Properties

Label 1248.2.c.a.961.3
Level $1248$
Weight $2$
Character 1248.961
Analytic conductor $9.965$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1248,2,Mod(961,1248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1248, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1248.961"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 961.3
Root \(-0.445042i\) of defining polynomial
Character \(\chi\) \(=\) 1248.961
Dual form 1248.2.c.a.961.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -0.890084i q^{5} -1.60388i q^{7} +1.00000 q^{9} +2.49396i q^{11} +(0.109916 + 3.60388i) q^{13} +0.890084i q^{15} +2.00000 q^{17} +1.60388i q^{19} +1.60388i q^{21} -4.98792 q^{23} +4.20775 q^{25} -1.00000 q^{27} +6.98792 q^{29} -3.38404i q^{31} -2.49396i q^{33} -1.42758 q^{35} -0.987918i q^{37} +(-0.109916 - 3.60388i) q^{39} -2.67025i q^{41} +8.19567 q^{43} -0.890084i q^{45} -1.50604i q^{47} +4.42758 q^{49} -2.00000 q^{51} +3.42758 q^{53} +2.21983 q^{55} -1.60388i q^{57} +0.713792i q^{59} +8.76809 q^{61} -1.60388i q^{63} +(3.20775 - 0.0978347i) q^{65} +7.82371i q^{67} +4.98792 q^{69} -9.70171i q^{71} -1.78017i q^{73} -4.20775 q^{75} +4.00000 q^{77} +10.4155 q^{79} +1.00000 q^{81} +12.2741i q^{83} -1.78017i q^{85} -6.98792 q^{87} +15.3056i q^{89} +(5.78017 - 0.176292i) q^{91} +3.38404i q^{93} +1.42758 q^{95} -9.78017i q^{97} +2.49396i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + 6 q^{9} + 2 q^{13} + 12 q^{17} + 8 q^{23} - 10 q^{25} - 6 q^{27} + 4 q^{29} + 24 q^{35} - 2 q^{39} - 24 q^{43} - 6 q^{49} - 12 q^{51} - 12 q^{53} + 16 q^{55} + 12 q^{61} - 16 q^{65} - 8 q^{69}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1248\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(769\) \(833\) \(1093\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0.890084i 0.398058i −0.979994 0.199029i \(-0.936221\pi\)
0.979994 0.199029i \(-0.0637787\pi\)
\(6\) 0 0
\(7\) 1.60388i 0.606208i −0.952957 0.303104i \(-0.901977\pi\)
0.952957 0.303104i \(-0.0980229\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.49396i 0.751957i 0.926628 + 0.375978i \(0.122693\pi\)
−0.926628 + 0.375978i \(0.877307\pi\)
\(12\) 0 0
\(13\) 0.109916 + 3.60388i 0.0304853 + 0.999535i
\(14\) 0 0
\(15\) 0.890084i 0.229819i
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 1.60388i 0.367954i 0.982931 + 0.183977i \(0.0588972\pi\)
−0.982931 + 0.183977i \(0.941103\pi\)
\(20\) 0 0
\(21\) 1.60388i 0.349994i
\(22\) 0 0
\(23\) −4.98792 −1.04005 −0.520026 0.854150i \(-0.674078\pi\)
−0.520026 + 0.854150i \(0.674078\pi\)
\(24\) 0 0
\(25\) 4.20775 0.841550
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 6.98792 1.29762 0.648812 0.760949i \(-0.275266\pi\)
0.648812 + 0.760949i \(0.275266\pi\)
\(30\) 0 0
\(31\) 3.38404i 0.607792i −0.952705 0.303896i \(-0.901712\pi\)
0.952705 0.303896i \(-0.0982875\pi\)
\(32\) 0 0
\(33\) 2.49396i 0.434143i
\(34\) 0 0
\(35\) −1.42758 −0.241306
\(36\) 0 0
\(37\) 0.987918i 0.162413i −0.996697 0.0812064i \(-0.974123\pi\)
0.996697 0.0812064i \(-0.0258773\pi\)
\(38\) 0 0
\(39\) −0.109916 3.60388i −0.0176007 0.577082i
\(40\) 0 0
\(41\) 2.67025i 0.417023i −0.978020 0.208512i \(-0.933138\pi\)
0.978020 0.208512i \(-0.0668619\pi\)
\(42\) 0 0
\(43\) 8.19567 1.24983 0.624914 0.780694i \(-0.285134\pi\)
0.624914 + 0.780694i \(0.285134\pi\)
\(44\) 0 0
\(45\) 0.890084i 0.132686i
\(46\) 0 0
\(47\) 1.50604i 0.219679i −0.993949 0.109839i \(-0.964966\pi\)
0.993949 0.109839i \(-0.0350336\pi\)
\(48\) 0 0
\(49\) 4.42758 0.632512
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 3.42758 0.470815 0.235407 0.971897i \(-0.424358\pi\)
0.235407 + 0.971897i \(0.424358\pi\)
\(54\) 0 0
\(55\) 2.21983 0.299322
\(56\) 0 0
\(57\) 1.60388i 0.212438i
\(58\) 0 0
\(59\) 0.713792i 0.0929278i 0.998920 + 0.0464639i \(0.0147952\pi\)
−0.998920 + 0.0464639i \(0.985205\pi\)
\(60\) 0 0
\(61\) 8.76809 1.12264 0.561319 0.827599i \(-0.310294\pi\)
0.561319 + 0.827599i \(0.310294\pi\)
\(62\) 0 0
\(63\) 1.60388i 0.202069i
\(64\) 0 0
\(65\) 3.20775 0.0978347i 0.397873 0.0121349i
\(66\) 0 0
\(67\) 7.82371i 0.955818i 0.878409 + 0.477909i \(0.158605\pi\)
−0.878409 + 0.477909i \(0.841395\pi\)
\(68\) 0 0
\(69\) 4.98792 0.600475
\(70\) 0 0
\(71\) 9.70171i 1.15138i −0.817668 0.575691i \(-0.804733\pi\)
0.817668 0.575691i \(-0.195267\pi\)
\(72\) 0 0
