Properties

Label 1248.2.ca.a.433.4
Level $1248$
Weight $2$
Character 1248.433
Analytic conductor $9.965$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1248,2,Mod(49,1248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1248.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 433.4
Root \(-0.535233 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 1248.433
Dual form 1248.2.ca.a.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{3} +2.23607 q^{5} +(0.436492 - 0.252009i) q^{7} +(0.500000 + 0.866025i) q^{9} +(-1.98406 + 3.43649i) q^{11} +(2.59808 - 2.50000i) q^{13} +(1.93649 + 1.11803i) q^{15} +(0.936492 + 1.62205i) q^{17} +(1.98406 + 3.43649i) q^{19} +0.504017 q^{21} +(0.563508 - 0.976025i) q^{23} +1.00000i q^{27} +(1.84205 + 1.06351i) q^{29} +4.47214i q^{31} +(-3.43649 + 1.98406i) q^{33} +(0.976025 - 0.563508i) q^{35} +(5.33816 - 9.24597i) q^{37} +(3.50000 - 0.866025i) q^{39} +(4.93649 + 2.85008i) q^{41} +(0.976025 - 0.563508i) q^{43} +(1.11803 + 1.93649i) q^{45} +0.504017i q^{47} +(-3.37298 + 5.84218i) q^{49} +1.87298i q^{51} -0.127017i q^{53} +(-4.43649 + 7.68423i) q^{55} +3.96812i q^{57} +(-5.70017 - 9.87298i) q^{59} +(-0.866025 + 0.500000i) q^{61} +(0.436492 + 0.252009i) q^{63} +(5.80948 - 5.59017i) q^{65} +(7.68423 - 13.3095i) q^{67} +(0.976025 - 0.563508i) q^{69} +(-7.30948 + 4.22013i) q^{71} -4.18812i q^{73} +2.00000i q^{77} -14.0000 q^{79} +(-0.500000 + 0.866025i) q^{81} +7.43222 q^{83} +(2.09406 + 3.62702i) q^{85} +(1.06351 + 1.84205i) q^{87} +(13.7460 + 7.93624i) q^{89} +(0.504017 - 1.74597i) q^{91} +(-2.23607 + 3.87298i) q^{93} +(4.43649 + 7.68423i) q^{95} +(-15.0000 + 8.66025i) q^{97} -3.96812 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{7} + 4 q^{9} - 8 q^{17} + 20 q^{23} - 12 q^{33} + 28 q^{39} + 24 q^{41} + 4 q^{49} - 20 q^{55} - 12 q^{63} - 12 q^{71} - 112 q^{79} - 4 q^{81} + 24 q^{87} + 48 q^{89} + 20 q^{95} - 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0 0
\(5\) 2.23607 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) 0 0
\(7\) 0.436492 0.252009i 0.164978 0.0952503i −0.415238 0.909713i \(-0.636302\pi\)
0.580216 + 0.814463i \(0.302968\pi\)
\(8\) 0 0
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) −1.98406 + 3.43649i −0.598216 + 1.03614i 0.394868 + 0.918738i \(0.370790\pi\)
−0.993084 + 0.117403i \(0.962543\pi\)
\(12\) 0 0
\(13\) 2.59808 2.50000i 0.720577 0.693375i
\(14\) 0 0
\(15\) 1.93649 + 1.11803i 0.500000 + 0.288675i
\(16\) 0 0
\(17\) 0.936492 + 1.62205i 0.227133 + 0.393405i 0.956957 0.290229i \(-0.0937316\pi\)
−0.729825 + 0.683635i \(0.760398\pi\)
\(18\) 0 0
\(19\) 1.98406 + 3.43649i 0.455174 + 0.788385i 0.998698 0.0510085i \(-0.0162436\pi\)
−0.543524 + 0.839394i \(0.682910\pi\)
\(20\) 0 0
\(21\) 0.504017 0.109986
\(22\) 0 0
\(23\) 0.563508 0.976025i 0.117500 0.203515i −0.801277 0.598294i \(-0.795845\pi\)
0.918776 + 0.394779i \(0.129179\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 1.84205 + 1.06351i 0.342060 + 0.197489i 0.661183 0.750225i \(-0.270055\pi\)
−0.319123 + 0.947713i \(0.603388\pi\)
\(30\) 0 0
\(31\) 4.47214i 0.803219i 0.915811 + 0.401610i \(0.131549\pi\)
−0.915811 + 0.401610i \(0.868451\pi\)
\(32\) 0 0
\(33\) −3.43649 + 1.98406i −0.598216 + 0.345380i
\(34\) 0 0
\(35\) 0.976025 0.563508i 0.164978 0.0952503i
\(36\) 0 0
\(37\) 5.33816 9.24597i 0.877588 1.52003i 0.0236086 0.999721i \(-0.492484\pi\)
0.853980 0.520306i \(-0.174182\pi\)
\(38\) 0 0
\(39\) 3.50000 0.866025i 0.560449 0.138675i
\(40\) 0 0
\(41\) 4.93649 + 2.85008i 0.770950 + 0.445108i 0.833214 0.552951i \(-0.186498\pi\)
−0.0622631 + 0.998060i \(0.519832\pi\)
\(42\) 0 0
\(43\) 0.976025 0.563508i 0.148842 0.0859342i −0.423729 0.905789i \(-0.639279\pi\)
0.572572 + 0.819855i \(0.305946\pi\)
\(44\) 0 0
\(45\) 1.11803 + 1.93649i 0.166667 + 0.288675i
\(46\) 0 0
\(47\) 0.504017i 0.0735185i 0.999324 + 0.0367592i \(0.0117035\pi\)
−0.999324 + 0.0367592i \(0.988297\pi\)
\(48\) 0 0
\(49\) −3.37298 + 5.84218i −0.481855 + 0.834597i
\(50\) 0 0
\(51\) 1.87298i 0.262270i
\(52\) 0 0
\(53\) 0.127017i 0.0174471i −0.999962 0.00872354i \(-0.997223\pi\)
0.999962 0.00872354i \(-0.00277682\pi\)
\(54\) 0 0
\(55\) −4.43649 + 7.68423i −0.598216 + 1.03614i
\(56\) 0 0
\(57\) 3.96812i 0.525590i
\(58\) 0 0
\(59\) −5.70017 9.87298i −0.742099 1.28535i −0.951538 0.307531i \(-0.900497\pi\)
0.209439 0.977822i \(-0.432836\pi\)
\(60\) 0 0
\(61\) −0.866025 + 0.500000i −0.110883 + 0.0640184i −0.554416 0.832240i \(-0.687058\pi\)
0.443533 + 0.896258i \(0.353725\pi\)
\(62\) 0 0
\(63\) 0.436492 + 0.252009i 0.0549928 + 0.0317501i
\(64\) 0 0
\(65\) 5.80948 5.59017i 0.720577 0.693375i
\(66\) 0 0
\(67\) 7.68423 13.3095i 0.938778 1.62601i 0.171024 0.985267i \(-0.445293\pi\)
0.767754 0.640744i \(-0.221374\pi\)
\(68\) 0 0
\(69\) 0.976025 0.563508i 0.117500 0.0678384i
\(70\) 0 0
\(71\) −7.30948 + 4.22013i −0.867475 + 0.500837i −0.866508 0.499163i \(-0.833641\pi\)
−0.000966726 1.00000i \(0.500308\pi\)
\(72\) 0 0
\(73\) 4.18812i 0.490182i −0.969500 0.245091i \(-0.921182\pi\)
0.969500 0.245091i \(-0.0788179\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.00000i 0.227921i
\(78\) 0 0
\(79\) −14.0000 −1.57512 −0.787562 0.616236i \(-0.788657\pi\)
