Properties

Label 125.2.g
Level $125$
Weight $2$
Character orbit 125.g
Rep. character $\chi_{125}(6,\cdot)$
Character field $\Q(\zeta_{25})$
Dimension $220$
Newform subspaces $1$
Sturm bound $25$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 125 = 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 125.g (of order \(25\) and degree \(20\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 125 \)
Character field: \(\Q(\zeta_{25})\)
Newform subspaces: \( 1 \)
Sturm bound: \(25\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(125, [\chi])\).

Total New Old
Modular forms 260 260 0
Cusp forms 220 220 0
Eisenstein series 40 40 0

Trace form

\( 220 q - 20 q^{2} - 20 q^{3} - 20 q^{4} - 15 q^{5} - 20 q^{6} - 15 q^{7} - 5 q^{8} - 20 q^{9} - 20 q^{10} - 15 q^{11} - 100 q^{12} - 20 q^{13} - 10 q^{14} - 15 q^{17} + 10 q^{18} - 10 q^{19} + 5 q^{20} - 5 q^{21}+ \cdots + 45 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(125, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
125.2.g.a 125.g 125.g $220$ $0.998$ None 125.2.g.a \(-20\) \(-20\) \(-15\) \(-15\) $\mathrm{SU}(2)[C_{25}]$