −1.12472e12 1.94807e12i −0.164015 0.284082i
\(713\) 5.57961e9 0.000808539
\(714\) 0 0
\(715\) −1.52553e13 −2.18294
\(716\) 5.76221e11 + 9.98043e11i 0.0819370 + 0.141919i
\(717\) 0 0
\(718\) 1.69307e12 2.93248e12i 0.237747 0.411790i
\(719\) −5.08025e12 8.79926e12i −0.708933 1.22791i −0.965253 0.261317i \(-0.915843\pi\)
0.256320 0.966592i \(-0.417490\pi\)
\(720\) 0 0
\(721\) 4.99722e12 4.27650e12i 0.688684 0.589359i
\(722\) 3.65853e12 0.501060
\(723\) 0 0
\(724\) −7.78156e11 + 1.34781e12i −0.105255 + 0.182307i
\(725\) −3.35862e12 + 5.81730e12i −0.451481 + 0.781989i
\(726\) 0 0
\(727\) −4.40678e12 −0.585082 −0.292541 0.956253i \(-0.594501\pi\)
−0.292541 + 0.956253i \(0.594501\pi\)
\(728\) −4.38609e11 2.35365e12i −0.0578744 0.310564i
\(729\) 0 0
\(730\) 6.42047e12 + 1.11206e13i 0.836784 + 1.44935i
\(731\) 3.32391e12 5.75718e12i 0.430547 0.745730i
\(732\) 0 0
\(733\) 2.66792e12 + 4.62096e12i 0.341353 + 0.591241i 0.984684 0.174347i \(-0.0557814\pi\)
−0.643331 + 0.765588i \(0.722448\pi\)
\(734\) −9.61386e12 −1.22255
\(735\) 0 0
\(736\) 6.77714e9 0.000851327
\(737\) 8.61304e12 + 1.49182e13i 1.07536 + 1.86257i
\(738\) 0 0
\(739\) −2.08742e12 + 3.61551e12i −0.257460 + 0.445933i −0.965561 0.260178i \(-0.916219\pi\)
0.708101 + 0.706111i \(0.249552\pi\)
\(740\) 2.12193e12 + 3.67529e12i 0.260129 + 0.450556i
\(741\) 0 0
\(742\) 4.44107e11 + 2.38316e12i 0.0537861 + 0.288626i
\(743\) −8.87391e12 −1.06823 −0.534116 0.845411i \(-0.679355\pi\)
−0.534116 + 0.845411i \(0.679355\pi\)
\(744\) 0 0
\(745\) 9.18266e11 1.59048e12i 0.109211 0.189159i
\(746\) 1.12077e12 1.94122e12i 0.132492 0.229483i
\(747\) 0 0
\(748\) −1.30356e13 −1.52256
\(749\) −6.18325e12 + 5.29148e12i −0.717875 + 0.614340i
\(750\) 0 0
\(751\) −1.31241e12 2.27317e12i −0.150554 0.260766i 0.780878 0.624684i \(-0.214772\pi\)
−0.931431 + 0.363918i \(0.881439\pi\)
\(752\) 8.63493e11 1.49561e12i 0.0984642 0.170545i
\(753\) 0 0
\(754\) 1.87966e12 + 3.25567e12i 0.211791 + 0.366833i
\(755\) −3.05311e12 −0.341965
\(756\) 0 0
\(757\) −8.31291e12 −0.920071 −0.460036 0.887900i \(-0.652163\pi\)
−0.460036 + 0.887900i \(0.652163\pi\)
\(758\) 4.69748e12 + 8.13627e12i 0.516837 + 0.895187i
\(759\) 0 0
\(760\) 3.25575e12 5.63913e12i 0.353990 0.613128i
\(761\) −1.69837e12 2.94166e12i −0.183570 0.317952i 0.759524 0.650480i \(-0.225432\pi\)
−0.943094 + 0.332527i \(0.892099\pi\)
\(762\) 0 0
\(763\) −1.15801e12 4.08795e11i −0.123694 0.0436662i
\(764\) 2.29980e12 0.244214
\(765\) 0 0
\(766\) 3.11940e12 5.40297e12i 0.327372 0.567026i
\(767\) −7.14516e12 + 1.23758e13i −0.745475 + 1.29120i
\(768\) 0 0
\(769\) 4.79457e12 0.494403 0.247201 0.968964i \(-0.420489\pi\)
0.247201 + 0.968964i \(0.420489\pi\)
\(770\) 1.28029e13 1.09564e13i 1.31250 1.12321i