−0.787562 + 0.616236i \(0.788657\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 7.43222 0.815792 0.407896 0.913028i \(-0.366263\pi\)
0.407896 + 0.913028i \(0.366263\pi\)
\(84\) 0 0
\(85\) 2.09406 + 3.62702i 0.227133 + 0.393405i
\(86\) 0 0
\(87\) 1.06351 + 1.84205i 0.114020 + 0.197489i
\(88\) 0 0
\(89\) 13.7460 + 7.93624i 1.45707 + 0.841239i 0.998866 0.0476078i \(-0.0151598\pi\)
0.458203 + 0.888847i \(0.348493\pi\)
\(90\) 0 0
\(91\) 0.504017 1.74597i 0.0528354 0.183027i
\(92\) 0 0
\(93\) −2.23607 + 3.87298i −0.231869 + 0.401610i
\(94\) 0 0
\(95\) 4.43649 + 7.68423i 0.455174 + 0.788385i
\(96\) 0 0
\(97\) −15.0000 + 8.66025i −1.52302 + 0.879316i −0.523390 + 0.852093i \(0.675333\pi\)
−0.999629 + 0.0272222i \(0.991334\pi\)
\(98\) 0 0
\(99\) −3.96812 −0.398811
\(100\) 0 0
\(101\) −0.110000 0.0635083i −0.0109454 0.00631931i 0.494517 0.869168i \(-0.335345\pi\)
−0.505463 + 0.862848i \(0.668678\pi\)
\(102\) 0 0
\(103\) 12.6190 1.24338 0.621691 0.783263i \(-0.286446\pi\)
0.621691 + 0.783263i \(0.286446\pi\)
\(104\) 0 0
\(105\) 1.12702 0.109986
\(106\) 0 0
\(107\) 5.95218 + 3.43649i 0.575419 + 0.332218i 0.759311 0.650728i \(-0.225536\pi\)
−0.183892 + 0.982946i \(0.558870\pi\)
\(108\) 0 0
\(109\) −11.4003 −1.09195 −0.545977 0.837800i \(-0.683841\pi\)
−0.545977 + 0.837800i \(0.683841\pi\)
\(110\) 0 0
\(111\) 9.24597 5.33816i 0.877588 0.506676i
\(112\) 0 0
\(113\) −1.06351 1.84205i −0.100046 0.173286i 0.811657 0.584134i \(-0.198566\pi\)
−0.911704 + 0.410849i \(0.865232\pi\)
\(114\) 0 0
\(115\) 1.26004 2.18246i 0.117500 0.203515i
\(116\) 0 0
\(117\) 3.46410 + 1.00000i 0.320256 + 0.0924500i
\(118\) 0 0
\(119\) 0.817542 + 0.472008i 0.0749439 + 0.0432689i
\(120\) 0 0
\(121\) −2.37298 4.11013i −0.215726 0.373648i
\(122\) 0 0
\(123\) 2.85008 + 4.93649i 0.256983 + 0.445108i
\(124\) 0 0
\(125\) −11.1803 −1.00000
\(126\) 0 0
\(127\) 8.87298 15.3685i 0.787350 1.36373i −0.140235 0.990118i \(-0.544786\pi\)
0.927585 0.373612i \(-0.121881\pi\)
\(128\) 0 0
\(129\) 1.12702 0.0992283
\(130\) 0 0
\(131\) 3.74597i 0.327287i 0.986520 + 0.163643i \(0.0523246\pi\)
−0.986520 + 0.163643i \(0.947675\pi\)
\(132\) 0 0
\(133\) 1.73205 + 1.00000i 0.150188 + 0.0867110i
\(134\) 0 0
\(135\) 2.23607i 0.192450i
\(136\) 0 0
\(137\) −11.8095 + 6.81820i −1.00895 + 0.582518i −0.910885 0.412661i \(-0.864599\pi\)
−0.0980670 + 0.995180i \(0.531266\pi\)
\(138\) 0 0
\(139\) 4.97615 2.87298i 0.422072 0.243683i −0.273892 0.961761i \(-0.588311\pi\)
0.695963 + 0.718077i \(0.254978\pi\)
\(140\) 0 0
\(141\) −0.252009 + 0.436492i −0.0212230 + 0.0367592i
\(142\) 0 0
\(143\) 3.43649 + 13.8884i 0.287374 + 1.16141i
\(144\) 0 0
\(145\) 4.11895 + 2.37808i 0.342060 + 0.197489i
\(146\) 0 0
\(147\) −5.84218 + 3.37298i −0.481855 + 0.278199i
\(148\) 0 0
\(149\) 11.2903 + 19.5554i 0.924941 + 1.60204i 0.791657 + 0.610966i \(0.209219\pi\)
0.133284 + 0.991078i \(0.457448\pi\)
\(150\) 0 0
\(151\) 6.42419i 0.522793i −0.965232 0.261396i \(-0.915817\pi\)
0.965232 0.261396i \(-0.0841830\pi\)
\(152\) 0 0
\(153\) −0.936492 + 1.62205i −0.0757109 + 0.131135i
\(154\) 0 0
\(155\) 10.0000i 0.803219i
\(156\) 0 0
\(157\) 16.7460i 1.33647i −0.743949 0.668237i \(-0.767049\pi\)
0.743949 0.668237i \(-0.232951\pi\)
\(158\) 0 0
\(159\) 0.0635083 0.110000i 0.00503654 0.00872354i
\(160\) 0 0
\(161\) 0.568036i 0.0447675i
\(162\) 0 0
\(163\) −4.97615 8.61895i −0.389762 0.675088i 0.602655 0.798002i \(-0.294110\pi\)
−0.992417 + 0.122914i \(0.960776\pi\)
\(164\) 0 0
\(165\) −7.68423 + 4.43649i −0.598216 + 0.345380i
\(166\) 0 0
\(167\) −15.8730 9.16427i −1.22829 0.709153i −0.261617 0.965172i \(-0.584256\pi\)
−0.966672 + 0.256019i \(0.917589\pi\)
\(168\) 0 0
\(169\) 0.500000 12.9904i 0.0384615 0.999260i
\(170\) 0 0
\(171\) −1.98406 + 3.43649i −0.151725 + 0.262795i
\(172\) 0 0
\(173\) −11.6844 + 6.74597i −0.888345 + 0.512886i −0.873401 0.487002i \(-0.838090\pi\)
−0.0149443 + 0.999888i \(0.504757\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 11.4003i 0.856902i
\(178\) 0 0
\(179\) 11.1483 + 6.43649i 0.833265 + 0.481086i 0.854969 0.518678i \(-0.173576\pi\)
−0.0217040 + 0.999764i \(0.506909\pi\)
\(180\) 0 0
\(181\) 14.7460i 1.09606i −0.836459 0.548030i \(-0.815378\pi\)
0.836459 0.548030i \(-0.184622\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) 0 0
\(185\) 11.9365 20.6746i 0.877588 1.52003i
\(186\) 0 0
\(187\) −7.43222 −0.543498
\(188\) 0 0
\(189\) 0.252009 + 0.436492i 0.0183309 + 0.0317501i
\(190\) 0 0
\(191\) 2.12702 + 3.68410i 0.153906 + 0.266572i 0.932660 0.360757i \(-0.117482\pi\)
−0.778754 + 0.627329i \(0.784148\pi\)
\(192\) 0 0
\(193\) −16.1190 9.30628i −1.16027 0.669881i −0.208899 0.977937i \(-0.566988\pi\)
−0.951368 + 0.308056i \(0.900321\pi\)
\(194\) 0 0
\(195\) 7.82624 1.93649i 0.560449 0.138675i
\(196\) 0 0
\(197\) 5.70017 9.87298i 0.406120 0.703421i −0.588331 0.808620i \(-0.700215\pi\)
0.994451 + 0.105199i \(0.0335481\pi\)
\(198\) 0 0
\(199\) 0.436492 + 0.756026i 0.0309421 + 0.0535932i 0.881082 0.472964i \(-0.156816\pi\)
−0.850140 + 0.526557i \(0.823483\pi\)
\(200\) 0 0
\(201\) 13.3095 7.68423i 0.938778 0.542004i
\(202\) 0 0
\(203\) 1.07205 0.0752434
\(204\) 0 0
