Properties

Label 1248.4
Level 1248
Weight 4
Dimension 53564
Nonzero newspaces 40
Sturm bound 344064
Trace bound 28

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 40 \)
Sturm bound: \(344064\)
Trace bound: \(28\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1248))\).

Total New Old
Modular forms 130560 54004 76556
Cusp forms 127488 53564 73924
Eisenstein series 3072 440 2632

Trace form

\( 53564 q - 32 q^{3} - 80 q^{4} + 8 q^{5} - 40 q^{6} - 20 q^{9} + 400 q^{10} - 136 q^{12} - 324 q^{13} - 832 q^{14} - 140 q^{15} - 1280 q^{16} - 416 q^{17} - 184 q^{18} - 112 q^{19} + 320 q^{20} - 72 q^{21}+ \cdots + 2884 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1248))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1248.4.a \(\chi_{1248}(1, \cdot)\) 1248.4.a.a 3 1
1248.4.a.b 3
1248.4.a.c 4
1248.4.a.d 4
1248.4.a.e 4
1248.4.a.f 4
1248.4.a.g 5
1248.4.a.h 5
1248.4.a.i 5
1248.4.a.j 5
1248.4.a.k 5
1248.4.a.l 5
1248.4.a.m 5
1248.4.a.n 5
1248.4.a.o 5
1248.4.a.p 5
1248.4.c \(\chi_{1248}(961, \cdot)\) 1248.4.c.a 20 1
1248.4.c.b 20
1248.4.c.c 22
1248.4.c.d 22
1248.4.d \(\chi_{1248}(287, \cdot)\) n/a 144 1
1248.4.g \(\chi_{1248}(625, \cdot)\) 1248.4.g.a 32 1
1248.4.g.b 40
1248.4.h \(\chi_{1248}(623, \cdot)\) n/a 164 1
1248.4.j \(\chi_{1248}(911, \cdot)\) n/a 144 1
1248.4.m \(\chi_{1248}(337, \cdot)\) 1248.4.m.a 84 1
1248.4.n \(\chi_{1248}(1247, \cdot)\) n/a 168 1
1248.4.q \(\chi_{1248}(289, \cdot)\) n/a 168 2
1248.4.r \(\chi_{1248}(343, \cdot)\) None 0 2
1248.4.u \(\chi_{1248}(473, \cdot)\) None 0 2
1248.4.v \(\chi_{1248}(311, \cdot)\) None 0 2
1248.4.x \(\chi_{1248}(313, \cdot)\) None 0 2
1248.4.bb \(\chi_{1248}(463, \cdot)\) n/a 168 2
1248.4.bc \(\chi_{1248}(31, \cdot)\) n/a 168 2
1248.4.bf \(\chi_{1248}(161, \cdot)\) n/a 336 2
1248.4.bg \(\chi_{1248}(593, \cdot)\) n/a 328 2
1248.4.bh \(\chi_{1248}(599, \cdot)\) None 0 2
1248.4.bj \(\chi_{1248}(25, \cdot)\) None 0 2
1248.4.bm \(\chi_{1248}(281, \cdot)\) None 0 2
1248.4.bn \(\chi_{1248}(151, \cdot)\) None 0 2
1248.4.bq \(\chi_{1248}(335, \cdot)\) n/a 328 2
1248.4.br \(\chi_{1248}(529, \cdot)\) n/a 168 2
1248.4.bu \(\chi_{1248}(191, \cdot)\) n/a 336 2
1248.4.bv \(\chi_{1248}(673, \cdot)\) n/a 168 2
1248.4.bz \(\chi_{1248}(95, \cdot)\) n/a 336 2
1248.4.ca \(\chi_{1248}(49, \cdot)\) n/a 168 2
1248.4.cd \(\chi_{1248}(815, \cdot)\) n/a 328 2
1248.4.cf \(\chi_{1248}(5, \cdot)\) n/a 2672 4
1248.4.ch \(\chi_{1248}(499, \cdot)\) n/a 1344 4
1248.4.ci \(\chi_{1248}(181, \cdot)\) n/a 1344 4
1248.4.ck \(\chi_{1248}(157, \cdot)\) n/a 1152 4
1248.4.cn \(\chi_{1248}(131, \cdot)\) n/a 2304 4
1248.4.cp \(\chi_{1248}(155, \cdot)\) n/a 2672 4
1248.4.cq \(\chi_{1248}(317, \cdot)\) n/a 2672 4
1248.4.cs \(\chi_{1248}(187, \cdot)\) n/a 1344 4
1248.4.cu \(\chi_{1248}(137, \cdot)\) None 0 4
1248.4.cx \(\chi_{1248}(7, \cdot)\) None 0 4
1248.4.cz \(\chi_{1248}(121, \cdot)\) None 0 4
1248.4.db \(\chi_{1248}(263, \cdot)\) None 0 4
1248.4.dc \(\chi_{1248}(305, \cdot)\) n/a 656 4
1248.4.dd \(\chi_{1248}(353, \cdot)\) n/a 672 4
1248.4.dg \(\chi_{1248}(223, \cdot)\) n/a 336 4
1248.4.dh \(\chi_{1248}(175, \cdot)\) n/a 336 4
1248.4.dl \(\chi_{1248}(217, \cdot)\) None 0 4
1248.4.dn \(\chi_{1248}(23, \cdot)\) None 0 4
1248.4.dp \(\chi_{1248}(487, \cdot)\) None 0 4
1248.4.dq \(\chi_{1248}(41, \cdot)\) None 0 4
1248.4.dt \(\chi_{1248}(115, \cdot)\) n/a 2688 8
1248.4.dv \(\chi_{1248}(245, \cdot)\) n/a 5344 8
1248.4.dx \(\chi_{1248}(35, \cdot)\) n/a 5344 8
1248.4.dz \(\chi_{1248}(179, \cdot)\) n/a 5344 8
1248.4.ea \(\chi_{1248}(205, \cdot)\) n/a 2688 8
1248.4.ec \(\chi_{1248}(61, \cdot)\) n/a 2688 8
1248.4.ee \(\chi_{1248}(19, \cdot)\) n/a 2688 8
1248.4.eg \(\chi_{1248}(149, \cdot)\) n/a 5344 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1248))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1248)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 20}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(156))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(208))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(312))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(416))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(624))\)\(^{\oplus 2}\)