\(771\) 0 0
\(772\) 1.55598e12 + 2.69503e12i 0.157661 + 0.273077i
\(773\) 7.38674e12 1.27942e13i 0.744124 1.28886i −0.206479 0.978451i \(-0.566201\pi\)
0.950603 0.310409i \(-0.100466\pi\)
\(774\) 0 0
\(775\) −1.13549e12 1.96672e12i −0.113064 0.195833i
\(776\) 2.73312e12 0.270570
\(777\) 0 0
\(778\) −2.16526e12 −0.211885
\(779\) −7.92702e12 1.37300e13i −0.771243 1.33583i
\(780\) 0 0
\(781\) 1.02926e13 1.78273e13i 0.989907 1.71457i
\(782\) 3.39995e10 + 5.88889e10i 0.00325119 + 0.00563123i
\(783\) 0 0
\(784\) 2.05851e12 + 1.66028e12i 0.194594 + 0.156949i
\(785\) −2.32593e13 −2.18617
\(786\) 0 0
\(787\) 1.02538e12 1.77602e12i 0.0952798 0.165029i −0.814446 0.580240i \(-0.802959\pi\)
0.909725 + 0.415211i \(0.136292\pi\)
\(788\) −2.89154e12 + 5.00830e12i −0.267154 + 0.462724i
\(789\) 0 0
\(790\) 3.29600e11 0.0301068
\(791\) −2.91244e12 1.56286e13i −0.264522 1.41947i
\(792\) 0 0
\(793\) 3.94334e12 + 6.83007e12i 0.354107 + 0.613332i
\(794\) −6.16998e12 + 1.06867e13i −0.550924 + 0.954228i
\(795\) 0 0
\(796\) −3.58652e11 6.21203e11i −0.0316639 0.0548435i
\(797\) 1.19235e13 1.04675 0.523373 0.852104i \(-0.324673\pi\)
0.523373 + 0.852104i \(0.324673\pi\)
\(798\) 0 0
\(799\) 1.73279e13 1.50413
\(800\) −1.37919e12 2.38883e12i −0.119048 0.206196i
\(801\) 0 0
\(802\) −8.95113e11 + 1.55038e12i −0.0764000 + 0.132329i
\(803\) 1.45142e13 + 2.51393e13i 1.23189 + 2.13370i
\(804\) 0 0
\(805\) −8.28885e10 2.92610e10i −0.00695685 0.00245588i
\(806\) −1.27096e12 −0.106078
\(807\) 0 0
\(808\) 3.05396e12 5.28962e12i 0.252065 0.436589i
\(809\) −1.92036e12 + 3.32616e12i −0.157621 + 0.273007i −0.934010 0.357246i \(-0.883716\pi\)
0.776389 + 0.630254i \(0.217049\pi\)
\(810\) 0 0
\(811\) −7.57838e12 −0.615152 −0.307576 0.951524i \(-0.599518\pi\)
−0.307576 + 0.951524i \(0.599518\pi\)
\(812\) −3.91574e12 1.38232e12i −0.316090 0.111585i
\(813\) 0 0
\(814\) 4.79687e12 + 8.30842e12i 0.382955 + 0.663298i
\(815\) 9.56406e12 1.65654e13i 0.759334 1.31521i
\(816\) 0 0
\(817\) 3.75340e12 + 6.50108e12i 0.294731 + 0.510489i
\(818\) 1.65987e13 1.29623
\(819\) 0 0
\(820\) −1.17025e13 −0.903888
\(821\) 6.60158e12 + 1.14343e13i 0.507112 + 0.878343i 0.999966 + 0.00823152i \(0.00262020\pi\)
−0.492854 + 0.870112i \(0.664046\pi\)
\(822\) 0 0
\(823\) 6.89186e11 1.19370e12i 0.0523645 0.0906980i −0.838655 0.544663i \(-0.816658\pi\)
0.891020 + 0.453965i \(0.149991\pi\)
\(824\) −2.12049e12 3.67279e12i −0.160237 0.277539i
\(825\) 0 0
\(826\) −2.89182e12 1.55180e13i −0.216153 1.15991i
\(827\) −1.26509e13 −0.940474 −0.470237 0.882540i \(-0.655832\pi\)
−0.470237 + 0.882540i \(0.655832\pi\)
\(828\) 0 0
\(829\) −1.39141e12 + 2.40999e12i −0.102320 + 0.177223i −0.912640 0.408764i \(-0.865960\pi\)
0.810320 + 0.585987i \(0.199293\pi\)