\(205\) 11.0383 + 6.37298i 0.770950 + 0.445108i
\(206\) 0 0
\(207\) 1.12702 0.0783331
\(208\) 0 0
\(209\) −15.7460 −1.08917
\(210\) 0 0
\(211\) −12.1244 7.00000i −0.834675 0.481900i 0.0207756 0.999784i \(-0.493386\pi\)
−0.855451 + 0.517884i \(0.826720\pi\)
\(212\) 0 0
\(213\) −8.44025 −0.578317
\(214\) 0 0
\(215\) 2.18246 1.26004i 0.148842 0.0859342i
\(216\) 0 0
\(217\) 1.12702 + 1.95205i 0.0765069 + 0.132514i
\(218\) 0 0
\(219\) 2.09406 3.62702i 0.141503 0.245091i
\(220\) 0 0
\(221\) 6.48820 + 1.87298i 0.436444 + 0.125990i
\(222\) 0 0
\(223\) −18.4919 10.6763i −1.23831 0.714939i −0.269563 0.962983i \(-0.586879\pi\)
−0.968749 + 0.248043i \(0.920212\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.68423 13.3095i −0.510020 0.883381i −0.999933 0.0116092i \(-0.996305\pi\)
0.489912 0.871772i \(-0.337029\pi\)
\(228\) 0 0
\(229\) 2.01607 0.133226 0.0666128 0.997779i \(-0.478781\pi\)
0.0666128 + 0.997779i \(0.478781\pi\)
\(230\) 0 0
\(231\) −1.00000 + 1.73205i −0.0657952 + 0.113961i
\(232\) 0 0
\(233\) 22.0000 1.44127 0.720634 0.693316i \(-0.243851\pi\)
0.720634 + 0.693316i \(0.243851\pi\)
\(234\) 0 0
\(235\) 1.12702i 0.0735185i
\(236\) 0 0
\(237\) −12.1244 7.00000i −0.787562 0.454699i
\(238\) 0 0
\(239\) 11.9044i 0.770029i −0.922911 0.385014i \(-0.874196\pi\)
0.922911 0.385014i \(-0.125804\pi\)
\(240\) 0 0
\(241\) −13.5000 + 7.79423i −0.869611 + 0.502070i −0.867219 0.497927i \(-0.834095\pi\)
−0.00239235 + 0.999997i \(0.500762\pi\)
\(242\) 0 0
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) 0 0
\(245\) −7.54222 + 13.0635i −0.481855 + 0.834597i
\(246\) 0 0
\(247\) 13.7460 + 3.96812i 0.874635 + 0.252485i
\(248\) 0 0
\(249\) 6.43649 + 3.71611i 0.407896 + 0.235499i
\(250\) 0 0
\(251\) −27.0528 + 15.6190i −1.70756 + 0.985859i −0.769992 + 0.638054i \(0.779740\pi\)
−0.937567 + 0.347806i \(0.886927\pi\)
\(252\) 0 0
\(253\) 2.23607 + 3.87298i 0.140580 + 0.243492i
\(254\) 0 0
\(255\) 4.18812i 0.262270i
\(256\) 0 0
\(257\) −11.6825 + 20.2346i −0.728732 + 1.26220i 0.228688 + 0.973500i \(0.426557\pi\)
−0.957419 + 0.288701i \(0.906777\pi\)
\(258\) 0 0
\(259\) 5.38105i 0.334362i
\(260\) 0 0
\(261\) 2.12702i 0.131659i
\(262\) 0 0
\(263\) 4.43649 7.68423i 0.273566 0.473830i −0.696206 0.717842i \(-0.745130\pi\)
0.969772 + 0.244012i \(0.0784635\pi\)
\(264\) 0 0
\(265\) 0.284018i 0.0174471i
\(266\) 0 0
\(267\) 7.93624 + 13.7460i 0.485690 + 0.841239i
\(268\) 0 0
\(269\) −3.68410 + 2.12702i −0.224624 + 0.129686i −0.608089 0.793869i \(-0.708064\pi\)
0.383466 + 0.923555i \(0.374730\pi\)
\(270\) 0 0
\(271\) −20.2379 11.6844i −1.22936 0.709774i −0.262468 0.964941i \(-0.584536\pi\)
−0.966897 + 0.255167i \(0.917870\pi\)
\(272\) 0 0
\(273\) 1.30948 1.26004i 0.0792530 0.0762613i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −12.7704 + 7.37298i −0.767298 + 0.443000i −0.831910 0.554911i \(-0.812752\pi\)
0.0646120 + 0.997910i \(0.479419\pi\)
\(278\) 0 0
\(279\) −3.87298 + 2.23607i −0.231869 + 0.133870i
\(280\) 0 0
\(281\) 19.1166i 1.14040i −0.821506 0.570200i \(-0.806866\pi\)
0.821506 0.570200i \(-0.193134\pi\)
\(282\) 0 0
\(283\) −2.26808 1.30948i −0.134823 0.0778402i 0.431071 0.902318i \(-0.358136\pi\)
−0.565895 + 0.824478i \(0.691469\pi\)
\(284\) 0 0
\(285\) 8.87298i 0.525590i
\(286\) 0 0
\(287\) 2.87298 0.169587
\(288\) 0 0
\(289\) 6.74597 11.6844i 0.396822 0.687315i
\(290\) 0 0
\(291\) −17.3205 −1.01535
\(292\) 0 0
\(293\) −14.2504 24.6825i −0.832519 1.44196i −0.896035 0.443984i \(-0.853565\pi\)
0.0635162 0.997981i \(-0.479769\pi\)
\(294\) 0 0
\(295\) −12.7460 22.0767i −0.742099 1.28535i
\(296\) 0 0
\(297\) −3.43649 1.98406i −0.199405 0.115127i
\(298\) 0 0
\(299\) −0.976025 3.94456i −0.0564450 0.228120i
\(300\) 0 0
\(301\) 0.284018 0.491933i 0.0163705 0.0283546i
\(302\) 0 0
\(303\) −0.0635083 0.110000i −0.00364846 0.00631931i
\(304\) 0 0
\(305\) −1.93649 + 1.11803i −0.110883 + 0.0640184i
\(306\) 0 0
\(307\) 5.41615 0.309116 0.154558 0.987984i \(-0.450605\pi\)
0.154558 + 0.987984i \(0.450605\pi\)
\(308\) 0 0
\(309\) 10.9283 + 6.30948i 0.621691 + 0.358933i
\(310\) 0 0
\(311\) 10.6190 0.602145 0.301073 0.953601i \(-0.402655\pi\)
0.301073 + 0.953601i \(0.402655\pi\)
\(312\) 0 0
\(313\) 4.00000 0.226093 0.113047 0.993590i \(-0.463939\pi\)
0.113047 + 0.993590i \(0.463939\pi\)
\(314\) 0 0
\(315\) 0.976025 + 0.563508i 0.0549928 + 0.0317501i
\(316\) 0 0
\(317\) 23.0207 1.29297 0.646485 0.762927i \(-0.276238\pi\)
0.646485 + 0.762927i \(0.276238\pi\)
\(318\) 0 0
\(319\) −7.30948 + 4.22013i −0.409252 + 0.236282i
\(320\) 0 0
\(321\) 3.43649 + 5.95218i 0.191806 + 0.332218i
\(322\) 0 0
\(323\) −3.71611 + 6.43649i −0.206770 + 0.358136i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −9.87298 5.70017i −0.545977 0.315220i
\(328\) 0 0
\(329\) 0.127017 + 0.219999i 0.00700265 + 0.0121290i
\(330\) 0 0
\(331\) 8.44025 + 14.6190i 0.463918 + 0.803530i 0.999152 0.0411739i \(-0.0131098\pi\)
−0.535234 + 0.844704i \(0.679776\pi\)
\(332\) 0 0
\(333\) 10.6763 0.585059
\(334\) 0 0
\(335\) 17.1825 29.7609i 0.938778 1.62601i
\(336\) 0 0
\(337\) −13.0000 −0.708155 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(338\) 0 0
\(339\) 2.12702i 0.115524i
\(340\) 0 0
\(341\) −15.3685 8.87298i −0.832249 0.480499i