\(73\) 1.78017i 0.208353i −0.994559 0.104176i \(-0.966779\pi\)
0.994559 0.104176i \(-0.0332207\pi\)
\(74\) 0 0
\(75\) −4.20775 −0.485869
\(76\) 0 0
\(77\) 4.00000 0.455842
\(78\) 0 0
\(79\) 10.4155 1.17184 0.585918 0.810371i \(-0.300734\pi\)
0.585918 + 0.810371i \(0.300734\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.2741i 1.34726i 0.739069 + 0.673630i \(0.235266\pi\)
−0.739069 + 0.673630i \(0.764734\pi\)
\(84\) 0 0
\(85\) 1.78017i 0.193086i
\(86\) 0 0
\(87\) −6.98792 −0.749183
\(88\) 0 0
\(89\) 15.3056i 1.62239i 0.584777 + 0.811194i \(0.301182\pi\)
−0.584777 + 0.811194i \(0.698818\pi\)
\(90\) 0 0
\(91\) 5.78017 0.176292i 0.605926 0.0184804i
\(92\) 0 0
\(93\) 3.38404i 0.350909i
\(94\) 0 0
\(95\) 1.42758 0.146467
\(96\) 0 0
\(97\) 9.78017i 0.993026i −0.868029 0.496513i \(-0.834614\pi\)
0.868029 0.496513i \(-0.165386\pi\)
\(98\) 0 0
\(99\) 2.49396i 0.250652i
\(100\) 0 0
\(101\) −6.54825 −0.651576 −0.325788 0.945443i \(-0.605629\pi\)
−0.325788 + 0.945443i \(0.605629\pi\)
\(102\) 0 0
\(103\) 12.6353 1.24500 0.622498 0.782621i \(-0.286118\pi\)
0.622498 + 0.782621i \(0.286118\pi\)
\(104\) 0 0
\(105\) 1.42758 0.139318
\(106\) 0 0
\(107\) −8.98792 −0.868895 −0.434447 0.900697i \(-0.643056\pi\)
−0.434447 + 0.900697i \(0.643056\pi\)
\(108\) 0 0
\(109\) 7.20775i 0.690377i 0.938533 + 0.345189i \(0.112185\pi\)
−0.938533 + 0.345189i \(0.887815\pi\)
\(110\) 0 0
\(111\) 0.987918i 0.0937691i
\(112\) 0 0
\(113\) 5.56033 0.523072 0.261536 0.965194i \(-0.415771\pi\)
0.261536 + 0.965194i \(0.415771\pi\)
\(114\) 0 0
\(115\) 4.43967i 0.414001i
\(116\) 0 0
\(117\) 0.109916 + 3.60388i 0.0101618 + 0.333178i
\(118\) 0 0
\(119\) 3.20775i 0.294054i
\(120\) 0 0
\(121\) 4.78017 0.434561
\(122\) 0 0
\(123\) 2.67025i 0.240768i
\(124\) 0 0
\(125\) 8.19567i 0.733043i
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) −8.19567 −0.721588
\(130\) 0 0
\(131\) 4.54825 0.397383 0.198691 0.980062i \(-0.436331\pi\)
0.198691 + 0.980062i \(0.436331\pi\)
\(132\) 0 0
\(133\) 2.57242 0.223057
\(134\) 0 0
\(135\) 0.890084i 0.0766062i
\(136\) 0 0
\(137\) 9.08575i 0.776248i 0.921607 + 0.388124i \(0.126877\pi\)
−0.921607 + 0.388124i \(0.873123\pi\)
\(138\) 0 0
\(139\) 6.21983 0.527559 0.263780 0.964583i \(-0.415031\pi\)
0.263780 + 0.964583i \(0.415031\pi\)
\(140\) 0 0
\(141\) 1.50604i 0.126832i
\(142\) 0 0
\(143\) −8.98792 + 0.274127i −0.751607 + 0.0229236i
\(144\) 0 0
\(145\) 6.21983i 0.516529i
\(146\) 0 0
\(147\) −4.42758 −0.365181
\(148\) 0 0
\(149\) 15.1099i 1.23785i −0.785449 0.618926i \(-0.787568\pi\)
0.785449 0.618926i \(-0.212432\pi\)
\(150\) 0 0
\(151\) 21.3599i 1.73824i −0.494599 0.869121i \(-0.664685\pi\)
0.494599 0.869121i \(-0.335315\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) −3.01208 −0.241936
\(156\) 0 0
\(157\) −13.4034 −1.06971 −0.534855 0.844944i \(-0.679634\pi\)
−0.534855 + 0.844944i \(0.679634\pi\)
\(158\) 0 0
\(159\) −3.42758 −0.271825
\(160\) 0 0
\(161\) 8.00000i 0.630488i
\(162\) 0 0
\(163\) 6.04354i 0.473367i 0.971587 + 0.236683i \(0.0760604\pi\)
−0.971587 + 0.236683i \(0.923940\pi\)
\(164\) 0 0
\(165\) −2.21983 −0.172814
\(166\) 0 0
\(167\) 7.92154i 0.612987i −0.951873 0.306494i \(-0.900844\pi\)
0.951873 0.306494i \(-0.0991558\pi\)
\(168\) 0 0
\(169\) −12.9758 + 0.792249i −0.998141 + 0.0609422i
\(170\) 0 0
\(171\) 1.60388i 0.122651i
\(172\) 0 0
\(173\) −10.9879 −0.835396 −0.417698 0.908586i \(-0.637163\pi\)
−0.417698 + 0.908586i \(0.637163\pi\)
\(174\) 0 0
\(175\) 6.74871i 0.510154i
\(176\) 0 0
\(177\) 0.713792i 0.0536519i
\(178\) 0 0
\(179\) −5.42758 −0.405677 −0.202838 0.979212i \(-0.565017\pi\)
−0.202838 + 0.979212i \(0.565017\pi\)
\(180\) 0 0
\(181\) −0.572417 −0.0425474 −0.0212737 0.999774i \(-0.506772\pi\)
−0.0212737 + 0.999774i \(0.506772\pi\)
\(182\) 0 0
\(183\) −8.76809 −0.648156
\(184\) 0 0
\(185\) −0.879330 −0.0646496
\(186\) 0 0
\(187\) 4.98792i 0.364753i
\(188\) 0 0
\(189\) 1.60388i 0.116665i
\(190\) 0 0
\(191\) −9.42758 −0.682156 −0.341078 0.940035i \(-0.610792\pi\)
−0.341078 + 0.940035i \(0.610792\pi\)
\(192\) 0 0
\(193\) 17.9758i 1.29393i 0.762520 + 0.646965i \(0.223962\pi\)
−0.762520 + 0.646965i \(0.776038\pi\)
\(194\) 0 0
\(195\) −3.20775 + 0.0978347i −0.229712 + 0.00700609i
\(196\) 0 0
\(197\) 19.7453i 1.40679i −0.710799 0.703395i \(-0.751666\pi\)
0.710799 0.703395i \(-0.248334\pi\)
\(198\) 0 0
\(199\) 12.0000 0.850657 0.425329 0.905039i \(-0.360158\pi\)