\(830\) 1.01091e13 1.75095e13i 0.739371 1.28063i
\(831\) 0 0
\(832\) −1.54374e12 −0.111691
\(833\) −4.09963e12 + 2.62164e13i −0.295013 + 1.88656i
\(834\) 0 0
\(835\) −1.56067e13 2.70315e13i −1.11102 1.92434i
\(836\) 7.36001e12 1.27479e13i 0.521135 0.902632i
\(837\) 0 0
\(838\) −2.53865e12 4.39707e12i −0.177830 0.308010i
\(839\) −2.84268e12 −0.198061 −0.0990304 0.995084i \(-0.531574\pi\)
−0.0990304 + 0.995084i \(0.531574\pi\)
\(840\) 0 0
\(841\) −7.98680e12 −0.550542
\(842\) 5.86644e12 + 1.01610e13i 0.402226 + 0.696676i
\(843\) 0 0
\(844\) −1.83672e11 + 3.18128e11i −0.0124595 + 0.0215805i
\(845\) 2.28860e12 + 3.96398e12i 0.154424 + 0.267471i
\(846\) 0 0
\(847\) 1.75620e13 1.50292e13i 1.17246 1.00337i
\(848\) 1.56309e12 0.103801
\(849\) 0 0
\(850\) 1.38383e13 2.39686e13i 0.909278 1.57491i
\(851\) 2.50224e10 4.33400e10i 0.00163548 0.00283273i
\(852\) 0 0
\(853\) 2.28579e12 0.147831 0.0739156 0.997265i \(-0.476450\pi\)
0.0739156 + 0.997265i \(0.476450\pi\)
\(854\) −8.21483e12 2.89997e12i −0.528492 0.186566i
\(855\) 0 0
\(856\) 2.62376e12 + 4.54448e12i 0.167029 + 0.289303i
\(857\) −9.74082e12 + 1.68716e13i −0.616853 + 1.06842i 0.373203 + 0.927750i \(0.378259\pi\)
−0.990056 + 0.140671i \(0.955074\pi\)
\(858\) 0 0
\(859\) 1.10241e13 + 1.90943e13i 0.690835 + 1.19656i 0.971565 + 0.236775i \(0.0760904\pi\)
−0.280729 + 0.959787i \(0.590576\pi\)
\(860\) 5.54105e12 0.345421
\(861\) 0 0
\(862\) −2.09792e13 −1.29421
\(863\) −1.12778e13 1.95337e13i −0.692110 1.19877i −0.971145 0.238489i \(-0.923348\pi\)
0.279035 0.960281i \(-0.409985\pi\)
\(864\) 0 0
\(865\) −4.19263e12 + 7.26184e12i −0.254632 + 0.441036i
\(866\) −4.18829e12 7.25433e12i −0.253050 0.438296i
\(867\) 0 0
\(868\) 1.06665e12 9.12810e11i 0.0637796 0.0545810i
\(869\) 7.45099e11 0.0443226
\(870\) 0 0
\(871\) −1.02342e13 + 1.77262e13i −0.602522 + 1.04360i
\(872\) −3.95915e11 + 6.85745e11i −0.0231888 + 0.0401642i
\(873\) 0 0
\(874\) −7.67854e10 −0.00445120
\(875\) 1.68799e12 + 9.05802e12i 0.0973492 + 0.522393i
\(876\) 0 0
\(877\) −1.54052e13 2.66826e13i −0.879367 1.52311i −0.852037 0.523481i \(-0.824633\pi\)
−0.0273297 0.999626i \(-0.508700\pi\)
\(878\) 3.44298e12 5.96342e12i 0.195528 0.338665i
\(879\) 0 0
\(880\) −5.43270e12 9.40971e12i −0.305382 0.528937i
\(881\) 1.72758e11 0.00966157 0.00483078 0.999988i \(-0.498462\pi\)
0.00483078 + 0.999988i \(0.498462\pi\)
\(882\) 0 0
\(883\) 1.07928e13 0.597460 0.298730 0.954338i \(-0.403437\pi\)
0.298730 + 0.954338i \(0.403437\pi\)
\(884\) −7.74462e12 1.34141e13i −0.426545 0.738798i
\(885\) 0 0
\(886\) 1.59647e12 2.76517e12i 0.0870382 0.150755i
\(887\) −1.17452e13 2.03432e13i −0.637093 1.10348i −0.986067 0.166346i \(-0.946803\pi\)
0.348974 0.937132i \(-0.386530\pi\)