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) 0 0
\(345\) 2.18246 1.26004i 0.117500 0.0678384i
\(346\) 0 0
\(347\) −12.8804 + 7.43649i −0.691455 + 0.399212i −0.804157 0.594417i \(-0.797383\pi\)
0.112702 + 0.993629i \(0.464050\pi\)
\(348\) 0 0
\(349\) −0.219999 + 0.381050i −0.0117763 + 0.0203971i −0.871853 0.489767i \(-0.837082\pi\)
0.860077 + 0.510164i \(0.170415\pi\)
\(350\) 0 0
\(351\) 2.50000 + 2.59808i 0.133440 + 0.138675i
\(352\) 0 0
\(353\) −12.1905 7.03820i −0.648836 0.374606i 0.139174 0.990268i \(-0.455555\pi\)
−0.788010 + 0.615662i \(0.788889\pi\)
\(354\) 0 0
\(355\) −16.3445 + 9.43649i −0.867475 + 0.500837i
\(356\) 0 0
\(357\) 0.472008 + 0.817542i 0.0249813 + 0.0432689i
\(358\) 0 0
\(359\) 17.3845i 0.917520i −0.888560 0.458760i \(-0.848294\pi\)
0.888560 0.458760i \(-0.151706\pi\)
\(360\) 0 0
\(361\) 1.62702 2.81808i 0.0856325 0.148320i
\(362\) 0 0
\(363\) 4.74597i 0.249099i
\(364\) 0 0
\(365\) 9.36492i 0.490182i
\(366\) 0 0
\(367\) −11.3095 + 19.5886i −0.590350 + 1.02252i 0.403835 + 0.914832i \(0.367677\pi\)
−0.994185 + 0.107684i \(0.965656\pi\)
\(368\) 0 0
\(369\) 5.70017i 0.296739i
\(370\) 0 0
\(371\) −0.0320093 0.0554417i −0.00166184 0.00287839i
\(372\) 0 0
\(373\) −0.426027 + 0.245967i −0.0220588 + 0.0127357i −0.510989 0.859587i \(-0.670721\pi\)
0.488930 + 0.872323i \(0.337387\pi\)
\(374\) 0 0
\(375\) −9.68246 5.59017i −0.500000 0.288675i
\(376\) 0 0
\(377\) 7.44456 1.84205i 0.383414 0.0948704i
\(378\) 0 0
\(379\) 12.4084 21.4919i 0.637375 1.10397i −0.348631 0.937260i \(-0.613353\pi\)
0.986007 0.166706i \(-0.0533132\pi\)
\(380\) 0 0
\(381\) 15.3685 8.87298i 0.787350 0.454577i
\(382\) 0 0
\(383\) 4.25403 2.45607i 0.217371 0.125499i −0.387361 0.921928i \(-0.626613\pi\)
0.604732 + 0.796429i \(0.293280\pi\)
\(384\) 0 0
\(385\) 4.47214i 0.227921i
\(386\) 0 0
\(387\) 0.976025 + 0.563508i 0.0496141 + 0.0286447i
\(388\) 0 0
\(389\) 11.6190i 0.589104i 0.955635 + 0.294552i \(0.0951704\pi\)
−0.955635 + 0.294552i \(0.904830\pi\)
\(390\) 0 0
\(391\) 2.11088 0.106752
\(392\) 0 0
\(393\) −1.87298 + 3.24410i −0.0944795 + 0.163643i
\(394\) 0 0
\(395\) −31.3050 −1.57512
\(396\) 0 0
\(397\) −14.1404 24.4919i −0.709688 1.22921i −0.964973 0.262349i \(-0.915503\pi\)
0.255285 0.966866i \(-0.417831\pi\)
\(398\) 0 0
\(399\) 1.00000 + 1.73205i 0.0500626 + 0.0867110i
\(400\) 0 0
\(401\) −14.8095 8.55025i −0.739550 0.426979i 0.0823557 0.996603i \(-0.473756\pi\)
−0.821906 + 0.569624i \(0.807089\pi\)
\(402\) 0 0
\(403\) 11.1803 + 11.6190i 0.556932 + 0.578781i
\(404\) 0 0
\(405\) −1.11803 + 1.93649i −0.0555556 + 0.0962250i
\(406\) 0 0
\(407\) 21.1825 + 36.6891i 1.04998 + 1.81861i
\(408\) 0 0
\(409\) 28.1190 16.2345i 1.39039 0.802744i 0.397034 0.917804i \(-0.370039\pi\)
0.993359 + 0.115060i \(0.0367061\pi\)
\(410\) 0 0
\(411\) −13.6364 −0.672634
\(412\) 0 0
\(413\) −4.97615 2.87298i −0.244860 0.141370i
\(414\) 0 0
\(415\) 16.6190 0.815792
\(416\) 0 0
\(417\) 5.74597 0.281381
\(418\) 0 0
\(419\) 22.5167 + 13.0000i 1.10001 + 0.635092i 0.936224 0.351404i \(-0.114296\pi\)
0.163787 + 0.986496i \(0.447629\pi\)
\(420\) 0 0
\(421\) −12.1244 −0.590905 −0.295452 0.955357i \(-0.595470\pi\)
−0.295452 + 0.955357i \(0.595470\pi\)
\(422\) 0 0
\(423\) −0.436492 + 0.252009i −0.0212230 + 0.0122531i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −0.252009 + 0.436492i −0.0121956 + 0.0211233i
\(428\) 0 0
\(429\) −3.96812 + 13.7460i −0.191583 + 0.663662i
\(430\) 0 0
\(431\) −25.3095 14.6124i −1.21911 0.703856i −0.254386 0.967103i \(-0.581873\pi\)
−0.964729 + 0.263247i \(0.915207\pi\)
\(432\) 0 0
\(433\) 5.62702 + 9.74628i 0.270417 + 0.468376i 0.968969 0.247183i \(-0.0795050\pi\)
−0.698552 + 0.715560i \(0.746172\pi\)
\(434\) 0 0
\(435\) 2.37808 + 4.11895i 0.114020 + 0.197489i
\(436\) 0 0
\(437\) 4.47214 0.213931
\(438\) 0 0
\(439\) −4.56351 + 7.90423i −0.217804 + 0.377248i −0.954136 0.299372i \(-0.903223\pi\)
0.736332 + 0.676620i \(0.236556\pi\)
\(440\) 0 0
\(441\) −6.74597 −0.321237
\(442\) 0 0
\(443\) 36.7298i 1.74509i −0.488536 0.872544i \(-0.662469\pi\)
0.488536 0.872544i \(-0.337531\pi\)
\(444\) 0 0
\(445\) 30.7369 + 17.7460i 1.45707 + 0.841239i
\(446\) 0 0
\(447\) 22.5807i 1.06803i
\(448\) 0 0
\(449\) −19.7460 + 11.4003i −0.931870 + 0.538015i −0.887402 0.460996i \(-0.847492\pi\)
−0.0444673 + 0.999011i \(0.514159\pi\)
\(450\) 0 0
\(451\) −19.5886 + 11.3095i −0.922390 + 0.532542i
\(452\) 0 0
\(453\) 3.21209 5.56351i 0.150917 0.261396i
\(454\) 0 0
\(455\) 1.12702 3.90410i 0.0528354 0.183027i
\(456\) 0 0
\(457\) 36.3569 + 20.9906i 1.70070 + 0.981901i 0.945049 + 0.326928i \(0.106013\pi\)
0.755652 + 0.654973i \(0.227320\pi\)
\(458\) 0 0
\(459\) −1.62205 + 0.936492i −0.0757109 + 0.0437117i
\(460\) 0 0
\(461\) −2.56607 4.44456i −0.119514 0.207004i 0.800061 0.599918i \(-0.204800\pi\)
−0.919575 + 0.392914i \(0.871467\pi\)
\(462\) 0 0
\(463\) 21.8567i 1.01577i 0.861426 + 0.507883i \(0.169572\pi\)
−0.861426 + 0.507883i \(0.830428\pi\)
\(464\) 0 0
\(465\) −5.00000 + 8.66025i −0.231869 + 0.401610i
\(466\) 0 0
\(467\) 26.3649i 1.22002i 0.792393 + 0.610011i \(0.208835\pi\)
−0.792393 + 0.610011i \(0.791165\pi\)
\(468\) 0 0
\(469\) 7.74597i 0.357676i