0.425329 + 0.905039i \(0.360158\pi\)
\(200\) 0 0
\(201\) 7.82371i 0.551842i
\(202\) 0 0
\(203\) 11.2078i 0.786630i
\(204\) 0 0
\(205\) −2.37675 −0.165999
\(206\) 0 0
\(207\) −4.98792 −0.346684
\(208\) 0 0
\(209\) −4.00000 −0.276686
\(210\) 0 0
\(211\) 17.5362 1.20724 0.603620 0.797272i \(-0.293724\pi\)
0.603620 + 0.797272i \(0.293724\pi\)
\(212\) 0 0
\(213\) 9.70171i 0.664750i
\(214\) 0 0
\(215\) 7.29483i 0.497503i
\(216\) 0 0
\(217\) −5.42758 −0.368448
\(218\) 0 0
\(219\) 1.78017i 0.120293i
\(220\) 0 0
\(221\) 0.219833 + 7.20775i 0.0147875 + 0.484846i
\(222\) 0 0
\(223\) 16.1763i 1.08324i 0.840622 + 0.541622i \(0.182190\pi\)
−0.840622 + 0.541622i \(0.817810\pi\)
\(224\) 0 0
\(225\) 4.20775 0.280517
\(226\) 0 0
\(227\) 12.4698i 0.827649i 0.910357 + 0.413825i \(0.135807\pi\)
−0.910357 + 0.413825i \(0.864193\pi\)
\(228\) 0 0
\(229\) 14.3284i 0.946849i 0.880834 + 0.473424i \(0.156982\pi\)
−0.880834 + 0.473424i \(0.843018\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) 0 0
\(233\) −10.4397 −0.683925 −0.341963 0.939714i \(-0.611092\pi\)
−0.341963 + 0.939714i \(0.611092\pi\)
\(234\) 0 0
\(235\) −1.34050 −0.0874447
\(236\) 0 0
\(237\) −10.4155 −0.676560
\(238\) 0 0
\(239\) 9.15346i 0.592088i 0.955174 + 0.296044i \(0.0956675\pi\)
−0.955174 + 0.296044i \(0.904333\pi\)
\(240\) 0 0
\(241\) 12.6353i 0.813913i −0.913447 0.406957i \(-0.866590\pi\)
0.913447 0.406957i \(-0.133410\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 3.94092i 0.251776i
\(246\) 0 0
\(247\) −5.78017 + 0.176292i −0.367783 + 0.0112172i
\(248\) 0 0
\(249\) 12.2741i 0.777841i
\(250\) 0 0
\(251\) −25.5362 −1.61183 −0.805914 0.592032i \(-0.798326\pi\)
−0.805914 + 0.592032i \(0.798326\pi\)
\(252\) 0 0
\(253\) 12.4397i 0.782075i
\(254\) 0 0
\(255\) 1.78017i 0.111478i
\(256\) 0 0
\(257\) −22.3913 −1.39673 −0.698367 0.715740i \(-0.746089\pi\)
−0.698367 + 0.715740i \(0.746089\pi\)
\(258\) 0 0
\(259\) −1.58450 −0.0984559
\(260\) 0 0
\(261\) 6.98792 0.432541
\(262\) 0 0
\(263\) −3.56033 −0.219540 −0.109770 0.993957i \(-0.535011\pi\)
−0.109770 + 0.993957i \(0.535011\pi\)
\(264\) 0 0
\(265\) 3.05084i 0.187411i
\(266\) 0 0
\(267\) 15.3056i 0.936687i
\(268\) 0 0
\(269\) −17.4034 −1.06111 −0.530553 0.847652i \(-0.678016\pi\)
−0.530553 + 0.847652i \(0.678016\pi\)
\(270\) 0 0
\(271\) 12.8116i 0.778251i 0.921185 + 0.389125i \(0.127223\pi\)
−0.921185 + 0.389125i \(0.872777\pi\)
\(272\) 0 0
\(273\) −5.78017 + 0.176292i −0.349832 + 0.0106697i
\(274\) 0 0
\(275\) 10.4940i 0.632810i
\(276\) 0 0
\(277\) −12.8552 −0.772392 −0.386196 0.922417i \(-0.626211\pi\)
−0.386196 + 0.922417i \(0.626211\pi\)
\(278\) 0 0
\(279\) 3.38404i 0.202597i
\(280\) 0 0
\(281\) 23.5013i 1.40197i 0.713177 + 0.700984i \(0.247255\pi\)
−0.713177 + 0.700984i \(0.752745\pi\)
\(282\) 0 0
\(283\) 18.4155 1.09469 0.547344 0.836908i \(-0.315639\pi\)
0.547344 + 0.836908i \(0.315639\pi\)
\(284\) 0 0
\(285\) −1.42758 −0.0845627
\(286\) 0 0
\(287\) −4.28275 −0.252803
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 9.78017i 0.573324i
\(292\) 0 0
\(293\) 23.3056i 1.36153i −0.732503 0.680763i \(-0.761648\pi\)
0.732503 0.680763i \(-0.238352\pi\)
\(294\) 0 0
\(295\) 0.635334 0.0369906
\(296\) 0 0
\(297\) 2.49396i 0.144714i
\(298\) 0 0
\(299\) −0.548253 17.9758i −0.0317063 1.03957i
\(300\) 0 0
\(301\) 13.1448i 0.757656i
\(302\) 0 0
\(303\) 6.54825 0.376187
\(304\) 0 0
\(305\) 7.80433i 0.446875i
\(306\) 0 0
\(307\) 11.7754i 0.672057i 0.941852 + 0.336028i \(0.109084\pi\)
−0.941852 + 0.336028i \(0.890916\pi\)
\(308\) 0 0
\(309\) −12.6353 −0.718799
\(310\) 0 0
\(311\) 14.5724 0.826326 0.413163 0.910657i \(-0.364424\pi\)
0.413163 + 0.910657i \(0.364424\pi\)
\(312\) 0 0
\(313\) −20.1715 −1.14016 −0.570080 0.821589i \(-0.693088\pi\)
−0.570080 + 0.821589i \(0.693088\pi\)
\(314\) 0 0
\(315\) −1.42758 −0.0804352
\(316\) 0 0
\(317\) 14.2306i 0.799269i 0.916674 + 0.399635i \(0.130863\pi\)
−0.916674 + 0.399635i \(0.869137\pi\)
\(318\) 0 0
\(319\) 17.4276i 0.975757i
\(320\) 0 0
\(321\) 8.98792 0.501657
\(322\) 0 0
\(323\) 3.20775i 0.178484i
\(324\) 0 0
\(325\) 0.462500 + 15.1642i 0.0256549 + 0.841159i
\(326\) 0 0
\(327\) 7.20775i 0.398590i
\(328\) 0 0
\(329\) −2.41550 −0.133171
\(330\) 0 0
\(331\) 35.4228i 1.94701i −0.228659 0.973507i \(-0.573434\pi\)
0.228659 0.973507i \(-0.426566\pi\)
\(332\) 0 0
