Properties

Label 126.10.a.a.1.1
Level $126$
Weight $10$
Character 126.1
Self dual yes
Analytic conductor $64.895$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [126,10,Mod(1,126)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("126.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(126, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 126 = 2 \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 126.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-16,0,256,-544] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.8945153566\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 126.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} +256.000 q^{4} -544.000 q^{5} -2401.00 q^{7} -4096.00 q^{8} +8704.00 q^{10} -48824.0 q^{11} -15876.0 q^{13} +38416.0 q^{14} +65536.0 q^{16} +21418.0 q^{17} -716410. q^{19} -139264. q^{20} +781184. q^{22} +2.47000e6 q^{23} -1.65719e6 q^{25} +254016. q^{26} -614656. q^{28} -5.55683e6 q^{29} +5.79935e6 q^{31} -1.04858e6 q^{32} -342688. q^{34} +1.30614e6 q^{35} -3.89443e6 q^{37} +1.14626e7 q^{38} +2.22822e6 q^{40} +6.36086e6 q^{41} -1.87013e7 q^{43} -1.24989e7 q^{44} -3.95200e7 q^{46} -5.65391e7 q^{47} +5.76480e6 q^{49} +2.65150e7 q^{50} -4.06426e6 q^{52} +5.98947e7 q^{53} +2.65603e7 q^{55} +9.83450e6 q^{56} +8.89092e7 q^{58} -1.65630e8 q^{59} +5.14190e7 q^{61} -9.27896e7 q^{62} +1.67772e7 q^{64} +8.63654e6 q^{65} +9.35465e7 q^{67} +5.48301e6 q^{68} -2.08983e7 q^{70} +9.56335e7 q^{71} +3.06496e8 q^{73} +6.23109e7 q^{74} -1.83401e8 q^{76} +1.17226e8 q^{77} +4.96474e8 q^{79} -3.56516e7 q^{80} -1.01774e8 q^{82} +3.71487e8 q^{83} -1.16514e7 q^{85} +2.99221e8 q^{86} +1.99983e8 q^{88} +1.65483e8 q^{89} +3.81183e7 q^{91} +6.32320e8 q^{92} +9.04625e8 q^{94} +3.89727e8 q^{95} +7.58017e8 q^{97} -9.22368e7 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) 0 0
\(4\) 256.000 0.500000
\(5\) −544.000 −0.389255 −0.194627 0.980877i \(-0.562350\pi\)
−0.194627 + 0.980877i \(0.562350\pi\)
\(6\) 0 0
\(7\) −2401.00 −0.377964
\(8\) −4096.00 −0.353553
\(9\) 0 0
\(10\) 8704.00 0.275245
\(11\) −48824.0 −1.00546 −0.502732 0.864442i \(-0.667672\pi\)
−0.502732 + 0.864442i \(0.667672\pi\)
\(12\) 0 0
\(13\) −15876.0 −0.154169 −0.0770843 0.997025i \(-0.524561\pi\)
−0.0770843 + 0.997025i \(0.524561\pi\)
\(14\) 38416.0 0.267261
\(15\) 0 0
\(16\) 65536.0 0.250000
\(17\) 21418.0 0.0621955 0.0310977 0.999516i \(-0.490100\pi\)
0.0310977 + 0.999516i \(0.490100\pi\)
\(18\) 0 0
\(19\) −716410. −1.26116 −0.630580 0.776124i \(-0.717183\pi\)
−0.630580 + 0.776124i \(0.717183\pi\)
\(20\) −139264. −0.194627
\(21\) 0 0
\(22\) 781184. 0.710970
\(23\) 2.47000e6 1.84044 0.920220 0.391401i \(-0.128010\pi\)
0.920220 + 0.391401i \(0.128010\pi\)
\(24\) 0 0
\(25\) −1.65719e6 −0.848481
\(26\) 254016. 0.109014
\(27\) 0 0
\(28\) −614656. −0.188982
\(29\) −5.55683e6 −1.45893 −0.729467 0.684016i \(-0.760232\pi\)
−0.729467 + 0.684016i \(0.760232\pi\)
\(30\) 0 0
\(31\) 5.79935e6 1.12785 0.563925 0.825826i \(-0.309291\pi\)
0.563925 + 0.825826i \(0.309291\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) 0 0
\(34\) −342688. −0.0439788
\(35\) 1.30614e6 0.147124
\(36\) 0 0
\(37\) −3.89443e6 −0.341614 −0.170807 0.985304i \(-0.554638\pi\)
−0.170807 + 0.985304i \(0.554638\pi\)
\(38\) 1.14626e7 0.891775
\(39\) 0 0
\(40\) 2.22822e6 0.137622
\(41\) 6.36086e6 0.351551 0.175776 0.984430i \(-0.443757\pi\)
0.175776 + 0.984430i \(0.443757\pi\)
\(42\) 0 0
\(43\) −1.87013e7 −0.834187 −0.417094 0.908863i \(-0.636951\pi\)
−0.417094 + 0.908863i \(0.636951\pi\)
\(44\) −1.24989e7 −0.502732
\(45\) 0 0
\(46\) −3.95200e7 −1.30139
\(47\) −5.65391e7 −1.69008 −0.845042 0.534700i \(-0.820425\pi\)
−0.845042 + 0.534700i \(0.820425\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 2.65150e7 0.599967
\(51\) 0 0
\(52\) −4.06426e6 −0.0770843
\(53\) 5.98947e7 1.04267 0.521335 0.853352i \(-0.325434\pi\)
0.521335 + 0.853352i \(0.325434\pi\)
\(54\) 0 0
\(55\) 2.65603e7 0.391381
\(56\) 9.83450e6 0.133631
\(57\) 0 0
\(58\) 8.89092e7 1.03162
\(59\) −1.65630e8 −1.77952 −0.889762 0.456424i \(-0.849130\pi\)
−0.889762 + 0.456424i \(0.849130\pi\)
\(60\) 0 0
\(61\) 5.14190e7 0.475488 0.237744 0.971328i \(-0.423592\pi\)
0.237744 + 0.971328i \(0.423592\pi\)
\(62\) −9.27896e7 −0.797511
\(63\) 0 0
\(64\) 1.67772e7 0.125000
\(65\) 8.63654e6 0.0600109
\(66\) 0 0
\(67\) 9.35465e7 0.567141 0.283570 0.958951i \(-0.408481\pi\)
0.283570 + 0.958951i \(0.408481\pi\)
\(68\) 5.48301e6 0.0310977
\(69\) 0 0
\(70\) −2.08983e7 −0.104033
\(71\) 9.56335e7 0.446630 0.223315 0.974746i \(-0.428312\pi\)
0.223315 + 0.974746i \(0.428312\pi\)
\(72\) 0 0
\(73\) 3.06496e8 1.26320 0.631601 0.775294i \(-0.282398\pi\)
0.631601 + 0.775294i \(0.282398\pi\)
\(74\) 6.23109e7 0.241558
\(75\) 0 0
\(76\) −1.83401e8 −0.630580