\(470\) 0 0
\(471\) 8.37298 14.5024i 0.385807 0.668237i
\(472\) 0 0
\(473\) 4.47214i 0.205629i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0.110000 0.0635083i 0.00503654 0.00290785i
\(478\) 0 0
\(479\) 18.1109 + 10.4563i 0.827507 + 0.477762i 0.852998 0.521913i \(-0.174782\pi\)
−0.0254911 + 0.999675i \(0.508115\pi\)
\(480\) 0 0
\(481\) −9.24597 37.3671i −0.421580 1.70379i
\(482\) 0 0
\(483\) 0.284018 0.491933i 0.0129233 0.0223837i
\(484\) 0 0
\(485\) −33.5410 + 19.3649i −1.52302 + 0.879316i
\(486\) 0 0
\(487\) −6.92843 + 4.00013i −0.313957 + 0.181263i −0.648696 0.761048i \(-0.724685\pi\)
0.334739 + 0.942311i \(0.391352\pi\)
\(488\) 0 0
\(489\) 9.95231i 0.450059i
\(490\) 0 0
\(491\) 27.5888 + 15.9284i 1.24507 + 0.718840i 0.970121 0.242620i \(-0.0780068\pi\)
0.274946 + 0.961460i \(0.411340\pi\)
\(492\) 0 0
\(493\) 3.98387i 0.179424i
\(494\) 0 0
\(495\) −8.87298 −0.398811
\(496\) 0 0
\(497\) −2.12702 + 3.68410i −0.0954097 + 0.165255i
\(498\) 0 0
\(499\) −15.8725 −0.710550 −0.355275 0.934762i \(-0.615613\pi\)
−0.355275 + 0.934762i \(0.615613\pi\)
\(500\) 0 0
\(501\) −9.16427 15.8730i −0.409429 0.709153i
\(502\) 0 0
\(503\) −1.30948 2.26808i −0.0583866 0.101129i 0.835355 0.549711i \(-0.185262\pi\)
−0.893741 + 0.448583i \(0.851929\pi\)
\(504\) 0 0
\(505\) −0.245967 0.142009i −0.0109454 0.00631931i
\(506\) 0 0
\(507\) 6.92820 11.0000i 0.307692 0.488527i
\(508\) 0 0
\(509\) 11.2903 19.5554i 0.500436 0.866780i −0.499564 0.866277i \(-0.666507\pi\)
1.00000 0.000502947i \(-0.000160093\pi\)
\(510\) 0 0
\(511\) −1.05544 1.82808i −0.0466900 0.0808694i
\(512\) 0 0
\(513\) −3.43649 + 1.98406i −0.151725 + 0.0875984i
\(514\) 0 0
\(515\) 28.2168 1.24338
\(516\) 0 0
\(517\) −1.73205 1.00000i −0.0761755 0.0439799i
\(518\) 0 0
\(519\) −13.4919 −0.592230
\(520\) 0 0
\(521\) −17.6190 −0.771900 −0.385950 0.922520i \(-0.626126\pi\)
−0.385950 + 0.922520i \(0.626126\pi\)
\(522\) 0 0
\(523\) 3.78013 + 2.18246i 0.165293 + 0.0954322i 0.580365 0.814357i \(-0.302910\pi\)
−0.415071 + 0.909789i \(0.636243\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.25403 + 4.18812i −0.315991 + 0.182437i
\(528\) 0 0
\(529\) 10.8649 + 18.8186i 0.472388 + 0.818199i
\(530\) 0 0
\(531\) 5.70017 9.87298i 0.247366 0.428451i
\(532\) 0 0
\(533\) 19.9506 4.93649i 0.864156 0.213823i
\(534\) 0 0
\(535\) 13.3095 + 7.68423i 0.575419 + 0.332218i
\(536\) 0 0
\(537\) 6.43649 + 11.1483i 0.277755 + 0.481086i
\(538\) 0 0
\(539\) −13.3844 23.1825i −0.576507 0.998539i
\(540\) 0 0
\(541\) 29.4449 1.26593 0.632967 0.774179i \(-0.281837\pi\)
0.632967 + 0.774179i \(0.281837\pi\)
\(542\) 0 0
\(543\) 7.37298 12.7704i 0.316405 0.548030i
\(544\) 0 0
\(545\) −25.4919 −1.09195
\(546\) 0 0
\(547\) 14.3649i 0.614199i −0.951677 0.307100i \(-0.900641\pi\)
0.951677 0.307100i \(-0.0993585\pi\)
\(548\) 0 0
\(549\) −0.866025 0.500000i −0.0369611 0.0213395i
\(550\) 0 0
\(551\) 8.44025i 0.359567i
\(552\) 0 0
\(553\) −6.11088 + 3.52812i −0.259861 + 0.150031i
\(554\) 0 0
\(555\) 20.6746 11.9365i 0.877588 0.506676i
\(556\) 0 0
\(557\) 0.614017 1.06351i 0.0260167 0.0450623i −0.852724 0.522362i \(-0.825051\pi\)
0.878741 + 0.477300i \(0.158384\pi\)
\(558\) 0 0
\(559\) 1.12702 3.90410i 0.0476677 0.165126i
\(560\) 0 0
\(561\) −6.43649 3.71611i −0.271749 0.156894i
\(562\) 0 0
\(563\) 32.0290 18.4919i 1.34986 0.779342i 0.361631 0.932321i \(-0.382220\pi\)
0.988229 + 0.152979i \(0.0488868\pi\)
\(564\) 0 0
\(565\) −2.37808 4.11895i −0.100046 0.173286i
\(566\) 0 0
\(567\) 0.504017i 0.0211667i
\(568\) 0 0
\(569\) −11.4919 + 19.9046i −0.481767 + 0.834445i −0.999781 0.0209273i \(-0.993338\pi\)
0.518014 + 0.855372i \(0.326671\pi\)
\(570\) 0 0
\(571\) 6.61895i 0.276994i −0.990363 0.138497i \(-0.955773\pi\)
0.990363 0.138497i \(-0.0442272\pi\)
\(572\) 0 0
\(573\) 4.25403i 0.177715i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 8.22026i 0.342214i 0.985252 + 0.171107i \(0.0547343\pi\)
−0.985252 + 0.171107i \(0.945266\pi\)
\(578\) 0 0
\(579\) −9.30628 16.1190i −0.386756 0.669881i
\(580\) 0 0
\(581\) 3.24410 1.87298i 0.134588 0.0777044i
\(582\) 0 0
\(583\) 0.436492 + 0.252009i 0.0180776 + 0.0104371i
\(584\) 0 0
\(585\) 7.74597 + 2.23607i 0.320256 + 0.0924500i
\(586\) 0 0
\(587\) −4.47214 + 7.74597i −0.184585 + 0.319710i −0.943437 0.331553i \(-0.892427\pi\)
0.758852 + 0.651263i \(0.225761\pi\)
\(588\) 0 0
\(589\) −15.3685 + 8.87298i −0.633246 + 0.365605i
\(590\) 0 0
\(591\) 9.87298 5.70017i 0.406120 0.234474i
\(592\) 0 0
\(593\) 15.0844i 0.619444i 0.950827 + 0.309722i \(0.100236\pi\)
−0.950827 + 0.309722i \(0.899764\pi\)
\(594\) 0 0
\(595\) 1.82808 + 1.05544i 0.0749439 + 0.0432689i
\(596\) 0 0
\(597\) 0.872983i 0.0357288i
\(598\) 0 0
\(599\) 10.0000 0.408589 0.204294 0.978909i \(-0.434510\pi\)
0.204294 + 0.978909i \(0.434510\pi\)
\(600\) 0 0
\(601\) −7.24597 + 12.5504i −0.295569 + 0.511941i −0.975117 0.221690i \(-0.928843\pi\)
0.679548 + 0.733631i \(0.262176\pi\)
\(602\) 0 0
\(603\) 15.3685 0.625852
\(604\) 0 0
\(605\) −5.30615 9.19052i −0.215726 0.373648i
\(606\) 0 0
\(607\) 5.74597 + 9.95231i 0.233222 + 0.403952i 0.958754 0.284236i \(-0.0917399\pi\)
−0.725533 + 0.688188i \(0.758407\pi\)
\(608\) 0 0