\(333\) 0.987918i 0.0541376i
\(334\) 0 0
\(335\) 6.96376 0.380471
\(336\) 0 0
\(337\) −3.78017 −0.205919 −0.102959 0.994686i \(-0.532831\pi\)
−0.102959 + 0.994686i \(0.532831\pi\)
\(338\) 0 0
\(339\) −5.56033 −0.301996
\(340\) 0 0
\(341\) 8.43967 0.457033
\(342\) 0 0
\(343\) 18.3284i 0.989642i
\(344\) 0 0
\(345\) 4.43967i 0.239024i
\(346\) 0 0
\(347\) 21.9758 1.17972 0.589862 0.807504i \(-0.299182\pi\)
0.589862 + 0.807504i \(0.299182\pi\)
\(348\) 0 0
\(349\) 24.9879i 1.33757i 0.743455 + 0.668786i \(0.233186\pi\)
−0.743455 + 0.668786i \(0.766814\pi\)
\(350\) 0 0
\(351\) −0.109916 3.60388i −0.00586690 0.192361i
\(352\) 0 0
\(353\) 5.13408i 0.273259i −0.990622 0.136630i \(-0.956373\pi\)
0.990622 0.136630i \(-0.0436271\pi\)
\(354\) 0 0
\(355\) −8.63533 −0.458316
\(356\) 0 0
\(357\) 3.20775i 0.169772i
\(358\) 0 0
\(359\) 4.90946i 0.259111i 0.991572 + 0.129556i \(0.0413551\pi\)
−0.991572 + 0.129556i \(0.958645\pi\)
\(360\) 0 0
\(361\) 16.4276 0.864610
\(362\) 0 0
\(363\) −4.78017 −0.250894
\(364\) 0 0
\(365\) −1.58450 −0.0829364
\(366\) 0 0
\(367\) 3.75600 0.196062 0.0980309 0.995183i \(-0.468746\pi\)
0.0980309 + 0.995183i \(0.468746\pi\)
\(368\) 0 0
\(369\) 2.67025i 0.139008i
\(370\) 0 0
\(371\) 5.49742i 0.285412i
\(372\) 0 0
\(373\) −14.1957 −0.735024 −0.367512 0.930019i \(-0.619790\pi\)
−0.367512 + 0.930019i \(0.619790\pi\)
\(374\) 0 0
\(375\) 8.19567i 0.423223i
\(376\) 0 0
\(377\) 0.768086 + 25.1836i 0.0395584 + 1.29702i
\(378\) 0 0
\(379\) 3.93230i 0.201988i −0.994887 0.100994i \(-0.967798\pi\)
0.994887 0.100994i \(-0.0322024\pi\)
\(380\) 0 0
\(381\) −4.00000 −0.204926
\(382\) 0 0
\(383\) 10.9336i 0.558682i 0.960192 + 0.279341i \(0.0901160\pi\)
−0.960192 + 0.279341i \(0.909884\pi\)
\(384\) 0 0
\(385\) 3.56033i 0.181451i
\(386\) 0 0
\(387\) 8.19567 0.416609
\(388\) 0 0
\(389\) −1.40342 −0.0711562 −0.0355781 0.999367i \(-0.511327\pi\)
−0.0355781 + 0.999367i \(0.511327\pi\)
\(390\) 0 0
\(391\) −9.97584 −0.504500
\(392\) 0 0
\(393\) −4.54825 −0.229429
\(394\) 0 0
\(395\) 9.27067i 0.466458i
\(396\) 0 0
\(397\) 2.96376i 0.148747i 0.997230 + 0.0743733i \(0.0236956\pi\)
−0.997230 + 0.0743733i \(0.976304\pi\)
\(398\) 0 0
\(399\) −2.57242 −0.128782
\(400\) 0 0
\(401\) 21.3297i 1.06516i 0.846381 + 0.532578i \(0.178777\pi\)
−0.846381 + 0.532578i \(0.821223\pi\)
\(402\) 0 0
\(403\) 12.1957 0.371961i 0.607510 0.0185287i
\(404\) 0 0
\(405\) 0.890084i 0.0442286i
\(406\) 0 0
\(407\) 2.46383 0.122127
\(408\) 0 0
\(409\) 28.6353i 1.41593i −0.706249 0.707963i \(-0.749614\pi\)
0.706249 0.707963i \(-0.250386\pi\)
\(410\) 0 0
\(411\) 9.08575i 0.448167i
\(412\) 0 0
\(413\) 1.14483 0.0563336
\(414\) 0 0
\(415\) 10.9250 0.536287
\(416\) 0 0
\(417\) −6.21983 −0.304587
\(418\) 0 0
\(419\) 9.86725 0.482047 0.241023 0.970519i \(-0.422517\pi\)
0.241023 + 0.970519i \(0.422517\pi\)
\(420\) 0 0
\(421\) 22.5026i 1.09671i 0.836246 + 0.548354i \(0.184746\pi\)
−0.836246 + 0.548354i \(0.815254\pi\)
\(422\) 0 0
\(423\) 1.50604i 0.0732262i
\(424\) 0 0
\(425\) 8.41550 0.408212
\(426\) 0 0
\(427\) 14.0629i 0.680552i
\(428\) 0 0
\(429\) 8.98792 0.274127i 0.433941 0.0132350i
\(430\) 0 0
\(431\) 32.8611i 1.58287i 0.611256 + 0.791433i \(0.290664\pi\)
−0.611256 + 0.791433i \(0.709336\pi\)
\(432\) 0 0
\(433\) 2.79225 0.134187 0.0670935 0.997747i \(-0.478627\pi\)
0.0670935 + 0.997747i \(0.478627\pi\)
\(434\) 0 0
\(435\) 6.21983i 0.298218i
\(436\) 0 0
\(437\) 8.00000i 0.382692i
\(438\) 0 0
\(439\) −7.80433 −0.372480 −0.186240 0.982504i \(-0.559630\pi\)
−0.186240 + 0.982504i \(0.559630\pi\)
\(440\) 0 0
\(441\) 4.42758 0.210837
\(442\) 0 0
\(443\) −3.84309 −0.182590 −0.0912952 0.995824i \(-0.529101\pi\)
−0.0912952 + 0.995824i \(0.529101\pi\)
\(444\) 0 0
\(445\) 13.6233 0.645804
\(446\) 0 0
\(447\) 15.1099i 0.714675i
\(448\) 0 0
\(449\) 27.0616i 1.27712i −0.769574 0.638558i \(-0.779531\pi\)
0.769574 0.638558i \(-0.220469\pi\)
\(450\) 0 0
\(451\) 6.65950 0.313583
\(452\) 0 0
\(453\) 21.3599i 1.00357i
\(454\) 0 0
\(455\) −0.156915 5.14483i −0.00735627 0.241193i
\(456\) 0 0
\(457\) 25.0750i 1.17296i −0.809964 0.586480i \(-0.800513\pi\)
0.809964 0.586480i \(-0.199487\pi\)
\(458\) 0 0
\(459\) −2.00000 −0.0933520
\(460\) 0 0
\(461\) 36.8418i 1.71589i −0.513740 0.857946i \(-0.671740\pi\)
0.513740 0.857946i \(-0.328260\pi\)
\(462\) 0 0
\(463\) 4.81163i 0.223615i 0.993730 + 0.111808i \(0.0356640\pi\)