\(77\) 1.17226e8 0.380029
\(78\) 0 0
\(79\) 4.96474e8 1.43408 0.717042 0.697030i \(-0.245495\pi\)
0.717042 + 0.697030i \(0.245495\pi\)
\(80\) −3.56516e7 −0.0973137
\(81\) 0 0
\(82\) −1.01774e8 −0.248584
\(83\) 3.71487e8 0.859196 0.429598 0.903020i \(-0.358655\pi\)
0.429598 + 0.903020i \(0.358655\pi\)
\(84\) 0 0
\(85\) −1.16514e7 −0.0242099
\(86\) 2.99221e8 0.589860
\(87\) 0 0
\(88\) 1.99983e8 0.355485
\(89\) 1.65483e8 0.279574 0.139787 0.990182i \(-0.455358\pi\)
0.139787 + 0.990182i \(0.455358\pi\)
\(90\) 0 0
\(91\) 3.81183e7 0.0582703
\(92\) 6.32320e8 0.920220
\(93\) 0 0
\(94\) 9.04625e8 1.19507
\(95\) 3.89727e8 0.490913
\(96\) 0 0
\(97\) 7.58017e8 0.869373 0.434686 0.900582i \(-0.356859\pi\)
0.434686 + 0.900582i \(0.356859\pi\)
\(98\) −9.22368e7 −0.101015
\(99\) 0 0
\(100\) −4.24240e8 −0.424240
\(101\) 9.04212e8 0.864618 0.432309 0.901726i \(-0.357699\pi\)
0.432309 + 0.901726i \(0.357699\pi\)
\(102\) 0 0
\(103\) 1.98157e9 1.73477 0.867384 0.497639i \(-0.165800\pi\)
0.867384 + 0.497639i \(0.165800\pi\)
\(104\) 6.50281e7 0.0545068
\(105\) 0 0
\(106\) −9.58315e8 −0.737279
\(107\) −4.16379e8 −0.307087 −0.153544 0.988142i \(-0.549069\pi\)
−0.153544 + 0.988142i \(0.549069\pi\)
\(108\) 0 0
\(109\) −1.26921e9 −0.861220 −0.430610 0.902538i \(-0.641701\pi\)
−0.430610 + 0.902538i \(0.641701\pi\)
\(110\) −4.24964e8 −0.276748
\(111\) 0 0
\(112\) −1.57352e8 −0.0944911
\(113\) 2.83528e9 1.63585 0.817923 0.575328i \(-0.195126\pi\)
0.817923 + 0.575328i \(0.195126\pi\)
\(114\) 0 0
\(115\) −1.34368e9 −0.716400
\(116\) −1.42255e9 −0.729467
\(117\) 0 0
\(118\) 2.65007e9 1.25831
\(119\) −5.14246e7 −0.0235077
\(120\) 0 0
\(121\) 2.58353e7 0.0109567
\(122\) −8.22704e8 −0.336221
\(123\) 0 0
\(124\) 1.48463e9 0.563925
\(125\) 1.96401e9 0.719530
\(126\) 0 0
\(127\) 5.44282e9 1.85655 0.928277 0.371889i \(-0.121290\pi\)
0.928277 + 0.371889i \(0.121290\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) 0 0
\(130\) −1.38185e8 −0.0424341
\(131\) 6.44057e8 0.191075 0.0955374 0.995426i \(-0.469543\pi\)
0.0955374 + 0.995426i \(0.469543\pi\)
\(132\) 0 0
\(133\) 1.72010e9 0.476674
\(134\) −1.49674e9 −0.401029
\(135\) 0 0
\(136\) −8.77281e7 −0.0219894
\(137\) −1.67376e9 −0.405928 −0.202964 0.979186i \(-0.565058\pi\)
−0.202964 + 0.979186i \(0.565058\pi\)
\(138\) 0 0
\(139\) −4.17330e9 −0.948229 −0.474115 0.880463i \(-0.657232\pi\)
−0.474115 + 0.880463i \(0.657232\pi\)
\(140\) 3.34373e8 0.0735622
\(141\) 0 0
\(142\) −1.53014e9 −0.315815
\(143\) 7.75130e8 0.155011
\(144\) 0 0
\(145\) 3.02291e9 0.567897
\(146\) −4.90394e9 −0.893218
\(147\) 0 0
\(148\) −9.96974e8 −0.170807
\(149\) 4.64096e8 0.0771382 0.0385691 0.999256i \(-0.487720\pi\)
0.0385691 + 0.999256i \(0.487720\pi\)
\(150\) 0 0
\(151\) 7.31929e9 1.14571 0.572853 0.819658i \(-0.305837\pi\)
0.572853 + 0.819658i \(0.305837\pi\)
\(152\) 2.93442e9 0.445888
\(153\) 0 0
\(154\) −1.87562e9 −0.268721
\(155\) −3.15485e9 −0.439021
\(156\) 0 0
\(157\) −4.43050e9 −0.581975 −0.290987 0.956727i \(-0.593984\pi\)
−0.290987 + 0.956727i \(0.593984\pi\)
\(158\) −7.94359e9 −1.01405
\(159\) 0 0
\(160\) 5.70425e8 0.0688112
\(161\) −5.93047e9 −0.695621
\(162\) 0 0
\(163\) −1.33645e10 −1.48289 −0.741446 0.671013i \(-0.765860\pi\)
−0.741446 + 0.671013i \(0.765860\pi\)
\(164\) 1.62838e9 0.175776
\(165\) 0 0
\(166\) −5.94379e9 −0.607543
\(167\) 1.24456e10 1.23821 0.619103 0.785310i \(-0.287496\pi\)
0.619103 + 0.785310i \(0.287496\pi\)
\(168\) 0 0
\(169\) −1.03525e10 −0.976232
\(170\) 1.86422e8 0.0171190
\(171\) 0 0
\(172\) −4.78753e9 −0.417094
\(173\) −1.04544e10 −0.887345 −0.443672 0.896189i \(-0.646325\pi\)
−0.443672 + 0.896189i \(0.646325\pi\)
\(174\) 0 0
\(175\) 3.97891e9 0.320696
\(176\) −3.19973e9 −0.251366
\(177\) 0 0
\(178\) −2.64772e9 −0.197689
\(179\) 4.04391e9 0.294417 0.147208 0.989105i \(-0.452971\pi\)
0.147208 + 0.989105i \(0.452971\pi\)
\(180\) 0 0
\(181\) 1.24735e10 0.863843 0.431922 0.901911i \(-0.357836\pi\)
0.431922 + 0.901911i \(0.357836\pi\)
\(182\) −6.09892e8 −0.0412033
\(183\) 0 0
\(184\) −1.01171e10 −0.650694
\(185\) 2.11857e9 0.132975
\(186\) 0 0
\(187\) −1.04571e9 −0.0625353
\(188\) −1.44740e10 −0.845042
\(189\) 0 0
\(190\) −6.23563e9 −0.347128
\(191\) 3.81947e9 0.207660 0.103830 0.994595i \(-0.466890\pi\)
0.103830 + 0.994595i \(0.466890\pi\)
\(192\) 0 0
\(193\) −2.41193e10 −1.25129 −0.625644 0.780109i \(-0.715164\pi\)
−0.625644 + 0.780109i \(0.715164\pi\)
\(194\) −1.21283e10 −0.614739
\(195\) 0 0
\(196\) 1.47579e9 0.0714286
\(197\) 1.24798e10 0.590351 0.295176 0.955443i \(-0.404622\pi\)
0.295176 + 0.955443i \(0.404622\pi\)
\(198\) 0 0
\(199\) −2.93127e9 −0.132500 −0.0662502 0.997803i \(-0.521104\pi\)
−0.0662502 + 0.997803i \(0.521104\pi\)
\(200\) 6.78785e9 0.299983
\(201\) 0 0
\(202\) −1.44674e10 −0.611377
\(203\) 1.33419e10 0.551425