\(609\) 0.928425 + 0.536026i 0.0376217 + 0.0217209i
\(610\) 0 0
\(611\) 1.26004 + 1.30948i 0.0509759 + 0.0529757i
\(612\) 0 0
\(613\) −19.4786 + 33.7379i −0.786733 + 1.36266i 0.141226 + 0.989977i \(0.454896\pi\)
−0.927958 + 0.372684i \(0.878438\pi\)
\(614\) 0 0
\(615\) 6.37298 + 11.0383i 0.256983 + 0.445108i
\(616\) 0 0
\(617\) 29.4284 16.9905i 1.18474 0.684012i 0.227637 0.973746i \(-0.426900\pi\)
0.957107 + 0.289734i \(0.0935668\pi\)
\(618\) 0 0
\(619\) 40.1212 1.61261 0.806303 0.591502i \(-0.201465\pi\)
0.806303 + 0.591502i \(0.201465\pi\)
\(620\) 0 0
\(621\) 0.976025 + 0.563508i 0.0391665 + 0.0226128i
\(622\) 0 0
\(623\) 8.00000 0.320513
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) 0 0
\(627\) −13.6364 7.87298i −0.544586 0.314417i
\(628\) 0 0
\(629\) 19.9966 0.797316
\(630\) 0 0
\(631\) −12.0000 + 6.92820i −0.477712 + 0.275807i −0.719463 0.694531i \(-0.755612\pi\)
0.241750 + 0.970339i \(0.422279\pi\)
\(632\) 0 0
\(633\) −7.00000 12.1244i −0.278225 0.481900i
\(634\) 0 0
\(635\) 19.8406 34.3649i 0.787350 1.36373i
\(636\) 0 0
\(637\) 5.84218 + 23.6109i 0.231476 + 0.935497i
\(638\) 0 0
\(639\) −7.30948 4.22013i −0.289158 0.166946i
\(640\) 0 0
\(641\) 9.68246 + 16.7705i 0.382434 + 0.662395i 0.991410 0.130794i \(-0.0417526\pi\)
−0.608975 + 0.793189i \(0.708419\pi\)
\(642\) 0 0
\(643\) 25.0367 + 43.3649i 0.987353 + 1.71015i 0.630974 + 0.775804i \(0.282655\pi\)
0.356379 + 0.934342i \(0.384011\pi\)
\(644\) 0 0
\(645\) 2.52009 0.0992283
\(646\) 0 0
\(647\) −15.8730 + 27.4928i −0.624031 + 1.08085i 0.364696 + 0.931127i \(0.381173\pi\)
−0.988727 + 0.149727i \(0.952160\pi\)
\(648\) 0 0
\(649\) 45.2379 1.77574
\(650\) 0 0
\(651\) 2.25403i 0.0883425i
\(652\) 0 0
\(653\) 23.5887 + 13.6190i 0.923098 + 0.532951i 0.884622 0.466309i \(-0.154416\pi\)
0.0384757 + 0.999260i \(0.487750\pi\)
\(654\) 0 0
\(655\) 8.37624i 0.327287i
\(656\) 0 0
\(657\) 3.62702 2.09406i 0.141503 0.0816970i
\(658\) 0 0
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) 2.81808 4.88105i 0.109610 0.189851i −0.806002 0.591913i \(-0.798373\pi\)
0.915612 + 0.402062i \(0.131706\pi\)
\(662\) 0 0
\(663\) 4.68246 + 4.86615i 0.181852 + 0.188986i
\(664\) 0 0
\(665\) 3.87298 + 2.23607i 0.150188 + 0.0867110i
\(666\) 0 0
\(667\) 2.07602 1.19859i 0.0803839 0.0464097i
\(668\) 0 0
\(669\) −10.6763 18.4919i −0.412770 0.714939i
\(670\) 0 0
\(671\) 3.96812i 0.153188i
\(672\) 0 0
\(673\) 12.1190 20.9906i 0.467151 0.809130i −0.532145 0.846654i \(-0.678614\pi\)
0.999296 + 0.0375239i \(0.0119470\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0.254033i 0.00976329i 0.999988 + 0.00488165i \(0.00155388\pi\)
−0.999988 + 0.00488165i \(0.998446\pi\)
\(678\) 0 0
\(679\) −4.36492 + 7.56026i −0.167510 + 0.290136i
\(680\) 0 0
\(681\) 15.3685i 0.588921i
\(682\) 0 0
\(683\) −18.1085 31.3649i −0.692904 1.20015i −0.970882 0.239558i \(-0.922998\pi\)
0.277978 0.960587i \(-0.410336\pi\)
\(684\) 0 0
\(685\) −26.4068 + 15.2460i −1.00895 + 0.582518i
\(686\) 0 0
\(687\) 1.74597 + 1.00803i 0.0666128 + 0.0384589i
\(688\) 0 0
\(689\) −0.317542 0.329999i −0.0120974 0.0125720i
\(690\) 0 0
\(691\) 1.19602 2.07157i 0.0454989 0.0788064i −0.842379 0.538885i \(-0.818846\pi\)
0.887878 + 0.460079i \(0.152179\pi\)
\(692\) 0 0
\(693\) −1.73205 + 1.00000i −0.0657952 + 0.0379869i
\(694\) 0 0
\(695\) 11.1270 6.42419i 0.422072 0.243683i
\(696\) 0 0
\(697\) 10.6763i 0.404395i
\(698\) 0 0
\(699\) 19.0526 + 11.0000i 0.720634 + 0.416058i
\(700\) 0 0
\(701\) 28.2540i 1.06714i 0.845756 + 0.533570i \(0.179150\pi\)
−0.845756 + 0.533570i \(0.820850\pi\)
\(702\) 0 0
\(703\) 42.3649 1.59782
\(704\) 0 0
\(705\) −0.563508 + 0.976025i −0.0212230 + 0.0367592i
\(706\) 0 0
\(707\) −0.0640186 −0.00240767
\(708\) 0 0
\(709\) 11.4783 + 19.8810i 0.431078 + 0.746649i 0.996966 0.0778331i \(-0.0248001\pi\)
−0.565889 + 0.824482i \(0.691467\pi\)
\(710\) 0 0
\(711\) −7.00000 12.1244i −0.262521 0.454699i
\(712\) 0 0
\(713\) 4.36492 + 2.52009i 0.163467 + 0.0943780i
\(714\) 0 0
\(715\) 7.68423 + 31.0554i 0.287374 + 1.16141i
\(716\) 0 0
\(717\) 5.95218 10.3095i 0.222288 0.385014i
\(718\) 0 0
\(719\) 24.4919 + 42.4213i 0.913395 + 1.58205i 0.809234 + 0.587486i \(0.199882\pi\)
0.104161 + 0.994560i \(0.466784\pi\)
\(720\) 0 0
\(721\) 5.50807 3.18008i 0.205131 0.118433i
\(722\) 0 0
\(723\) −15.5885 −0.579741
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 32.8730 1.21919 0.609596 0.792712i \(-0.291332\pi\)
0.609596 + 0.792712i \(0.291332\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 1.82808 + 1.05544i 0.0676139 + 0.0390369i
\(732\) 0 0
\(733\) −40.9732 −1.51338 −0.756691 0.653773i \(-0.773185\pi\)
−0.756691 + 0.653773i \(0.773185\pi\)
\(734\) 0 0
\(735\) −13.0635 + 7.54222i −0.481855 + 0.278199i
\(736\) 0 0
\(737\) 30.4919 + 52.8136i 1.12318 + 1.94541i
\(738\) 0 0
\(739\) 5.98419 10.3649i 0.220132 0.381280i −0.734716 0.678375i \(-0.762685\pi\)
0.954848 + 0.297095i \(0.0960179\pi\)
\(740\) 0 0
\(741\) 9.92030 + 10.3095i 0.364431 + 0.378728i
\(742\) 0 0
\(743\) −30.0000 17.3205i −1.10059 0.635428i −0.164216 0.986424i \(-0.552510\pi\)
−0.936377 + 0.350997i \(0.885843\pi\)
\(744\) 0 0
\(745\) 25.2460 + 43.7273i 0.924941 + 1.60204i
\(746\) 0 0