−0.993730 + 0.111808i \(0.964336\pi\)
\(464\) 0 0
\(465\) 3.01208 0.139682
\(466\) 0 0
\(467\) −29.2707 −1.35449 −0.677243 0.735760i \(-0.736825\pi\)
−0.677243 + 0.735760i \(0.736825\pi\)
\(468\) 0 0
\(469\) 12.5483 0.579425
\(470\) 0 0
\(471\) 13.4034 0.617597
\(472\) 0 0
\(473\) 20.4397i 0.939817i
\(474\) 0 0
\(475\) 6.74871i 0.309652i
\(476\) 0 0
\(477\) 3.42758 0.156938
\(478\) 0 0
\(479\) 9.15346i 0.418232i 0.977891 + 0.209116i \(0.0670586\pi\)
−0.977891 + 0.209116i \(0.932941\pi\)
\(480\) 0 0
\(481\) 3.56033 0.108588i 0.162337 0.00495120i
\(482\) 0 0
\(483\) 8.00000i 0.364013i
\(484\) 0 0
\(485\) −8.70517 −0.395281
\(486\) 0 0
\(487\) 5.84787i 0.264992i −0.991184 0.132496i \(-0.957701\pi\)
0.991184 0.132496i \(-0.0422992\pi\)
\(488\) 0 0
\(489\) 6.04354i 0.273298i
\(490\) 0 0
\(491\) 27.2948 1.23180 0.615899 0.787825i \(-0.288793\pi\)
0.615899 + 0.787825i \(0.288793\pi\)
\(492\) 0 0
\(493\) 13.9758 0.629440
\(494\) 0 0
\(495\) 2.21983 0.0997741
\(496\) 0 0
\(497\) −15.5603 −0.697976
\(498\) 0 0
\(499\) 9.05562i 0.405385i −0.979242 0.202693i \(-0.935031\pi\)
0.979242 0.202693i \(-0.0649692\pi\)
\(500\) 0 0
\(501\) 7.92154i 0.353908i
\(502\) 0 0
\(503\) −8.87933 −0.395910 −0.197955 0.980211i \(-0.563430\pi\)
−0.197955 + 0.980211i \(0.563430\pi\)
\(504\) 0 0
\(505\) 5.82849i 0.259365i
\(506\) 0 0
\(507\) 12.9758 0.792249i 0.576277 0.0351850i
\(508\) 0 0
\(509\) 6.91425i 0.306469i −0.988190 0.153234i \(-0.951031\pi\)
0.988190 0.153234i \(-0.0489689\pi\)
\(510\) 0 0
\(511\) −2.85517 −0.126305
\(512\) 0 0
\(513\) 1.60388i 0.0708128i
\(514\) 0 0
\(515\) 11.2465i 0.495580i
\(516\) 0 0
\(517\) 3.75600 0.165189
\(518\) 0 0
\(519\) 10.9879 0.482316
\(520\) 0 0
\(521\) 31.5362 1.38162 0.690812 0.723034i \(-0.257253\pi\)
0.690812 + 0.723034i \(0.257253\pi\)
\(522\) 0 0
\(523\) −18.8767 −0.825419 −0.412710 0.910863i \(-0.635418\pi\)
−0.412710 + 0.910863i \(0.635418\pi\)
\(524\) 0 0
\(525\) 6.74871i 0.294538i
\(526\) 0 0
\(527\) 6.76809i 0.294822i
\(528\) 0 0
\(529\) 1.87933 0.0817100
\(530\) 0 0
\(531\) 0.713792i 0.0309759i
\(532\) 0 0
\(533\) 9.62325 0.293504i 0.416829 0.0127131i
\(534\) 0 0
\(535\) 8.00000i 0.345870i
\(536\) 0 0
\(537\) 5.42758 0.234218
\(538\) 0 0
\(539\) 11.0422i 0.475622i
\(540\) 0 0
\(541\) 19.1594i 0.823728i −0.911245 0.411864i \(-0.864878\pi\)
0.911245 0.411864i \(-0.135122\pi\)
\(542\) 0 0
\(543\) 0.572417 0.0245647
\(544\) 0 0
\(545\) 6.41550 0.274810
\(546\) 0 0
\(547\) −24.1957 −1.03453 −0.517266 0.855825i \(-0.673050\pi\)
−0.517266 + 0.855825i \(0.673050\pi\)
\(548\) 0 0
\(549\) 8.76809 0.374213
\(550\) 0 0
\(551\) 11.2078i 0.477466i
\(552\) 0 0
\(553\) 16.7052i 0.710376i
\(554\) 0 0
\(555\) 0.879330 0.0373255
\(556\) 0 0
\(557\) 29.5254i 1.25103i 0.780211 + 0.625516i \(0.215112\pi\)
−0.780211 + 0.625516i \(0.784888\pi\)
\(558\) 0 0
\(559\) 0.900837 + 29.5362i 0.0381014 + 1.24925i
\(560\) 0 0
\(561\) 4.98792i 0.210590i
\(562\) 0 0
\(563\) 3.84309 0.161967 0.0809834 0.996715i \(-0.474194\pi\)
0.0809834 + 0.996715i \(0.474194\pi\)
\(564\) 0 0
\(565\) 4.94916i 0.208213i
\(566\) 0 0
\(567\) 1.60388i 0.0673564i
\(568\) 0 0
\(569\) 17.5120 0.734142 0.367071 0.930193i \(-0.380361\pi\)
0.367071 + 0.930193i \(0.380361\pi\)
\(570\) 0 0
\(571\) −46.3672 −1.94041 −0.970203 0.242294i \(-0.922100\pi\)
−0.970203 + 0.242294i \(0.922100\pi\)
\(572\) 0 0
\(573\) 9.42758 0.393843
\(574\) 0 0
\(575\) −20.9879 −0.875257
\(576\) 0 0
\(577\) 45.9275i 1.91199i 0.293387 + 0.955994i \(0.405217\pi\)
−0.293387 + 0.955994i \(0.594783\pi\)
\(578\) 0 0
\(579\) 17.9758i 0.747050i
\(580\) 0 0
\(581\) 19.6862 0.816720
\(582\) 0 0
\(583\) 8.54825i 0.354032i
\(584\) 0 0
\(585\) 3.20775 0.0978347i 0.132624 0.00404497i
\(586\) 0 0
\(587\) 48.0689i 1.98402i −0.126178 0.992008i \(-0.540271\pi\)
0.126178 0.992008i \(-0.459729\pi\)
\(588\) 0 0
\(589\) 5.42758 0.223640
\(590\) 0 0
\(591\) 19.7453i 0.812211i
\(592\) 0 0
\(593\) 2.47458i 0.101619i 0.998708 + 0.0508094i \(0.0161801\pi\)
−0.998708 + 0.0508094i \(0.983820\pi\)
\(594\) 0 0
\(595\) −2.85517 −0.117050
\(596\) 0 0
\(597\) −12.0000 −0.491127
\(598\) 0 0
\(599\) 34.3672 1.40420 0.702102 0.712076i \(-0.252245\pi\)
0.702102 + 0.712076i \(0.252245\pi\)
\(600\) 0 0
\(601\) 21.4905 0.876616 0.438308 0.898825i \(-0.355578\pi\)
0.438308 + 0.898825i \(0.355578\pi\)