\(204\) 0 0
\(205\) −3.46031e9 −0.136843
\(206\) −3.17051e10 −1.22667
\(207\) 0 0
\(208\) −1.04045e9 −0.0385422
\(209\) 3.49780e10 1.26805
\(210\) 0 0
\(211\) 3.36978e10 1.17039 0.585195 0.810892i \(-0.301018\pi\)
0.585195 + 0.810892i \(0.301018\pi\)
\(212\) 1.53330e10 0.521335
\(213\) 0 0
\(214\) 6.66206e9 0.217143
\(215\) 1.01735e10 0.324711
\(216\) 0 0
\(217\) −1.39242e10 −0.426287
\(218\) 2.03073e10 0.608974
\(219\) 0 0
\(220\) 6.79943e9 0.195691
\(221\) −3.40032e8 −0.00958859
\(222\) 0 0
\(223\) −3.87208e10 −1.04851 −0.524255 0.851561i \(-0.675656\pi\)
−0.524255 + 0.851561i \(0.675656\pi\)
\(224\) 2.51763e9 0.0668153
\(225\) 0 0
\(226\) −4.53644e10 −1.15672
\(227\) −7.69011e10 −1.92228 −0.961139 0.276063i \(-0.910970\pi\)
−0.961139 + 0.276063i \(0.910970\pi\)
\(228\) 0 0
\(229\) 4.35114e10 1.04555 0.522773 0.852472i \(-0.324897\pi\)
0.522773 + 0.852472i \(0.324897\pi\)
\(230\) 2.14989e10 0.506571
\(231\) 0 0
\(232\) 2.27608e10 0.515811
\(233\) 2.07043e10 0.460213 0.230107 0.973165i \(-0.426093\pi\)
0.230107 + 0.973165i \(0.426093\pi\)
\(234\) 0 0
\(235\) 3.07573e10 0.657873
\(236\) −4.24012e10 −0.889762
\(237\) 0 0
\(238\) 8.22794e8 0.0166224
\(239\) −2.16220e10 −0.428653 −0.214326 0.976762i \(-0.568756\pi\)
−0.214326 + 0.976762i \(0.568756\pi\)
\(240\) 0 0
\(241\) 6.77789e10 1.29425 0.647124 0.762385i \(-0.275971\pi\)
0.647124 + 0.762385i \(0.275971\pi\)
\(242\) −4.13365e8 −0.00774754
\(243\) 0 0
\(244\) 1.31633e10 0.237744
\(245\) −3.13605e9 −0.0556078
\(246\) 0 0
\(247\) 1.13737e10 0.194431
\(248\) −2.37541e10 −0.398755
\(249\) 0 0
\(250\) −3.14242e10 −0.508784
\(251\) −4.87895e9 −0.0775881 −0.0387940 0.999247i \(-0.512352\pi\)
−0.0387940 + 0.999247i \(0.512352\pi\)
\(252\) 0 0
\(253\) −1.20595e11 −1.85050
\(254\) −8.70852e10 −1.31278
\(255\) 0 0
\(256\) 4.29497e9 0.0625000
\(257\) 2.75029e10 0.393259 0.196630 0.980478i \(-0.437000\pi\)
0.196630 + 0.980478i \(0.437000\pi\)
\(258\) 0 0
\(259\) 9.35053e9 0.129118
\(260\) 2.21096e9 0.0300054
\(261\) 0 0
\(262\) −1.03049e10 −0.135110
\(263\) 2.22595e10 0.286889 0.143445 0.989658i \(-0.454182\pi\)
0.143445 + 0.989658i \(0.454182\pi\)
\(264\) 0 0
\(265\) −3.25827e10 −0.405864
\(266\) −2.75216e10 −0.337059
\(267\) 0 0
\(268\) 2.39479e10 0.283570
\(269\) −1.73017e10 −0.201466 −0.100733 0.994913i \(-0.532119\pi\)
−0.100733 + 0.994913i \(0.532119\pi\)
\(270\) 0 0
\(271\) 4.81901e10 0.542745 0.271372 0.962474i \(-0.412523\pi\)
0.271372 + 0.962474i \(0.412523\pi\)
\(272\) 1.40365e9 0.0155489
\(273\) 0 0
\(274\) 2.67801e10 0.287035
\(275\) 8.09106e10 0.853116
\(276\) 0 0
\(277\) 8.03834e10 0.820365 0.410183 0.912003i \(-0.365465\pi\)
0.410183 + 0.912003i \(0.365465\pi\)
\(278\) 6.67728e10 0.670499
\(279\) 0 0
\(280\) −5.34997e9 −0.0520163
\(281\) 1.95595e11 1.87146 0.935729 0.352719i \(-0.114743\pi\)
0.935729 + 0.352719i \(0.114743\pi\)
\(282\) 0 0
\(283\) −6.02802e10 −0.558645 −0.279322 0.960197i \(-0.590110\pi\)
−0.279322 + 0.960197i \(0.590110\pi\)
\(284\) 2.44822e10 0.223315
\(285\) 0 0
\(286\) −1.24021e10 −0.109609
\(287\) −1.52724e10 −0.132874
\(288\) 0 0
\(289\) −1.18129e11 −0.996132
\(290\) −4.83666e10 −0.401564
\(291\) 0 0
\(292\) 7.84631e10 0.631601
\(293\) 4.86743e10 0.385830 0.192915 0.981216i \(-0.438206\pi\)
0.192915 + 0.981216i \(0.438206\pi\)
\(294\) 0 0
\(295\) 9.01025e10 0.692688
\(296\) 1.59516e10 0.120779
\(297\) 0 0
\(298\) −7.42553e9 −0.0545449
\(299\) −3.92137e10 −0.283738
\(300\) 0 0
\(301\) 4.49018e10 0.315293
\(302\) −1.17109e11 −0.810136
\(303\) 0 0
\(304\) −4.69506e10 −0.315290
\(305\) −2.79719e10 −0.185086
\(306\) 0 0
\(307\) 2.75178e11 1.76804 0.884018 0.467453i \(-0.154828\pi\)
0.884018 + 0.467453i \(0.154828\pi\)
\(308\) 3.00100e10 0.190015
\(309\) 0 0
\(310\) 5.04775e10 0.310435
\(311\) −1.12322e11 −0.680835 −0.340418 0.940274i \(-0.610568\pi\)
−0.340418 + 0.940274i \(0.610568\pi\)
\(312\) 0 0
\(313\) −1.06140e11 −0.625069 −0.312535 0.949906i \(-0.601178\pi\)
−0.312535 + 0.949906i \(0.601178\pi\)
\(314\) 7.08880e10 0.411518
\(315\) 0 0
\(316\) 1.27097e11 0.717042
\(317\) −2.31358e9 −0.0128682 −0.00643409 0.999979i \(-0.502048\pi\)
−0.00643409 + 0.999979i \(0.502048\pi\)
\(318\) 0 0
\(319\) 2.71306e11 1.46691
\(320\) −9.12681e9 −0.0486568
\(321\) 0 0
\(322\) 9.48875e10 0.491878
\(323\) −1.53441e10 −0.0784385
\(324\) 0 0
\(325\) 2.63095e10 0.130809
\(326\) 2.13832e11 1.04856
\(327\) 0 0
\(328\) −2.60541e10 −0.124292
\(329\) 1.35750e11 0.638792
\(330\) 0 0
\(331\) −2.16185e11 −0.989921 −0.494960 0.868916i \(-0.664817\pi\)
−0.494960 + 0.868916i \(0.664817\pi\)
\(332\) 9.51007e10 0.429598
\(333\) 0 0
\(334\) −1.99130e11 −0.875544
\(335\) −5.08893e10 −0.220762
\(336\) 0 0
\(337\) 5.00291e10 0.211294 0.105647 0.994404i \(-0.466309\pi\)
0.105647 + 0.994404i \(0.466309\pi\)