\(747\) 3.71611 + 6.43649i 0.135965 + 0.235499i
\(748\) 0 0
\(749\) 3.46410 0.126576
\(750\) 0 0
\(751\) 13.4365 23.2727i 0.490305 0.849232i −0.509633 0.860392i \(-0.670219\pi\)
0.999938 + 0.0111594i \(0.00355222\pi\)
\(752\) 0 0
\(753\) −31.2379 −1.13837
\(754\) 0 0
\(755\) 14.3649i 0.522793i
\(756\) 0 0
\(757\) 42.6413 + 24.6190i 1.54982 + 0.894791i 0.998154 + 0.0607279i \(0.0193422\pi\)
0.551669 + 0.834063i \(0.313991\pi\)
\(758\) 0 0
\(759\) 4.47214i 0.162328i
\(760\) 0 0
\(761\) 12.8730 7.43222i 0.466645 0.269418i −0.248189 0.968712i \(-0.579835\pi\)
0.714834 + 0.699294i \(0.246502\pi\)
\(762\) 0 0
\(763\) −4.97615 + 2.87298i −0.180149 + 0.104009i
\(764\) 0 0
\(765\) −2.09406 + 3.62702i −0.0757109 + 0.131135i
\(766\) 0 0
\(767\) −39.4919 11.4003i −1.42597 0.411642i
\(768\) 0 0
\(769\) −6.49193 3.74812i −0.234105 0.135161i 0.378359 0.925659i \(-0.376488\pi\)
−0.612464 + 0.790498i \(0.709822\pi\)
\(770\) 0 0
\(771\) −20.2346 + 11.6825i −0.728732 + 0.420733i
\(772\) 0 0
\(773\) 11.9044 + 20.6190i 0.428170 + 0.741612i 0.996711 0.0810431i \(-0.0258251\pi\)
−0.568541 + 0.822655i \(0.692492\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 2.69052 4.66013i 0.0965220 0.167181i
\(778\) 0 0
\(779\) 22.6190i 0.810408i
\(780\) 0 0
\(781\) 33.4919i 1.19844i
\(782\) 0 0
\(783\) −1.06351 + 1.84205i −0.0380067 + 0.0658295i
\(784\) 0 0
\(785\) 37.4451i 1.33647i
\(786\) 0 0
\(787\) −10.1723 17.6190i −0.362604 0.628048i 0.625785 0.779996i \(-0.284779\pi\)
−0.988389 + 0.151948i \(0.951445\pi\)
\(788\) 0 0
\(789\) 7.68423 4.43649i 0.273566 0.157943i
\(790\) 0 0
\(791\) −0.928425 0.536026i −0.0330110 0.0190589i
\(792\) 0 0
\(793\) −1.00000 + 3.46410i −0.0355110 + 0.123014i
\(794\) 0 0
\(795\) 0.142009 0.245967i 0.00503654 0.00872354i
\(796\) 0 0
\(797\) 0.439999 0.254033i 0.0155855 0.00899832i −0.492187 0.870490i \(-0.663802\pi\)
0.507773 + 0.861491i \(0.330469\pi\)
\(798\) 0 0
\(799\) −0.817542 + 0.472008i −0.0289225 + 0.0166984i
\(800\) 0 0
\(801\) 15.8725i 0.560826i
\(802\) 0 0
\(803\) 14.3924 + 8.30948i 0.507898 + 0.293235i
\(804\) 0 0
\(805\) 1.27017i 0.0447675i
\(806\) 0 0
\(807\) −4.25403 −0.149749
\(808\) 0 0
\(809\) −10.0635 + 17.4305i −0.353814 + 0.612824i −0.986914 0.161246i \(-0.948449\pi\)
0.633100 + 0.774070i \(0.281782\pi\)
\(810\) 0 0
\(811\) −8.50427 −0.298625 −0.149313 0.988790i \(-0.547706\pi\)
−0.149313 + 0.988790i \(0.547706\pi\)
\(812\) 0 0
\(813\) −11.6844 20.2379i −0.409788 0.709774i
\(814\) 0 0
\(815\) −11.1270 19.2726i −0.389762 0.675088i
\(816\) 0 0
\(817\) 3.87298 + 2.23607i 0.135499 + 0.0782301i
\(818\) 0 0
\(819\) 1.76406 0.436492i 0.0616412 0.0152523i
\(820\) 0 0
\(821\) 22.8647 39.6028i 0.797983 1.38215i −0.122944 0.992414i \(-0.539234\pi\)
0.920927 0.389734i \(-0.127433\pi\)
\(822\) 0 0
\(823\) 16.1270 + 27.9328i 0.562152 + 0.973677i 0.997308 + 0.0733215i \(0.0233599\pi\)
−0.435156 + 0.900355i \(0.643307\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.568036 0.0197525 0.00987627 0.999951i \(-0.496856\pi\)
0.00987627 + 0.999951i \(0.496856\pi\)
\(828\) 0 0
\(829\) 14.0624 + 8.11895i 0.488409 + 0.281983i 0.723914 0.689890i \(-0.242341\pi\)
−0.235505 + 0.971873i \(0.575675\pi\)
\(830\) 0 0
\(831\) −14.7460 −0.511532
\(832\) 0 0
\(833\) −12.6351 −0.437780
\(834\) 0 0
\(835\) −35.4931 20.4919i −1.22829 0.709153i
\(836\) 0 0
\(837\) −4.47214 −0.154580
\(838\) 0 0
\(839\) −6.00000 + 3.46410i −0.207143 + 0.119594i −0.599983 0.800013i \(-0.704826\pi\)
0.392840 + 0.919607i \(0.371493\pi\)
\(840\) 0 0
\(841\) −12.2379 21.1967i −0.421997 0.730919i
\(842\) 0 0
\(843\) 9.55829 16.5554i 0.329205 0.570200i
\(844\) 0 0
\(845\) 1.11803 29.0474i 0.0384615 0.999260i
\(846\) 0 0
\(847\) −2.07157 1.19602i −0.0711802 0.0410959i
\(848\) 0 0
\(849\) −1.30948 2.26808i −0.0449411 0.0778402i
\(850\) 0 0
\(851\) −6.01620 10.4204i −0.206233 0.357205i
\(852\) 0 0
\(853\) 1.29205 0.0442390 0.0221195 0.999755i \(-0.492959\pi\)
0.0221195 + 0.999755i \(0.492959\pi\)
\(854\) 0 0
\(855\) −4.43649 + 7.68423i −0.151725 + 0.262795i
\(856\) 0 0
\(857\) 7.61895 0.260258 0.130129 0.991497i \(-0.458461\pi\)
0.130129 + 0.991497i \(0.458461\pi\)
\(858\) 0 0
\(859\) 41.6028i 1.41947i 0.704469 + 0.709735i \(0.251185\pi\)
−0.704469 + 0.709735i \(0.748815\pi\)
\(860\) 0 0
\(861\) 2.48808 + 1.43649i 0.0847934 + 0.0489555i
\(862\) 0 0
\(863\) 48.5614i 1.65305i 0.562900 + 0.826525i \(0.309686\pi\)
−0.562900 + 0.826525i \(0.690314\pi\)
\(864\) 0 0
\(865\) −26.1270 + 15.0844i −0.888345 + 0.512886i
\(866\) 0 0
\(867\) 11.6844 6.74597i 0.396822 0.229105i
\(868\) 0 0
\(869\) 27.7768 48.1109i 0.942264 1.63205i
\(870\) 0 0
\(871\) −13.3095 53.7896i −0.450974 1.82259i
\(872\) 0 0
\(873\) −15.0000 8.66025i −0.507673 0.293105i
\(874\) 0 0
\(875\) −4.88013 + 2.81754i −0.164978 + 0.0952503i
\(876\) 0 0
\(877\) −2.59808 4.50000i −0.0877308 0.151954i 0.818821 0.574049i \(-0.194628\pi\)
−0.906552 + 0.422095i \(0.861295\pi\)
\(878\) 0 0
\(879\) 28.5008i 0.961310i
\(880\) 0 0
\(881\) 21.5554 37.3351i 0.726221 1.25785i −0.232248 0.972657i \(-0.574608\pi\)
0.958469 0.285196i \(-0.0920586\pi\)
\(882\) 0 0
\(883\) 10.9839i 0.369637i 0.982773 + 0.184818i \(0.0591697\pi\)