\(888\) 0 0
\(889\) 1.87832e12 + 1.00794e13i 0.100858 + 0.541222i
\(890\) 1.88123e13 1.00505
\(891\) 0 0
\(892\) 3.20664e11 5.55406e11i 0.0169593 0.0293744i
\(893\) −9.78343e12 + 1.69454e13i −0.514825 + 0.891703i
\(894\) 0 0
\(895\) −9.63803e12 −0.502093
\(896\) 1.29558e12 1.10872e12i 0.0671548 0.0574695i
\(897\) 0 0
\(898\) −1.07555e12 1.86291e12i −0.0551936 0.0955981i
\(899\) −1.10221e12 + 1.90908e12i −0.0562787 + 0.0974776i
\(900\) 0 0
\(901\) 7.84171e12 + 1.35822e13i 0.396414 + 0.686609i
\(902\) −2.64547e13 −1.33068
\(903\) 0 0
\(904\) −1.02507e13 −0.510499
\(905\) −6.50783e12 1.12719e13i −0.322491 0.558571i
\(906\) 0 0
\(907\) −1.19812e13 + 2.07521e13i −0.587852 + 1.01819i 0.406662 + 0.913579i \(0.366693\pi\)
−0.994513 + 0.104610i \(0.966641\pi\)
\(908\) 8.34515e11 + 1.44542e12i 0.0407425 + 0.0705681i
\(909\) 0 0
\(910\) 1.88809e13 + 6.66525e12i 0.912715 + 0.322204i
\(911\) −7.80479e12 −0.375429 −0.187715 0.982224i \(-0.560108\pi\)
−0.187715 + 0.982224i \(0.560108\pi\)
\(912\) 0 0
\(913\) 2.28529e13 3.95823e13i 1.08848 1.88531i
\(914\) −1.69541e12 + 2.93654e12i −0.0803559 + 0.139180i
\(915\) 0 0
\(916\) −1.37764e12 −0.0646556
\(917\) 1.61673e13 1.38356e13i 0.755048 0.646152i
\(918\) 0 0
\(919\) −4.00028e12 6.92868e12i −0.184999 0.320428i 0.758577 0.651583i \(-0.225895\pi\)
−0.943576 + 0.331155i \(0.892562\pi\)
\(920\) −2.83391e10 + 4.90847e10i −0.00130419 + 0.00225892i
\(921\) 0 0
\(922\) −8.38738e12 1.45274e13i −0.382241 0.662061i
\(923\) 2.44597e13 1.10929
\(924\) 0 0
\(925\) −2.03689e13 −0.914806
\(926\) −3.37849e12 5.85172e12i −0.150999 0.261538i
\(927\) 0 0
\(928\) −1.33877e12 + 2.31881e12i −0.0592570 + 0.102636i
\(929\) 1.83611e12 + 3.18024e12i 0.0808778 + 0.140084i 0.903627 0.428320i \(-0.140894\pi\)
−0.822749 + 0.568404i \(0.807561\pi\)
\(930\) 0 0
\(931\) −2.33230e13 1.88111e13i −1.01745 0.820616i
\(932\) 1.42529e13 0.618775
\(933\) 0 0
\(934\) 3.90054e11 6.75593e11i 0.0167712 0.0290485i
\(935\) 5.45094e13 9.44131e13i 2.33249 4.03999i
\(936\) 0 0
\(937\) −4.58091e13 −1.94144 −0.970719 0.240218i \(-0.922781\pi\)
−0.970719 + 0.240218i \(0.922781\pi\)
\(938\) −4.14204e12 2.22269e13i −0.174703 0.937488i
\(939\) 0 0
\(940\) 7.22151e12 + 1.25080e13i 0.301684 + 0.522533i
\(941\) −1.69377e13 + 2.93370e13i −0.704210 + 1.21973i 0.262766 + 0.964860i \(0.415365\pi\)
−0.966976 + 0.254868i \(0.917968\pi\)
\(942\) 0 0
\(943\) 6.89992e10 + 1.19510e11i 0.00284146 + 0.00492155i
\(944\) −1.01781e13 −0.417152
\(945\) 0 0
\(946\) 1.25262e13 0.508521
\(947\) 3.39394e12 + 5.87847e12i 0.137129 + 0.237514i 0.926409 0.376519i \(-0.122879\pi\)
−0.789280 + 0.614034i \(0.789546\pi\)
\(948\) 0 0
\(949\) −1.72461e13 + 2.98711e13i −0.690229 + 1.19551i