\(602\) 0 0
\(603\) 7.82371i 0.318606i
\(604\) 0 0
\(605\) 4.25475i 0.172980i
\(606\) 0 0
\(607\) −30.2198 −1.22659 −0.613293 0.789856i \(-0.710155\pi\)
−0.613293 + 0.789856i \(0.710155\pi\)
\(608\) 0 0
\(609\) 11.2078i 0.454161i
\(610\) 0 0
\(611\) 5.42758 0.165538i 0.219577 0.00669697i
\(612\) 0 0
\(613\) 40.4999i 1.63578i −0.575377 0.817888i \(-0.695145\pi\)
0.575377 0.817888i \(-0.304855\pi\)
\(614\) 0 0
\(615\) 2.37675 0.0958397
\(616\) 0 0
\(617\) 15.1099i 0.608302i −0.952624 0.304151i \(-0.901627\pi\)
0.952624 0.304151i \(-0.0983728\pi\)
\(618\) 0 0
\(619\) 30.5918i 1.22959i −0.788688 0.614794i \(-0.789239\pi\)
0.788688 0.614794i \(-0.210761\pi\)
\(620\) 0 0
\(621\) 4.98792 0.200158
\(622\) 0 0
\(623\) 24.5483 0.983505
\(624\) 0 0
\(625\) 13.7439 0.549757
\(626\) 0 0
\(627\) 4.00000 0.159745
\(628\) 0 0
\(629\) 1.97584i 0.0787818i
\(630\) 0 0
\(631\) 29.7125i 1.18283i 0.806366 + 0.591417i \(0.201431\pi\)
−0.806366 + 0.591417i \(0.798569\pi\)
\(632\) 0 0
\(633\) −17.5362 −0.697000
\(634\) 0 0
\(635\) 3.56033i 0.141288i
\(636\) 0 0
\(637\) 0.486663 + 15.9565i 0.0192823 + 0.632218i
\(638\) 0 0
\(639\) 9.70171i 0.383794i
\(640\) 0 0
\(641\) 42.3913 1.67436 0.837179 0.546930i \(-0.184203\pi\)
0.837179 + 0.546930i \(0.184203\pi\)
\(642\) 0 0
\(643\) 20.6160i 0.813014i −0.913648 0.406507i \(-0.866747\pi\)
0.913648 0.406507i \(-0.133253\pi\)
\(644\) 0 0
\(645\) 7.29483i 0.287234i
\(646\) 0 0
\(647\) −37.5362 −1.47570 −0.737850 0.674965i \(-0.764159\pi\)
−0.737850 + 0.674965i \(0.764159\pi\)
\(648\) 0 0
\(649\) −1.78017 −0.0698777
\(650\) 0 0
\(651\) 5.42758 0.212724
\(652\) 0 0
\(653\) −4.96376 −0.194247 −0.0971234 0.995272i \(-0.530964\pi\)
−0.0971234 + 0.995272i \(0.530964\pi\)
\(654\) 0 0
\(655\) 4.04833i 0.158181i
\(656\) 0 0
\(657\) 1.78017i 0.0694509i
\(658\) 0 0
\(659\) 47.9517 1.86793 0.933966 0.357362i \(-0.116324\pi\)
0.933966 + 0.357362i \(0.116324\pi\)
\(660\) 0 0
\(661\) 35.8431i 1.39413i 0.717006 + 0.697067i \(0.245512\pi\)
−0.717006 + 0.697067i \(0.754488\pi\)
\(662\) 0 0
\(663\) −0.219833 7.20775i −0.00853759 0.279926i
\(664\) 0 0
\(665\) 2.28967i 0.0887894i
\(666\) 0 0
\(667\) −34.8552 −1.34960
\(668\) 0 0
\(669\) 16.1763i 0.625412i
\(670\) 0 0
\(671\) 21.8672i 0.844176i
\(672\) 0 0
\(673\) 38.4999 1.48406 0.742032 0.670365i \(-0.233862\pi\)
0.742032 + 0.670365i \(0.233862\pi\)
\(674\) 0 0
\(675\) −4.20775 −0.161956
\(676\) 0 0
\(677\) −15.8189 −0.607971 −0.303985 0.952677i \(-0.598317\pi\)
−0.303985 + 0.952677i \(0.598317\pi\)
\(678\) 0 0
\(679\) −15.6862 −0.601980
\(680\) 0 0
\(681\) 12.4698i 0.477844i
\(682\) 0 0
\(683\) 20.8009i 0.795923i −0.917402 0.397962i \(-0.869718\pi\)
0.917402 0.397962i \(-0.130282\pi\)
\(684\) 0 0
\(685\) 8.08708 0.308991
\(686\) 0 0
\(687\) 14.3284i 0.546663i
\(688\) 0 0
\(689\) 0.376747 + 12.3526i 0.0143529 + 0.470596i
\(690\) 0 0
\(691\) 38.4564i 1.46295i 0.681868 + 0.731475i \(0.261168\pi\)
−0.681868 + 0.731475i \(0.738832\pi\)
\(692\) 0 0
\(693\) 4.00000 0.151947
\(694\) 0 0
\(695\) 5.53617i 0.209999i
\(696\) 0 0
\(697\) 5.34050i 0.202286i
\(698\) 0 0
\(699\) 10.4397 0.394864
\(700\) 0 0
\(701\) 40.2586 1.52055 0.760273 0.649604i \(-0.225065\pi\)
0.760273 + 0.649604i \(0.225065\pi\)
\(702\) 0 0
\(703\) 1.58450 0.0597605
\(704\) 0 0
\(705\) 1.34050 0.0504862
\(706\) 0 0
\(707\) 10.5026i 0.394990i
\(708\) 0 0
\(709\) 4.35258i 0.163465i 0.996654 + 0.0817324i \(0.0260453\pi\)
−0.996654 + 0.0817324i \(0.973955\pi\)
\(710\) 0 0
\(711\) 10.4155 0.390612
\(712\) 0 0
\(713\) 16.8793i 0.632136i
\(714\) 0 0
\(715\) 0.243996 + 8.00000i 0.00912492 + 0.299183i
\(716\) 0 0
\(717\) 9.15346i 0.341842i
\(718\) 0 0
\(719\) 0.156915 0.00585193 0.00292596 0.999996i \(-0.499069\pi\)
0.00292596 + 0.999996i \(0.499069\pi\)
\(720\) 0 0
\(721\) 20.2655i 0.754727i
\(722\) 0 0
\(723\) 12.6353i 0.469913i
\(724\) 0 0
\(725\) 29.4034 1.09202
\(726\) 0 0
\(727\) −14.3672 −0.532849 −0.266425 0.963856i \(-0.585842\pi\)
−0.266425 + 0.963856i \(0.585842\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 16.3913 0.606256
\(732\) 0 0
\(733\) 17.5749i 0.649145i −0.945861 0.324572i \(-0.894780\pi\)
0.945861 0.324572i \(-0.105220\pi\)
\(734\) 0 0
\(735\) 3.94092i 0.145363i
\(736\) 0 0
\(737\) −19.5120 −0.718734
\(738\) 0 0
\(739\) 24.5676i 0.903735i −0.892085 0.451867i \(-0.850758\pi\)
0.892085 0.451867i \(-0.149242\pi\)