−0.982773 + 0.184818i \(0.940830\pi\)
\(884\) 0 0
\(885\) 25.4919i 0.856902i
\(886\) 0 0
\(887\) −10.1270 + 17.5405i −0.340032 + 0.588953i −0.984438 0.175731i \(-0.943771\pi\)
0.644406 + 0.764683i \(0.277105\pi\)
\(888\) 0 0
\(889\) 8.94427i 0.299981i
\(890\) 0 0
\(891\) −1.98406 3.43649i −0.0664685 0.115127i
\(892\) 0 0
\(893\) −1.73205 + 1.00000i −0.0579609 + 0.0334637i
\(894\) 0 0
\(895\) 24.9284 + 14.3924i 0.833265 + 0.481086i
\(896\) 0 0
\(897\) 1.12702 3.90410i 0.0376300 0.130354i
\(898\) 0 0
\(899\) −4.75615 + 8.23790i −0.158627 + 0.274749i
\(900\) 0 0
\(901\) 0.206028 0.118950i 0.00686377 0.00396280i
\(902\) 0 0
\(903\) 0.491933 0.284018i 0.0163705 0.00945152i
\(904\) 0 0
\(905\) 32.9730i 1.09606i
\(906\) 0 0
\(907\) 0.439999 + 0.254033i 0.0146099 + 0.00843504i 0.507287 0.861777i \(-0.330648\pi\)
−0.492677 + 0.870212i \(0.663982\pi\)
\(908\) 0 0
\(909\) 0.127017i 0.00421288i
\(910\) 0 0
\(911\) −38.7298 −1.28318 −0.641588 0.767049i \(-0.721724\pi\)
−0.641588 + 0.767049i \(0.721724\pi\)
\(912\) 0 0
\(913\) −14.7460 + 25.5408i −0.488020 + 0.845276i
\(914\) 0 0
\(915\) −2.23607 −0.0739221
\(916\) 0 0
\(917\) 0.944016 + 1.63508i 0.0311741 + 0.0539952i
\(918\) 0 0
\(919\) 15.1270 + 26.2008i 0.498994 + 0.864283i 0.999999 0.00116097i \(-0.000369547\pi\)
−0.501005 + 0.865444i \(0.667036\pi\)
\(920\) 0 0
\(921\) 4.69052 + 2.70808i 0.154558 + 0.0892341i
\(922\) 0 0
\(923\) −8.44025 + 29.2379i −0.277814 + 0.962377i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 6.30948 + 10.9283i 0.207230 + 0.358933i
\(928\) 0 0
\(929\) −11.4284 + 6.59820i −0.374954 + 0.216480i −0.675621 0.737249i \(-0.736124\pi\)
0.300666 + 0.953729i \(0.402791\pi\)
\(930\) 0 0
\(931\) −26.7688 −0.877312
\(932\) 0 0
\(933\) 9.19628 + 5.30948i 0.301073 + 0.173824i
\(934\) 0 0
\(935\) −16.6190 −0.543498
\(936\) 0 0
\(937\) −34.2379 −1.11850 −0.559252 0.828998i \(-0.688911\pi\)
−0.559252 + 0.828998i \(0.688911\pi\)
\(938\) 0 0
\(939\) 3.46410 + 2.00000i 0.113047 + 0.0652675i
\(940\) 0 0
\(941\) −34.6410 −1.12926 −0.564632 0.825342i \(-0.690982\pi\)
−0.564632 + 0.825342i \(0.690982\pi\)
\(942\) 0 0
\(943\) 5.56351 3.21209i 0.181173 0.104600i
\(944\) 0 0
\(945\) 0.563508 + 0.976025i 0.0183309 + 0.0317501i
\(946\) 0 0
\(947\) 3.96812 6.87298i 0.128947 0.223342i −0.794322 0.607497i \(-0.792174\pi\)
0.923269 + 0.384155i \(0.125507\pi\)
\(948\) 0 0
\(949\) −10.4703 10.8810i −0.339880 0.353214i
\(950\) 0 0
\(951\) 19.9365 + 11.5103i 0.646485 + 0.373248i
\(952\) 0 0
\(953\) 2.25403 + 3.90410i 0.0730153 + 0.126466i 0.900221 0.435432i \(-0.143404\pi\)
−0.827206 + 0.561899i \(0.810071\pi\)
\(954\) 0 0
\(955\) 4.75615 + 8.23790i 0.153906 + 0.266572i
\(956\) 0 0
\(957\) −8.44025 −0.272835
\(958\) 0 0
\(959\) −3.43649 + 5.95218i −0.110970 + 0.192206i
\(960\) 0 0
\(961\) 11.0000 0.354839
\(962\) 0 0
\(963\) 6.87298i 0.221479i
\(964\) 0 0
\(965\) −36.0431 20.8095i −1.16027 0.669881i
\(966\) 0 0
\(967\) 33.6970i 1.08362i −0.840500 0.541811i \(-0.817739\pi\)
0.840500 0.541811i \(-0.182261\pi\)
\(968\) 0 0
\(969\) −6.43649 + 3.71611i −0.206770 + 0.119379i
\(970\) 0 0
\(971\) −29.8569 + 17.2379i −0.958154 + 0.553191i −0.895604 0.444851i \(-0.853257\pi\)
−0.0625497 + 0.998042i \(0.519923\pi\)
\(972\) 0 0
\(973\) 1.44803 2.50807i 0.0464218 0.0804049i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −15.3014 8.83427i −0.489535 0.282633i 0.234846 0.972033i \(-0.424541\pi\)
−0.724382 + 0.689399i \(0.757875\pi\)
\(978\) 0 0
\(979\) −54.5456 + 31.4919i −1.74329 + 1.00649i
\(980\) 0 0
\(981\) −5.70017 9.87298i −0.181992 0.315220i
\(982\) 0 0
\(983\) 0.439999i 0.0140338i −0.999975 0.00701689i \(-0.997766\pi\)
0.999975 0.00701689i \(-0.00223356\pi\)
\(984\) 0 0
\(985\) 12.7460 22.0767i 0.406120 0.703421i
\(986\) 0 0
\(987\) 0.254033i 0.00808597i
\(988\) 0 0
\(989\) 1.27017i 0.0403889i
\(990\) 0 0
\(991\) 13.1825 22.8327i 0.418755 0.725304i −0.577060 0.816702i \(-0.695800\pi\)
0.995814 + 0.0913976i \(0.0291334\pi\)
\(992\) 0 0
\(993\) 16.8805i 0.535687i
\(994\) 0 0
\(995\) 0.976025 + 1.69052i 0.0309421 + 0.0535932i
\(996\) 0 0
\(997\) 33.3350 19.2460i 1.05573 0.609526i 0.131482 0.991319i \(-0.458027\pi\)
0.924248 + 0.381793i \(0.124693\pi\)
\(998\) 0 0
\(999\) 9.24597 + 5.33816i 0.292529 + 0.168892i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.ca.a.433.4 8
4.3 odd 2 312.2.bk.a.277.2 yes 8
8.3 odd 2 312.2.bk.a.277.1 yes 8
8.5 even 2 inner 1248.2.ca.a.433.1 8
12.11 even 2 936.2.dg.c.901.3 8
13.10 even 6 inner 1248.2.ca.a.49.1 8
24.11 even 2 936.2.dg.c.901.4 8
52.23 odd 6 312.2.bk.a.205.1 8
104.75 odd 6 312.2.bk.a.205.2 yes 8
104.101 even 6 inner 1248.2.ca.a.49.4 8
156.23 even 6 936.2.dg.c.829.4 8
312.179 even 6 936.2.dg.c.829.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bk.a.205.1 8 52.23 odd 6
312.2.bk.a.205.2 yes 8 104.75 odd 6
312.2.bk.a.277.1 yes 8 8.3 odd 2
312.2.bk.a.277.2 yes 8 4.3 odd 2
936.2.dg.c.829.3 8 312.179 even 6
936.2.dg.c.829.4 8 156.23 even 6
936.2.dg.c.901.3 8 12.11 even 2
936.2.dg.c.901.4 8 24.11 even 2
1248.2.ca.a.49.1 8 13.10 even 6 inner
1248.2.ca.a.49.4 8 104.101 even 6 inner
1248.2.ca.a.433.1 8 8.5 even 2 inner
1248.2.ca.a.433.4 8 1.1 even 1 trivial