Defining parameters
| Level: | \( N \) | \(=\) | \( 126 = 2 \cdot 3^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 10 \) |
| Character orbit: | \([\chi]\) | \(=\) | 126.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 15 \) | ||
| Sturm bound: | \(240\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(126))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 224 | 22 | 202 |
| Cusp forms | 208 | 22 | 186 |
| Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(26\) | \(2\) | \(24\) | \(24\) | \(2\) | \(22\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(30\) | \(2\) | \(28\) | \(28\) | \(2\) | \(26\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(29\) | \(4\) | \(25\) | \(27\) | \(4\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(27\) | \(3\) | \(24\) | \(25\) | \(3\) | \(22\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(28\) | \(2\) | \(26\) | \(26\) | \(2\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(28\) | \(2\) | \(26\) | \(26\) | \(2\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(29\) | \(3\) | \(26\) | \(27\) | \(3\) | \(24\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(27\) | \(4\) | \(23\) | \(25\) | \(4\) | \(21\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(110\) | \(10\) | \(100\) | \(102\) | \(10\) | \(92\) | \(8\) | \(0\) | \(8\) | |||||
| Minus space | \(-\) | \(114\) | \(12\) | \(102\) | \(106\) | \(12\) | \(94\) | \(8\) | \(0\) | \(8\) | |||||
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(126))\) into newform subspaces
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(126))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(126)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(63))\)\(^{\oplus 2}\)