\(338\) 1.65639e11 0.690300
\(339\) 0 0
\(340\) −2.98276e9 −0.0121049
\(341\) −2.83147e11 −1.13401
\(342\) 0 0
\(343\) −1.38413e10 −0.0539949
\(344\) 7.66005e10 0.294930
\(345\) 0 0
\(346\) 1.67271e11 0.627448
\(347\) 1.84606e11 0.683541 0.341770 0.939784i \(-0.388974\pi\)
0.341770 + 0.939784i \(0.388974\pi\)
\(348\) 0 0
\(349\) 2.74666e11 0.991039 0.495520 0.868597i \(-0.334978\pi\)
0.495520 + 0.868597i \(0.334978\pi\)
\(350\) −6.36626e10 −0.226766
\(351\) 0 0
\(352\) 5.11957e10 0.177743
\(353\) 1.58053e11 0.541774 0.270887 0.962611i \(-0.412683\pi\)
0.270887 + 0.962611i \(0.412683\pi\)
\(354\) 0 0
\(355\) −5.20246e10 −0.173853
\(356\) 4.23635e10 0.139787
\(357\) 0 0
\(358\) −6.47025e10 −0.208184
\(359\) −3.40759e11 −1.08274 −0.541368 0.840786i \(-0.682093\pi\)
−0.541368 + 0.840786i \(0.682093\pi\)
\(360\) 0 0
\(361\) 1.90556e11 0.590526
\(362\) −1.99576e11 −0.610829
\(363\) 0 0
\(364\) 9.75828e9 0.0291351
\(365\) −1.66734e11 −0.491707
\(366\) 0 0
\(367\) −6.10216e11 −1.75584 −0.877922 0.478803i \(-0.841071\pi\)
−0.877922 + 0.478803i \(0.841071\pi\)
\(368\) 1.61874e11 0.460110
\(369\) 0 0
\(370\) −3.38971e10 −0.0940275
\(371\) −1.43807e11 −0.394092
\(372\) 0 0
\(373\) 4.34930e11 1.16340 0.581701 0.813402i \(-0.302387\pi\)
0.581701 + 0.813402i \(0.302387\pi\)
\(374\) 1.67314e10 0.0442191
\(375\) 0 0
\(376\) 2.31584e11 0.597535
\(377\) 8.82202e10 0.224922
\(378\) 0 0
\(379\) −7.30677e11 −1.81907 −0.909534 0.415630i \(-0.863561\pi\)
−0.909534 + 0.415630i \(0.863561\pi\)
\(380\) 9.97701e10 0.245456
\(381\) 0 0
\(382\) −6.11115e10 −0.146838
\(383\) −2.11074e11 −0.501233 −0.250617 0.968086i \(-0.580633\pi\)
−0.250617 + 0.968086i \(0.580633\pi\)
\(384\) 0 0
\(385\) −6.37712e10 −0.147928
\(386\) 3.85909e11 0.884794
\(387\) 0 0
\(388\) 1.94052e11 0.434686
\(389\) −7.21857e9 −0.0159837 −0.00799186 0.999968i \(-0.502544\pi\)
−0.00799186 + 0.999968i \(0.502544\pi\)
\(390\) 0 0
\(391\) 5.29025e10 0.114467
\(392\) −2.36126e10 −0.0505076
\(393\) 0 0
\(394\) −1.99677e11 −0.417441
\(395\) −2.70082e11 −0.558224
\(396\) 0 0
\(397\) −6.99387e11 −1.41306 −0.706529 0.707684i \(-0.749740\pi\)
−0.706529 + 0.707684i \(0.749740\pi\)
\(398\) 4.69004e10 0.0936920
\(399\) 0 0
\(400\) −1.08606e11 −0.212120
\(401\) −6.40644e11 −1.23728 −0.618638 0.785676i \(-0.712315\pi\)
−0.618638 + 0.785676i \(0.712315\pi\)
\(402\) 0 0
\(403\) −9.20704e10 −0.173879
\(404\) 2.31478e11 0.432309
\(405\) 0 0
\(406\) −2.13471e11 −0.389917
\(407\) 1.90142e11 0.343481
\(408\) 0 0
\(409\) −1.31500e10 −0.0232365 −0.0116182 0.999933i \(-0.503698\pi\)
−0.0116182 + 0.999933i \(0.503698\pi\)
\(410\) 5.53649e10 0.0967625
\(411\) 0 0
\(412\) 5.07281e11 0.867384
\(413\) 3.97677e11 0.672597
\(414\) 0 0
\(415\) −2.02089e11 −0.334446
\(416\) 1.66472e10 0.0272534
\(417\) 0 0
\(418\) −5.59648e11 −0.896647
\(419\) 5.79915e11 0.919182 0.459591 0.888131i \(-0.347996\pi\)
0.459591 + 0.888131i \(0.347996\pi\)
\(420\) 0 0
\(421\) 1.66175e11 0.257808 0.128904 0.991657i \(-0.458854\pi\)
0.128904 + 0.991657i \(0.458854\pi\)
\(422\) −5.39165e11 −0.827591
\(423\) 0 0
\(424\) −2.45329e11 −0.368639
\(425\) −3.54937e10 −0.0527717
\(426\) 0 0
\(427\) −1.23457e11 −0.179718
\(428\) −1.06593e11 −0.153544
\(429\) 0 0
\(430\) −1.62776e11 −0.229606
\(431\) −7.57723e11 −1.05770 −0.528850 0.848715i \(-0.677377\pi\)
−0.528850 + 0.848715i \(0.677377\pi\)
\(432\) 0 0
\(433\) −1.07485e12 −1.46944 −0.734719 0.678371i \(-0.762686\pi\)
−0.734719 + 0.678371i \(0.762686\pi\)
\(434\) 2.22788e11 0.301431
\(435\) 0 0
\(436\) −3.24918e11 −0.430610
\(437\) −1.76953e12 −2.32109
\(438\) 0 0
\(439\) 1.70418e11 0.218991 0.109496 0.993987i \(-0.465076\pi\)
0.109496 + 0.993987i \(0.465076\pi\)
\(440\) −1.08791e11 −0.138374
\(441\) 0 0
\(442\) 5.44051e9 0.00678016
\(443\) −1.22937e12 −1.51658 −0.758290 0.651918i \(-0.773965\pi\)
−0.758290 + 0.651918i \(0.773965\pi\)
\(444\) 0 0
\(445\) −9.00225e10 −0.108826
\(446\) 6.19533e11 0.741409
\(447\) 0 0
\(448\) −4.02821e10 −0.0472456
\(449\) 7.25792e10 0.0842759 0.0421380 0.999112i \(-0.486583\pi\)
0.0421380 + 0.999112i \(0.486583\pi\)
\(450\) 0 0
\(451\) −3.10563e11 −0.353472
\(452\) 7.25831e11 0.817923
\(453\) 0 0
\(454\) 1.23042e12 1.35926
\(455\) −2.07363e10 −0.0226820
\(456\) 0 0
\(457\) −6.64172e11 −0.712291 −0.356146 0.934431i \(-0.615909\pi\)
−0.356146 + 0.934431i \(0.615909\pi\)
\(458\) −6.96183e11 −0.739313
\(459\) 0 0
\(460\) −3.43982e11 −0.358200
\(461\) 1.21501e12 1.25293 0.626463 0.779451i \(-0.284502\pi\)
0.626463 + 0.779451i \(0.284502\pi\)
\(462\) 0 0
\(463\) 2.93878e11 0.297202 0.148601 0.988897i \(-0.452523\pi\)
0.148601 + 0.988897i \(0.452523\pi\)
\(464\) −3.64172e11 −0.364734
\(465\) 0 0
\(466\) −3.31269e11 −0.325420
\(467\) −4.73112e11 −0.460297 −0.230149 0.973155i \(-0.573921\pi\)