\(740\) 0 0
\(741\) 5.78017 0.176292i 0.212340 0.00647625i
\(742\) 0 0
\(743\) 20.3827i 0.747769i −0.927475 0.373885i \(-0.878026\pi\)
0.927475 0.373885i \(-0.121974\pi\)
\(744\) 0 0
\(745\) −13.4491 −0.492737
\(746\) 0 0
\(747\) 12.2741i 0.449087i
\(748\) 0 0
\(749\) 14.4155i 0.526731i
\(750\) 0 0
\(751\) −42.1715 −1.53886 −0.769430 0.638731i \(-0.779460\pi\)
−0.769430 + 0.638731i \(0.779460\pi\)
\(752\) 0 0
\(753\) 25.5362 0.930590
\(754\) 0 0
\(755\) −19.0121 −0.691920
\(756\) 0 0
\(757\) 6.08708 0.221239 0.110619 0.993863i \(-0.464717\pi\)
0.110619 + 0.993863i \(0.464717\pi\)
\(758\) 0 0
\(759\) 12.4397i 0.451531i
\(760\) 0 0
\(761\) 13.5254i 0.490296i 0.969486 + 0.245148i \(0.0788366\pi\)
−0.969486 + 0.245148i \(0.921163\pi\)
\(762\) 0 0
\(763\) 11.5603 0.418512
\(764\) 0 0
\(765\) 1.78017i 0.0643621i
\(766\) 0 0
\(767\) −2.57242 + 0.0784573i −0.0928846 + 0.00283293i
\(768\) 0 0
\(769\) 5.53617i 0.199639i 0.995006 + 0.0998197i \(0.0318266\pi\)
−0.995006 + 0.0998197i \(0.968173\pi\)
\(770\) 0 0
\(771\) 22.3913 0.806404
\(772\) 0 0
\(773\) 21.1341i 0.760140i −0.924958 0.380070i \(-0.875900\pi\)
0.924958 0.380070i \(-0.124100\pi\)
\(774\) 0 0
\(775\) 14.2392i 0.511488i
\(776\) 0 0
\(777\) 1.58450 0.0568436
\(778\) 0 0
\(779\) 4.28275 0.153445
\(780\) 0 0
\(781\) 24.1957 0.865789
\(782\) 0 0
\(783\) −6.98792 −0.249728
\(784\) 0 0
\(785\) 11.9302i 0.425806i
\(786\) 0 0
\(787\) 35.3840i 1.26130i 0.776065 + 0.630652i \(0.217213\pi\)
−0.776065 + 0.630652i \(0.782787\pi\)
\(788\) 0 0
\(789\) 3.56033 0.126751
\(790\) 0 0
\(791\) 8.91808i 0.317091i
\(792\) 0 0
\(793\) 0.963755 + 31.5991i 0.0342240 + 1.12212i
\(794\) 0 0
\(795\) 3.05084i 0.108202i
\(796\) 0 0
\(797\) 4.52409 0.160251 0.0801257 0.996785i \(-0.474468\pi\)
0.0801257 + 0.996785i \(0.474468\pi\)
\(798\) 0 0
\(799\) 3.01208i 0.106560i
\(800\) 0 0
\(801\) 15.3056i 0.540796i
\(802\) 0 0
\(803\) 4.43967 0.156672
\(804\) 0 0
\(805\) 7.12067 0.250971
\(806\) 0 0
\(807\) 17.4034 0.612629
\(808\) 0 0
\(809\) −23.0965 −0.812030 −0.406015 0.913866i \(-0.633082\pi\)
−0.406015 + 0.913866i \(0.633082\pi\)
\(810\) 0 0
\(811\) 49.2513i 1.72945i −0.502248 0.864723i \(-0.667494\pi\)
0.502248 0.864723i \(-0.332506\pi\)
\(812\) 0 0
\(813\) 12.8116i 0.449323i
\(814\) 0 0
\(815\) 5.37926 0.188427
\(816\) 0 0
\(817\) 13.1448i 0.459879i
\(818\) 0 0
\(819\) 5.78017 0.176292i 0.201975 0.00616014i
\(820\) 0 0
\(821\) 43.0616i 1.50286i −0.659813 0.751430i \(-0.729364\pi\)
0.659813 0.751430i \(-0.270636\pi\)
\(822\) 0 0
\(823\) 37.7318 1.31525 0.657625 0.753346i \(-0.271561\pi\)
0.657625 + 0.753346i \(0.271561\pi\)
\(824\) 0 0
\(825\) 10.4940i 0.365353i
\(826\) 0 0
\(827\) 31.3250i 1.08928i 0.838671 + 0.544638i \(0.183333\pi\)
−0.838671 + 0.544638i \(0.816667\pi\)
\(828\) 0 0
\(829\) −43.5749 −1.51342 −0.756710 0.653751i \(-0.773194\pi\)
−0.756710 + 0.653751i \(0.773194\pi\)
\(830\) 0 0
\(831\) 12.8552 0.445941
\(832\) 0 0
\(833\) 8.85517 0.306813
\(834\) 0 0
\(835\) −7.05084 −0.244004
\(836\) 0 0
\(837\) 3.38404i 0.116970i
\(838\) 0 0
\(839\) 11.2862i 0.389643i −0.980839 0.194822i \(-0.937587\pi\)
0.980839 0.194822i \(-0.0624128\pi\)
\(840\) 0 0
\(841\) 19.8310 0.683828
\(842\) 0 0
\(843\) 23.5013i 0.809426i
\(844\) 0 0
\(845\) 0.705168 + 11.5496i 0.0242585 + 0.397318i
\(846\) 0 0
\(847\) 7.66679i 0.263434i
\(848\) 0 0
\(849\) −18.4155 −0.632018
\(850\) 0 0
\(851\) 4.92766i 0.168918i
\(852\) 0 0
\(853\) 46.9154i 1.60635i 0.595741 + 0.803177i \(0.296859\pi\)
−0.595741 + 0.803177i \(0.703141\pi\)
\(854\) 0 0
\(855\) 1.42758 0.0488223
\(856\) 0 0
\(857\) −55.6620 −1.90138 −0.950689 0.310146i \(-0.899622\pi\)
−0.950689 + 0.310146i \(0.899622\pi\)
\(858\) 0 0
\(859\) 4.39134 0.149831 0.0749153 0.997190i \(-0.476131\pi\)
0.0749153 + 0.997190i \(0.476131\pi\)
\(860\) 0 0
\(861\) 4.28275 0.145956
\(862\) 0 0
\(863\) 20.0301i 0.681834i 0.940093 + 0.340917i \(0.110737\pi\)
−0.940093 + 0.340917i \(0.889263\pi\)
\(864\) 0 0
\(865\) 9.78017i 0.332536i
\(866\) 0 0
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) 25.9758i 0.881170i
\(870\) 0 0
\(871\) −28.1957 + 0.859953i −0.955374 + 0.0291384i
\(872\) 0 0
\(873\) 9.78017i 0.331009i
\(874\) 0 0
\(875\) −13.1448 −0.444376
\(876\) 0 0
\(877\) 35.1379i 1.18652i −0.805010 0.593262i \(-0.797840\pi\)
0.805010 0.593262i \(-0.202160\pi\)
