Properties

Label 125.2.g
Level $125$
Weight $2$
Character orbit 125.g
Rep. character $\chi_{125}(6,\cdot)$
Character field $\Q(\zeta_{25})$
Dimension $220$
Newform subspaces $1$
Sturm bound $25$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 125 = 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 125.g (of order \(25\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 125 \)
Character field: \(\Q(\zeta_{25})\)
Newform subspaces: \( 1 \)
Sturm bound: \(25\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(125, [\chi])\).

Total New Old
Modular forms 260 260 0
Cusp forms 220 220 0
Eisenstein series 40 40 0

Trace form

\( 220 q - 20 q^{2} - 20 q^{3} - 20 q^{4} - 15 q^{5} - 20 q^{6} - 15 q^{7} - 5 q^{8} - 20 q^{9} + O(q^{10}) \) \( 220 q - 20 q^{2} - 20 q^{3} - 20 q^{4} - 15 q^{5} - 20 q^{6} - 15 q^{7} - 5 q^{8} - 20 q^{9} - 20 q^{10} - 15 q^{11} - 100 q^{12} - 20 q^{13} - 10 q^{14} - 15 q^{17} + 10 q^{18} - 10 q^{19} + 5 q^{20} - 5 q^{21} + 25 q^{22} - 90 q^{23} + 15 q^{24} - 45 q^{25} + 15 q^{26} + 10 q^{27} + 30 q^{28} - 10 q^{29} + 40 q^{30} - 10 q^{31} + 20 q^{32} + 15 q^{33} + 5 q^{34} + 10 q^{35} - 210 q^{36} + 20 q^{37} + 30 q^{38} + 45 q^{40} - 5 q^{41} + 70 q^{42} + 25 q^{43} + 15 q^{44} - 100 q^{45} - 100 q^{47} + 105 q^{48} - 20 q^{49} + 60 q^{50} + 25 q^{51} + 85 q^{52} + 20 q^{53} + 60 q^{54} + 15 q^{55} - 105 q^{56} + 40 q^{57} - 225 q^{58} + 5 q^{59} - 35 q^{60} + 65 q^{62} + 85 q^{63} + 45 q^{64} + 45 q^{65} + 55 q^{66} - 105 q^{67} + 80 q^{68} + 40 q^{69} + 95 q^{70} - 85 q^{71} + 160 q^{72} + 40 q^{73} + 35 q^{74} + 55 q^{75} + 35 q^{76} + 75 q^{77} - 10 q^{78} - 330 q^{80} + 55 q^{81} - 95 q^{82} + 50 q^{83} + 115 q^{84} + 85 q^{85} + 40 q^{86} + 95 q^{87} + 165 q^{88} + 55 q^{89} + 170 q^{90} - 105 q^{91} + 155 q^{92} - 185 q^{93} + 60 q^{94} + 30 q^{95} + 135 q^{96} + 65 q^{97} + 135 q^{98} + 45 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(125, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
125.2.g.a 125.g 125.g $220$ $0.998$ None \(-20\) \(-20\) \(-15\) \(-15\) $\mathrm{SU}(2)[C_{25}]$