−0.230149 + 0.973155i \(0.573921\pi\)
\(468\) 0 0
\(469\) −2.24605e11 −0.214359
\(470\) −4.92116e11 −0.465187
\(471\) 0 0
\(472\) 6.78419e11 0.629157
\(473\) 9.13072e11 0.838745
\(474\) 0 0
\(475\) 1.18723e12 1.07007
\(476\) −1.31647e10 −0.0117538
\(477\) 0 0
\(478\) 3.45952e11 0.303103
\(479\) 2.05945e12 1.78748 0.893742 0.448582i \(-0.148071\pi\)
0.893742 + 0.448582i \(0.148071\pi\)
\(480\) 0 0
\(481\) 6.18280e10 0.0526662
\(482\) −1.08446e12 −0.915172
\(483\) 0 0
\(484\) 6.61383e9 0.00547834
\(485\) −4.12361e11 −0.338407
\(486\) 0 0
\(487\) −1.22247e12 −0.984821 −0.492411 0.870363i \(-0.663884\pi\)
−0.492411 + 0.870363i \(0.663884\pi\)
\(488\) −2.10612e11 −0.168110
\(489\) 0 0
\(490\) 5.01768e10 0.0393207
\(491\) −1.98225e11 −0.153918 −0.0769592 0.997034i \(-0.524521\pi\)
−0.0769592 + 0.997034i \(0.524521\pi\)
\(492\) 0 0
\(493\) −1.19016e11 −0.0907391
\(494\) −1.81980e11 −0.137484
\(495\) 0 0
\(496\) 3.80066e11 0.281963
\(497\) −2.29616e11 −0.168810
\(498\) 0 0
\(499\) −3.00745e11 −0.217143 −0.108571 0.994089i \(-0.534628\pi\)
−0.108571 + 0.994089i \(0.534628\pi\)
\(500\) 5.02787e11 0.359765
\(501\) 0 0
\(502\) 7.80633e10 0.0548631
\(503\) −3.30194e11 −0.229993 −0.114996 0.993366i \(-0.536686\pi\)
−0.114996 + 0.993366i \(0.536686\pi\)
\(504\) 0 0
\(505\) −4.91891e11 −0.336556
\(506\) 1.92952e12 1.30850
\(507\) 0 0
\(508\) 1.39336e12 0.928277
\(509\) 6.32399e10 0.0417600 0.0208800 0.999782i \(-0.493353\pi\)
0.0208800 + 0.999782i \(0.493353\pi\)
\(510\) 0 0
\(511\) −7.35898e11 −0.477445
\(512\) −6.87195e10 −0.0441942
\(513\) 0 0
\(514\) −4.40046e11 −0.278076
\(515\) −1.07797e12 −0.675267
\(516\) 0 0
\(517\) 2.76046e12 1.69932
\(518\) −1.49608e11 −0.0913003
\(519\) 0 0
\(520\) −3.53753e10 −0.0212170
\(521\) 1.88994e12 1.12377 0.561886 0.827215i \(-0.310076\pi\)
0.561886 + 0.827215i \(0.310076\pi\)
\(522\) 0 0
\(523\) 8.95863e11 0.523581 0.261791 0.965125i \(-0.415687\pi\)
0.261791 + 0.965125i \(0.415687\pi\)
\(524\) 1.64879e11 0.0955374
\(525\) 0 0
\(526\) −3.56152e11 −0.202861
\(527\) 1.24210e11 0.0701472
\(528\) 0 0
\(529\) 4.29975e12 2.38722
\(530\) 5.21323e11 0.286989
\(531\) 0 0
\(532\) 4.40346e11 0.238337
\(533\) −1.00985e11 −0.0541981
\(534\) 0 0
\(535\) 2.26510e11 0.119535
\(536\) −3.83166e11 −0.200515
\(537\) 0 0
\(538\) 2.76826e11 0.142458
\(539\) −2.81461e11 −0.143638
\(540\) 0 0
\(541\) 1.00221e12 0.503005 0.251502 0.967857i \(-0.419075\pi\)
0.251502 + 0.967857i \(0.419075\pi\)
\(542\) −7.71041e11 −0.383778
\(543\) 0 0
\(544\) −2.24584e10 −0.0109947
\(545\) 6.90450e11 0.335234
\(546\) 0 0
\(547\) 2.73436e12 1.30591 0.652955 0.757396i \(-0.273529\pi\)
0.652955 + 0.757396i \(0.273529\pi\)
\(548\) −4.28481e11 −0.202964
\(549\) 0 0
\(550\) −1.29457e12 −0.603244
\(551\) 3.98097e12 1.83995
\(552\) 0 0
\(553\) −1.19203e12 −0.542033
\(554\) −1.28613e12 −0.580086
\(555\) 0 0
\(556\) −1.06837e12 −0.474115
\(557\) 4.22359e12 1.85923 0.929614 0.368534i \(-0.120140\pi\)
0.929614 + 0.368534i \(0.120140\pi\)
\(558\) 0 0
\(559\) 2.96902e11 0.128606
\(560\) 8.55995e10 0.0367811
\(561\) 0 0
\(562\) −3.12953e12 −1.32332
\(563\) 3.08311e12 1.29330 0.646652 0.762785i \(-0.276169\pi\)
0.646652 + 0.762785i \(0.276169\pi\)
\(564\) 0 0
\(565\) −1.54239e12 −0.636761
\(566\) 9.64483e11 0.395021
\(567\) 0 0
\(568\) −3.91715e11 −0.157907
\(569\) 2.74669e11 0.109851 0.0549256 0.998490i \(-0.482508\pi\)
0.0549256 + 0.998490i \(0.482508\pi\)
\(570\) 0 0
\(571\) 2.82499e12 1.11213 0.556064 0.831140i \(-0.312311\pi\)
0.556064 + 0.831140i \(0.312311\pi\)
\(572\) 1.98433e11 0.0775055
\(573\) 0 0
\(574\) 2.44359e11 0.0939560
\(575\) −4.09326e12 −1.56158
\(576\) 0 0
\(577\) 3.76585e12 1.41440 0.707199 0.707014i \(-0.249958\pi\)
0.707199 + 0.707014i \(0.249958\pi\)
\(578\) 1.89007e12 0.704371
\(579\) 0 0
\(580\) 7.73866e11 0.283949
\(581\) −8.91940e11 −0.324745
\(582\) 0 0
\(583\) −2.92430e12 −1.04837
\(584\) −1.25541e12 −0.446609
\(585\) 0 0
\(586\) −7.78789e11 −0.272823
\(587\) 3.00831e12 1.04580 0.522902 0.852393i \(-0.324849\pi\)
0.522902 + 0.852393i \(0.324849\pi\)
\(588\) 0 0
\(589\) −4.15471e12 −1.42240
\(590\) −1.44164e12 −0.489805
\(591\) 0 0
\(592\) −2.55225e11 −0.0854036
\(593\) −3.64775e12 −1.21138 −0.605688 0.795703i \(-0.707102\pi\)
−0.605688 + 0.795703i \(0.707102\pi\)
\(594\) 0 0
\(595\) 2.79750e10 0.00915047
\(596\) 1.18809e11 0.0385691
\(597\) 0 0
\(598\) 6.27420e11 0.200633
\(599\) −4.17778e12 −1.32594 −0.662972 0.748644i \(-0.730705\pi\)
−0.662972 + 0.748644i \(0.730705\pi\)
\(600\) 0 0
\(601\) 4.84445e12 1.51464 0.757321 0.653043i \(-0.226508\pi\)
0.757321 + 0.653043i \(0.226508\pi\)
\(602\) −7.18429e11 −0.222946
\(603\) 0 0
\(604\) 1.87374e12 0.572853
\(605\) −1.40544e10 −0.00426494
\(606\) 0 0
\(607\) −1.58444e12 −0.473726 −0.236863 0.971543i \(-0.576119\pi\)