\(950\) 1.56264e13 + 2.70656e13i 0.622446 + 1.07811i
\(951\) 0 0
\(952\) 1.61337e13 + 5.69547e12i 0.636602 + 0.224731i
\(953\) −5.28058e12 −0.207378 −0.103689 0.994610i \(-0.533065\pi\)
−0.103689 + 0.994610i \(0.533065\pi\)
\(954\) 0 0
\(955\) −9.61679e12 + 1.66568e13i −0.374124 + 0.648001i
\(956\) −1.21124e13 + 2.09793e13i −0.468998 + 0.812328i
\(957\) 0 0
\(958\) 6.43424e12 0.246804
\(959\) −3.13397e13 1.10634e13i −1.19649 0.422382i
\(960\) 0 0
\(961\) 1.28472e13 + 2.22520e13i 0.485906 + 0.841614i
\(962\) −5.69975e12 + 9.87225e12i −0.214569 + 0.371645i
\(963\) 0 0
\(964\) 3.56920e12 + 6.18203e12i 0.133114 + 0.230560i
\(965\) −2.60257e13 −0.966116
\(966\) 0 0
\(967\) 4.33872e13 1.59567 0.797834 0.602878i \(-0.205979\pi\)
0.797834 + 0.602878i \(0.205979\pi\)
\(968\) −7.45216e12 1.29075e13i −0.272799 0.472502i
\(969\) 0 0
\(970\) −1.14287e13 + 1.97951e13i −0.414500 + 0.717935i
\(971\) 2.68045e13 + 4.64268e13i 0.967658 + 1.67603i 0.702297 + 0.711884i \(0.252158\pi\)
0.265361 + 0.964149i \(0.414509\pi\)
\(972\) 0 0
\(973\) 5.66667e12 + 3.04083e13i 0.202684 + 1.08764i
\(974\) 1.59173e13 0.566700
\(975\) 0 0
\(976\) −2.80860e12 + 4.86464e12i −0.0990755 + 0.171604i
\(977\) 5.27189e12 9.13119e12i 0.185115 0.320628i −0.758500 0.651673i \(-0.774068\pi\)
0.943615 + 0.331044i \(0.107401\pi\)
\(978\) 0 0
\(979\) 4.25275e13 1.47961
\(980\) −2.06327e13 + 7.96657e12i −0.714560 + 0.275901i
\(981\) 0 0
\(982\) 1.41872e12 + 2.45729e12i 0.0486848 + 0.0843246i
\(983\) −2.28178e13 + 3.95217e13i −0.779442 + 1.35003i 0.152822 + 0.988254i \(0.451164\pi\)
−0.932264 + 0.361779i \(0.882169\pi\)
\(984\) 0 0
\(985\) −2.41824e13 4.18851e13i −0.818533 1.41774i
\(986\) −2.68653e13 −0.905202
\(987\) 0 0
\(988\) 1.74907e13 0.583983
\(989\) −3.26708e10 5.65874e10i −0.00108587 0.00188077i
\(990\) 0 0
\(991\) 1.24239e13 2.15188e13i 0.409191 0.708739i −0.585609 0.810594i \(-0.699144\pi\)
0.994799 + 0.101855i \(0.0324778\pi\)
\(992\) −4.52613e11 7.83949e11i −0.0148397 0.0257031i
\(993\) 0 0
\(994\) −2.05277e13 + 1.75671e13i −0.666963 + 0.570772i
\(995\) 5.99891e12 0.194030
\(996\) 0 0
\(997\) 7.52003e12 1.30251e13i 0.241041 0.417496i −0.719970 0.694005i \(-0.755844\pi\)
0.961011 + 0.276510i \(0.0891778\pi\)
\(998\) 8.20719e11 1.42153e12i 0.0261883 0.0453594i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.10.g.d.109.1 6
3.2 odd 2 42.10.e.d.25.3 6
7.2 even 3 inner 126.10.g.d.37.1 6
21.2 odd 6 42.10.e.d.37.3 yes 6
21.11 odd 6 294.10.a.r.1.1 3
21.17 even 6 294.10.a.u.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.10.e.d.25.3 6 3.2 odd 2
42.10.e.d.37.3 yes 6 21.2 odd 6
126.10.g.d.37.1 6 7.2 even 3 inner
126.10.g.d.109.1 6 1.1 even 1 trivial
294.10.a.r.1.1 3 21.11 odd 6
294.10.a.u.1.3 3 21.17 even 6