−0.236863 + 0.971543i \(0.576119\pi\)
\(608\) 7.51210e11 0.222944
\(609\) 0 0
\(610\) 4.47551e11 0.130876
\(611\) 8.97614e11 0.260558
\(612\) 0 0
\(613\) −2.79203e11 −0.0798635 −0.0399318 0.999202i \(-0.512714\pi\)
−0.0399318 + 0.999202i \(0.512714\pi\)
\(614\) −4.40285e12 −1.25019
\(615\) 0 0
\(616\) −4.80159e11 −0.134361
\(617\) 5.55576e12 1.54333 0.771667 0.636027i \(-0.219423\pi\)
0.771667 + 0.636027i \(0.219423\pi\)
\(618\) 0 0
\(619\) −2.70437e12 −0.740385 −0.370192 0.928955i \(-0.620708\pi\)
−0.370192 + 0.928955i \(0.620708\pi\)
\(620\) −8.07640e11 −0.219511
\(621\) 0 0
\(622\) 1.79715e12 0.481423
\(623\) −3.97324e11 −0.105669
\(624\) 0 0
\(625\) 2.16828e12 0.568400
\(626\) 1.69823e12 0.441991
\(627\) 0 0
\(628\) −1.13421e12 −0.290987
\(629\) −8.34109e10 −0.0212469
\(630\) 0 0
\(631\) −4.73158e12 −1.18816 −0.594078 0.804407i \(-0.702483\pi\)
−0.594078 + 0.804407i \(0.702483\pi\)
\(632\) −2.03356e12 −0.507025
\(633\) 0 0
\(634\) 3.70172e10 0.00909918
\(635\) −2.96090e12 −0.722672
\(636\) 0 0
\(637\) −9.15220e10 −0.0220241
\(638\) −4.34090e12 −1.03726
\(639\) 0 0
\(640\) 1.46029e11 0.0344056
\(641\) −1.38865e12 −0.324887 −0.162444 0.986718i \(-0.551938\pi\)
−0.162444 + 0.986718i \(0.551938\pi\)
\(642\) 0 0
\(643\) 3.09398e12 0.713786 0.356893 0.934145i \(-0.383836\pi\)
0.356893 + 0.934145i \(0.383836\pi\)
\(644\) −1.51820e12 −0.347810
\(645\) 0 0
\(646\) 2.45505e11 0.0554644
\(647\) −2.31453e12 −0.519270 −0.259635 0.965707i \(-0.583602\pi\)
−0.259635 + 0.965707i \(0.583602\pi\)
\(648\) 0 0
\(649\) 8.08670e12 1.78925
\(650\) −4.20953e11 −0.0924960
\(651\) 0 0
\(652\) −3.42132e12 −0.741446
\(653\) 8.10575e11 0.174455 0.0872276 0.996188i \(-0.472199\pi\)
0.0872276 + 0.996188i \(0.472199\pi\)
\(654\) 0 0
\(655\) −3.50367e11 −0.0743768
\(656\) 4.16865e11 0.0878878
\(657\) 0 0
\(658\) −2.17200e12 −0.451694
\(659\) −4.57355e11 −0.0944645 −0.0472323 0.998884i \(-0.515040\pi\)
−0.0472323 + 0.998884i \(0.515040\pi\)
\(660\) 0 0
\(661\) 7.94557e12 1.61889 0.809447 0.587193i \(-0.199767\pi\)
0.809447 + 0.587193i \(0.199767\pi\)
\(662\) 3.45897e12 0.699980
\(663\) 0 0
\(664\) −1.52161e12 −0.303772
\(665\) −9.35735e11 −0.185548
\(666\) 0 0
\(667\) −1.37254e13 −2.68508
\(668\) 3.18608e12 0.619103
\(669\) 0 0
\(670\) 8.14229e11 0.156102
\(671\) −2.51048e12 −0.478086
\(672\) 0 0
\(673\) −8.92805e12 −1.67760 −0.838801 0.544439i \(-0.816743\pi\)
−0.838801 + 0.544439i \(0.816743\pi\)
\(674\) −8.00465e11 −0.149408
\(675\) 0 0
\(676\) −2.65023e12 −0.488116
\(677\) 8.01730e12 1.46683 0.733414 0.679782i \(-0.237926\pi\)
0.733414 + 0.679782i \(0.237926\pi\)
\(678\) 0 0
\(679\) −1.82000e12 −0.328592
\(680\) 4.77241e10 0.00855949
\(681\) 0 0
\(682\) 4.53036e12 0.801868
\(683\) −4.14724e12 −0.729233 −0.364617 0.931158i \(-0.618800\pi\)
−0.364617 + 0.931158i \(0.618800\pi\)
\(684\) 0 0
\(685\) 9.10523e11 0.158010
\(686\) 2.21461e11 0.0381802
\(687\) 0 0
\(688\) −1.22561e12 −0.208547
\(689\) −9.50888e11 −0.160747
\(690\) 0 0
\(691\) −6.05580e12 −1.01046 −0.505231 0.862984i \(-0.668593\pi\)
−0.505231 + 0.862984i \(0.668593\pi\)
\(692\) −2.67633e12 −0.443672
\(693\) 0 0
\(694\) −2.95370e12 −0.483336
\(695\) 2.27028e12 0.369103
\(696\) 0 0
\(697\) 1.36237e11 0.0218649
\(698\) −4.39466e12 −0.700771
\(699\) 0 0
\(700\) 1.01860e12 0.160348
\(701\) −1.88599e12 −0.294990 −0.147495 0.989063i \(-0.547121\pi\)
−0.147495 + 0.989063i \(0.547121\pi\)
\(702\) 0 0
\(703\) 2.79001e12 0.430831
\(704\) −8.19131e11 −0.125683
\(705\) 0 0
\(706\) −2.52886e12 −0.383092
\(707\) −2.17101e12 −0.326795
\(708\) 0 0
\(709\) −4.76210e12 −0.707767 −0.353884 0.935289i \(-0.615139\pi\)
−0.353884 + 0.935289i \(0.615139\pi\)
\(710\) 8.32394e11 0.122932
\(711\) 0 0
\(712\) −6.77817e11 −0.0988444
\(713\) 1.43244e13 2.07574
\(714\) 0 0
\(715\) −4.21671e11 −0.0603387
\(716\) 1.03524e12 0.147208
\(717\) 0 0
\(718\) 5.45215e12 0.765610
\(719\) −5.34893e12 −0.746427 −0.373213 0.927746i \(-0.621744\pi\)
−0.373213 + 0.927746i \(0.621744\pi\)
\(720\) 0 0
\(721\) −4.75774e12 −0.655681
\(722\) −3.04889e12 −0.417565
\(723\) 0 0
\(724\) 3.19322e12 0.431922
\(725\) 9.20871e12 1.23788
\(726\) 0 0
\(727\) 9.08222e12 1.20583 0.602917 0.797804i \(-0.294005\pi\)
0.602917 + 0.797804i \(0.294005\pi\)
\(728\) −1.56132e11 −0.0206016
\(729\) 0 0
\(730\) 2.66774e12 0.347689
\(731\) −4.00544e11 −0.0518827
\(732\) 0 0
\(733\) −1.20547e13 −1.54237 −0.771185 0.636611i \(-0.780336\pi\)
−0.771185 + 0.636611i \(0.780336\pi\)
\(734\) 9.76345e12 1.24157
\(735\) 0 0
\(736\) −2.58998e12 −0.325347
\(737\) −4.56731e12 −0.570239
\(738\) 0 0
\(739\) 1.08128e13 1.33364 0.666822 0.745217i \(-0.267654\pi\)
0.666822 + 0.745217i \(0.267654\pi\)
\(740\) 5.42354e11 0.0664875
\(741\) 0 0
\(742\) 2.30091e12 0.278665
\(743\) −6.39433e12 −0.769742 −0.384871 0.922970i \(-0.625754\pi\)
−0.384871 + 0.922970i \(0.625754\pi\)
\(744\) 0 0
\(745\) −2.52468e11 −0.0300264
\(746\) −6.95889e12 −0.822650
\(747\) 0 0
\(748\) −2.67702e11 −0.0312676
\(749\) 9.99726e11 0.116068
\(750\) 0 0
\(751\) −2.30580e12 −0.264510 −0.132255 0.991216i \(-0.542222\pi\)
−0.132255 + 0.991216i \(0.542222\pi\)
\(752\) −3.70534e12 −0.422521
\(753\) 0 0
\(754\) −1.41152e12 −0.159044
\(755\) −3.98170e12 −0.445971
\(756\) 0 0
\(757\) −6.85316e12 −0.758507 −0.379253 0.925293i \(-0.623819\pi\)
−0.379253 + 0.925293i \(0.623819\pi\)
\(758\) 1.16908e13 1.28628
\(759\) 0 0
\(760\) −1.59632e12 −0.173564
\(761\) 1.55520e12 0.168095 0.0840474 0.996462i \(-0.473215\pi\)
0.0840474 + 0.996462i \(0.473215\pi\)
\(762\) 0 0
\(763\) 3.04737e12 0.325510
\(764\) 9.77784e11 0.103830
\(765\) 0 0
\(766\) 3.37718e12 0.354425
\(767\) 2.62954e12 0.274347
\(768\) 0 0
\(769\) −1.31148e12 −0.135236 −0.0676179 0.997711i \(-0.521540\pi\)
−0.0676179 + 0.997711i \(0.521540\pi\)
\(770\) 1.02034e12 0.104601
\(771\) 0 0
\(772\) −6.17454e12 −0.625644
\(773\) 9.82010e12 0.989255 0.494627 0.869105i \(-0.335305\pi\)
0.494627 + 0.869105i \(0.335305\pi\)
\(774\) 0 0
\(775\) −9.61062e12 −0.956959
\(776\) −3.10484e12 −0.307370
\(777\) 0 0
\(778\) 1.15497e11 0.0113022
\(779\) −4.55698e12 −0.443362
\(780\) 0 0
\(781\) −4.66921e12 −0.449070
\(782\) −8.46439e11 −0.0809404
\(783\) 0 0
\(784\) 3.77802e11 0.0357143
\(785\) 2.41019e12 0.226536
\(786\) 0 0
\(787\) −4.81658e12 −0.447562 −0.223781 0.974639i \(-0.571840\pi\)
−0.223781 + 0.974639i \(0.571840\pi\)
\(788\) 3.19484e12 0.295176
\(789\) 0 0
\(790\) 4.32131e12 0.394724
\(791\) −6.80750e12 −0.618292
\(792\) 0 0
\(793\) −8.16328e11 −0.0733053
\(794\) 1.11902e13 0.999183
\(795\) 0 0
\(796\) −7.50406e11 −0.0662502
\(797\) −7.71344e12 −0.677151 −0.338575 0.940939i \(-0.609945\pi\)
−0.338575 + 0.940939i \(0.609945\pi\)
\(798\) 0 0
\(799\) −1.21095e12 −0.105116
\(800\) 1.73769e12 0.149992
\(801\) 0 0
\(802\) 1.02503e13 0.874887
\(803\) −1.49644e13 −1.27010
\(804\) 0 0
\(805\) 3.22618e12 0.270774
\(806\) 1.47313e12 0.122951
\(807\) 0 0
\(808\) −3.70365e12 −0.305688
\(809\) −2.12869e13 −1.74721 −0.873604 0.486637i \(-0.838223\pi\)
−0.873604 + 0.486637i \(0.838223\pi\)
\(810\) 0 0
\(811\) 2.45053e13 1.98914 0.994570 0.104067i \(-0.0331856\pi\)
0.994570 + 0.104067i \(0.0331856\pi\)
\(812\) 3.41554e12 0.275713
\(813\) 0 0
\(814\) −3.04227e12 −0.242878
\(815\) 7.27030e12 0.577223
\(816\) 0 0
\(817\) 1.33978e13 1.05204
\(818\) 2.10400e11 0.0164307
\(819\) 0 0
\(820\) −8.85839e11 −0.0684214
\(821\) 9.72826e12 0.747293 0.373646 0.927571i \(-0.378107\pi\)
0.373646 + 0.927571i \(0.378107\pi\)
\(822\) 0 0
\(823\) −8.28745e11 −0.0629683 −0.0314841 0.999504i \(-0.510023\pi\)
−0.0314841 + 0.999504i \(0.510023\pi\)
\(824\) −8.11650e12 −0.613333
\(825\) 0 0
\(826\) −6.36283e12 −0.475598
\(827\) −2.42842e13 −1.80530 −0.902649 0.430376i \(-0.858381\pi\)
−0.902649 + 0.430376i \(0.858381\pi\)
\(828\) 0 0
\(829\) 1.95570e13 1.43816 0.719078 0.694929i \(-0.244564\pi\)
0.719078 + 0.694929i \(0.244564\pi\)
\(830\) 3.23342e12 0.236489
\(831\) 0 0
\(832\) −2.66355e11 −0.0192711
\(833\) 1.23471e11 0.00888507
\(834\) 0 0
\(835\) −6.77043e12 −0.481978
\(836\) 8.95437e12 0.634025
\(837\) 0 0
\(838\) −9.27865e12 −0.649960
\(839\) 7.69577e12 0.536196 0.268098 0.963392i \(-0.413605\pi\)
0.268098 + 0.963392i \(0.413605\pi\)
\(840\) 0 0
\(841\) 1.63712e13 1.12849
\(842\) −2.65880e12 −0.182298
\(843\) 0 0
\(844\) 8.62664e12 0.585195
\(845\) 5.63173e12 0.380003
\(846\) 0 0
\(847\) −6.20305e10 −0.00414124
\(848\) 3.92526e12 0.260667
\(849\) 0 0
\(850\) 5.67899e11 0.0373152
\(851\) −9.61924e12 −0.628721
\(852\) 0 0
\(853\) −2.79895e12 −0.181019 −0.0905097 0.995896i \(-0.528850\pi\)
−0.0905097 + 0.995896i \(0.528850\pi\)
\(854\) 1.97531e12 0.127079
\(855\) 0 0
\(856\) 1.70549e12 0.108572
\(857\) 5.56141e12 0.352185 0.176093 0.984374i \(-0.443654\pi\)
0.176093 + 0.984374i \(0.443654\pi\)
\(858\) 0 0
\(859\) 3.51052e12 0.219989 0.109995 0.993932i \(-0.464917\pi\)
0.109995 + 0.993932i \(0.464917\pi\)
\(860\) 2.60442e12 0.162356
\(861\) 0 0
\(862\) 1.21236e13 0.747908
\(863\) −1.43838e13 −0.882721 −0.441361 0.897330i \(-0.645504\pi\)
−0.441361 + 0.897330i \(0.645504\pi\)
\(864\) 0 0
\(865\) 5.68720e12 0.345403
\(866\) 1.71976e13 1.03905
\(867\) 0 0
\(868\) −3.56460e12 −0.213144
\(869\) −2.42399e13 −1.44192
\(870\) 0 0
\(871\) −1.48514e12 −0.0874353
\(872\) 5.19868e12 0.304487
\(873\) 0 0
\(874\) 2.83125e13 1.64126
\(875\) −4.71559e12 −0.271957
\(876\) 0 0
\(877\) −6.34278e12 −0.362061 −0.181030 0.983477i \(-0.557943\pi\)
−0.181030 + 0.983477i \(0.557943\pi\)
\(878\) −2.72670e12 −0.154850
\(879\) 0 0
\(880\) 1.74065e12 0.0978453
\(881\) 2.89282e13 1.61782 0.808910 0.587933i \(-0.200058\pi\)
0.808910 + 0.587933i \(0.200058\pi\)
\(882\) 0 0
\(883\) −7.17154e12 −0.396999 −0.198500 0.980101i \(-0.563607\pi\)
−0.198500 + 0.980101i \(0.563607\pi\)
\(884\) −8.70482e10 −0.00479430
\(885\) 0 0
\(886\) 1.96699e13 1.07238
\(887\) 1.68020e13 0.911389 0.455695 0.890136i \(-0.349391\pi\)
0.455695 + 0.890136i \(0.349391\pi\)
\(888\) 0 0
\(889\) −1.30682e13 −0.701711
\(890\) 1.44036e12 0.0769513
\(891\) 0 0
\(892\) −9.91254e12 −0.524255
\(893\) 4.05052e13 2.13147
\(894\) 0 0
\(895\) −2.19989e12 −0.114603
\(896\) 6.44514e11 0.0334077
\(897\) 0 0
\(898\) −1.16127e12 −0.0595921
\(899\) −3.22260e13 −1.64546
\(900\) 0 0
\(901\) 1.28282e12 0.0648493
\(902\) 4.96900e12 0.249942
\(903\) 0 0
\(904\) −1.16133e13 −0.578359
\(905\) −6.78559e12 −0.336255
\(906\) 0 0
\(907\) −1.87924e13 −0.922038 −0.461019 0.887390i \(-0.652516\pi\)
−0.461019 + 0.887390i \(0.652516\pi\)
\(908\) −1.96867e13 −0.961139
\(909\) 0 0
\(910\) 3.31781e11 0.0160386
\(911\) 3.39496e13 1.63306 0.816529 0.577304i \(-0.195895\pi\)
0.816529 + 0.577304i \(0.195895\pi\)
\(912\) 0 0
\(913\) −1.81375e13 −0.863890
\(914\) 1.06267e13 0.503666
\(915\) 0 0
\(916\) 1.11389e13 0.522773
\(917\) −1.54638e12 −0.0722195
\(918\) 0 0
\(919\) 1.03287e13 0.477667 0.238833 0.971061i \(-0.423235\pi\)
0.238833 + 0.971061i \(0.423235\pi\)
\(920\) 5.50371e12 0.253286
\(921\) 0 0
\(922\) −1.94401e13 −0.885952
\(923\) −1.51828e12 −0.0688563
\(924\) 0 0
\(925\) 6.45381e12 0.289853
\(926\) −4.70205e12 −0.210154
\(927\) 0 0
\(928\) 5.82675e12 0.257906
\(929\) 2.79767e13 1.23233 0.616163 0.787619i \(-0.288686\pi\)
0.616163 + 0.787619i \(0.288686\pi\)
\(930\) 0 0
\(931\) −4.12996e12 −0.180166
\(932\) 5.30030e12 0.230107
\(933\) 0 0
\(934\) 7.56980e12 0.325479
\(935\) 5.68868e11 0.0243421
\(936\) 0 0
\(937\) 3.31649e13 1.40556 0.702782 0.711406i \(-0.251941\pi\)
0.702782 + 0.711406i \(0.251941\pi\)
\(938\) 3.59368e12 0.151575
\(939\) 0 0
\(940\) 7.87386e12 0.328937
\(941\) −3.19309e13 −1.32757 −0.663786 0.747923i \(-0.731051\pi\)
−0.663786 + 0.747923i \(0.731051\pi\)
\(942\) 0 0
\(943\) 1.57113e13 0.647009
\(944\) −1.08547e13 −0.444881
\(945\) 0 0
\(946\) −1.46092e13 −0.593082
\(947\) −3.56921e13 −1.44210 −0.721052 0.692881i \(-0.756341\pi\)
−0.721052 + 0.692881i \(0.756341\pi\)
\(948\) 0 0
\(949\) −4.86594e12 −0.194746
\(950\) −1.89956e13 −0.756654
\(951\) 0 0
\(952\) 2.10635e11 0.00831122
\(953\) 3.04923e13 1.19749 0.598745 0.800940i \(-0.295666\pi\)
0.598745 + 0.800940i \(0.295666\pi\)
\(954\) 0 0
\(955\) −2.07779e12 −0.0808327
\(956\) −5.53524e12 −0.214326
\(957\) 0 0
\(958\) −3.29512e13 −1.26394
\(959\) 4.01869e12 0.153427
\(960\) 0 0
\(961\) 7.19282e12 0.272047
\(962\) −9.89248e11 −0.0372406
\(963\) 0 0
\(964\) 1.73514e13 0.647124
\(965\) 1.31209e13 0.487069
\(966\) 0 0
\(967\) −3.45533e13 −1.27078 −0.635389 0.772192i \(-0.719160\pi\)
−0.635389 + 0.772192i \(0.719160\pi\)
\(968\) −1.05821e11 −0.00387377
\(969\) 0 0
\(970\) 6.59778e12 0.239290
\(971\) 2.06708e13 0.746225 0.373112 0.927786i \(-0.378291\pi\)
0.373112 + 0.927786i \(0.378291\pi\)
\(972\) 0 0
\(973\) 1.00201e13 0.358397
\(974\) 1.95595e13 0.696374
\(975\) 0 0
\(976\) 3.36980e12 0.118872
\(977\) −1.78789e11 −0.00627791 −0.00313896 0.999995i \(-0.500999\pi\)
−0.00313896 + 0.999995i \(0.500999\pi\)
\(978\) 0 0
\(979\) −8.07952e12 −0.281102
\(980\) −8.02829e11 −0.0278039
\(981\) 0 0
\(982\) 3.17159e12 0.108837
\(983\) 1.42657e13 0.487305 0.243652 0.969863i \(-0.421654\pi\)
0.243652 + 0.969863i \(0.421654\pi\)
\(984\) 0 0
\(985\) −6.78902e12 −0.229797
\(986\) 1.90426e12 0.0641622
\(987\) 0 0
\(988\) 2.91167e12 0.0972157
\(989\) −4.61922e13 −1.53527
\(990\) 0 0
\(991\) −2.71296e13 −0.893537 −0.446768 0.894650i \(-0.647425\pi\)
−0.446768 + 0.894650i \(0.647425\pi\)
\(992\) −6.08106e12 −0.199378
\(993\) 0 0
\(994\) 3.67386e12 0.119367
\(995\) 1.59461e12 0.0515764
\(996\) 0 0
\(997\) −3.86723e12 −0.123957 −0.0619787 0.998077i \(-0.519741\pi\)
−0.0619787 + 0.998077i \(0.519741\pi\)
\(998\) 4.81191e12 0.153543
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 126.10.a.a.1.1 1
3.2 odd 2 14.10.a.b.1.1 1
12.11 even 2 112.10.a.a.1.1 1
15.2 even 4 350.10.c.d.99.2 2
15.8 even 4 350.10.c.d.99.1 2
15.14 odd 2 350.10.a.a.1.1 1
21.2 odd 6 98.10.c.a.67.1 2
21.5 even 6 98.10.c.d.67.1 2
21.11 odd 6 98.10.c.a.79.1 2
21.17 even 6 98.10.c.d.79.1 2
21.20 even 2 98.10.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.a.b.1.1 1 3.2 odd 2
98.10.a.b.1.1 1 21.20 even 2
98.10.c.a.67.1 2 21.2 odd 6
98.10.c.a.79.1 2 21.11 odd 6
98.10.c.d.67.1 2 21.5 even 6
98.10.c.d.79.1 2 21.17 even 6
112.10.a.a.1.1 1 12.11 even 2
126.10.a.a.1.1 1 1.1 even 1 trivial
350.10.a.a.1.1 1 15.14 odd 2
350.10.c.d.99.1 2 15.8 even 4
350.10.c.d.99.2 2 15.2 even 4