\(878\) 0 0
\(879\) 23.3056i 0.786078i
\(880\) 0 0
\(881\) 7.53617 0.253900 0.126950 0.991909i \(-0.459481\pi\)
0.126950 + 0.991909i \(0.459481\pi\)
\(882\) 0 0
\(883\) −18.0242 −0.606561 −0.303281 0.952901i \(-0.598082\pi\)
−0.303281 + 0.952901i \(0.598082\pi\)
\(884\) 0 0
\(885\) −0.635334 −0.0213565
\(886\) 0 0
\(887\) 31.8431 1.06919 0.534593 0.845110i \(-0.320465\pi\)
0.534593 + 0.845110i \(0.320465\pi\)
\(888\) 0 0
\(889\) 6.41550i 0.215169i
\(890\) 0 0
\(891\) 2.49396i 0.0835508i
\(892\) 0 0
\(893\) 2.41550 0.0808317
\(894\) 0 0
\(895\) 4.83100i 0.161483i
\(896\) 0 0
\(897\) 0.548253 + 17.9758i 0.0183056 + 0.600196i
\(898\) 0 0
\(899\) 23.6474i 0.788685i
\(900\) 0 0
\(901\) 6.85517 0.228379
\(902\) 0 0
\(903\) 13.1448i 0.437433i
\(904\) 0 0
\(905\) 0.509499i 0.0169363i
\(906\) 0 0
\(907\) 3.60866 0.119824 0.0599118 0.998204i \(-0.480918\pi\)
0.0599118 + 0.998204i \(0.480918\pi\)
\(908\) 0 0
\(909\) −6.54825 −0.217192
\(910\) 0 0
\(911\) 46.9638 1.55598 0.777989 0.628278i \(-0.216240\pi\)
0.777989 + 0.628278i \(0.216240\pi\)
\(912\) 0 0
\(913\) −30.6112 −1.01308
\(914\) 0 0
\(915\) 7.80433i 0.258003i
\(916\) 0 0
\(917\) 7.29483i 0.240897i
\(918\) 0 0
\(919\) −43.5120 −1.43533 −0.717664 0.696389i \(-0.754789\pi\)
−0.717664 + 0.696389i \(0.754789\pi\)
\(920\) 0 0
\(921\) 11.7754i 0.388012i
\(922\) 0 0
\(923\) 34.9638 1.06638i 1.15085 0.0351002i
\(924\) 0 0
\(925\) 4.15691i 0.136679i
\(926\) 0 0
\(927\) 12.6353 0.414999
\(928\) 0 0
\(929\) 41.9651i 1.37683i −0.725317 0.688415i \(-0.758307\pi\)
0.725317 0.688415i \(-0.241693\pi\)
\(930\) 0 0
\(931\) 7.10129i 0.232735i
\(932\) 0 0
\(933\) −14.5724 −0.477079
\(934\) 0 0
\(935\) 4.43967 0.145193
\(936\) 0 0
\(937\) −1.25608 −0.0410343 −0.0205171 0.999790i \(-0.506531\pi\)
−0.0205171 + 0.999790i \(0.506531\pi\)
\(938\) 0 0
\(939\) 20.1715 0.658272
\(940\) 0 0
\(941\) 20.4504i 0.666665i 0.942809 + 0.333332i \(0.108173\pi\)
−0.942809 + 0.333332i \(0.891827\pi\)
\(942\) 0 0
\(943\) 13.3190i 0.433726i
\(944\) 0 0
\(945\) 1.42758 0.0464393
\(946\) 0 0
\(947\) 37.9361i 1.23276i 0.787449 + 0.616379i \(0.211401\pi\)
−0.787449 + 0.616379i \(0.788599\pi\)
\(948\) 0 0
\(949\) 6.41550 0.195669i 0.208256 0.00635170i
\(950\) 0 0
\(951\) 14.2306i 0.461458i
\(952\) 0 0
\(953\) 21.9517 0.711084 0.355542 0.934660i \(-0.384296\pi\)
0.355542 + 0.934660i \(0.384296\pi\)
\(954\) 0 0
\(955\) 8.39134i 0.271537i
\(956\) 0 0
\(957\) 17.4276i 0.563354i
\(958\) 0 0
\(959\) 14.5724 0.470568
\(960\) 0 0
\(961\) 19.5483 0.630589
\(962\) 0 0
\(963\) −8.98792 −0.289632
\(964\) 0 0
\(965\) 16.0000 0.515058
\(966\) 0 0
\(967\) 59.0702i 1.89957i −0.312903 0.949785i \(-0.601302\pi\)
0.312903 0.949785i \(-0.398698\pi\)
\(968\) 0 0
\(969\) 3.20775i 0.103048i
\(970\) 0 0
\(971\) −32.3430 −1.03794 −0.518968 0.854793i \(-0.673684\pi\)
−0.518968 + 0.854793i \(0.673684\pi\)
\(972\) 0 0
\(973\) 9.97584i 0.319811i
\(974\) 0 0
\(975\) −0.462500 15.1642i −0.0148119 0.485643i
\(976\) 0 0
\(977\) 47.6969i 1.52596i −0.646422 0.762980i \(-0.723736\pi\)
0.646422 0.762980i \(-0.276264\pi\)
\(978\) 0 0
\(979\) −38.1715 −1.21997
\(980\) 0 0
\(981\) 7.20775i 0.230126i
\(982\) 0 0
\(983\) 19.1293i 0.610130i 0.952332 + 0.305065i \(0.0986781\pi\)
−0.952332 + 0.305065i \(0.901322\pi\)
\(984\) 0 0
\(985\) −17.5749 −0.559984
\(986\) 0 0
\(987\) 2.41550 0.0768863
\(988\) 0 0
\(989\) −40.8793 −1.29989
\(990\) 0 0
\(991\) −19.3647 −0.615139 −0.307569 0.951526i \(-0.599516\pi\)
−0.307569 + 0.951526i \(0.599516\pi\)
\(992\) 0 0
\(993\) 35.4228i 1.12411i
\(994\) 0 0
\(995\) 10.6810i 0.338611i
\(996\) 0 0
\(997\) −46.8310 −1.48315 −0.741576 0.670868i \(-0.765922\pi\)
−0.741576 + 0.670868i \(0.765922\pi\)
\(998\) 0 0
\(999\) 0.987918i 0.0312564i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.c.a.961.3 6
3.2 odd 2 3744.2.c.l.3457.4 6
4.3 odd 2 1248.2.c.b.961.3 yes 6
8.3 odd 2 2496.2.c.o.961.4 6
8.5 even 2 2496.2.c.p.961.4 6
12.11 even 2 3744.2.c.m.3457.4 6
13.12 even 2 inner 1248.2.c.a.961.4 yes 6
39.38 odd 2 3744.2.c.l.3457.3 6
52.51 odd 2 1248.2.c.b.961.4 yes 6
104.51 odd 2 2496.2.c.o.961.3 6
104.77 even 2 2496.2.c.p.961.3 6
156.155 even 2 3744.2.c.m.3457.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.2.c.a.961.3 6 1.1 even 1 trivial
1248.2.c.a.961.4 yes 6 13.12 even 2 inner
1248.2.c.b.961.3 yes 6 4.3 odd 2
1248.2.c.b.961.4 yes 6 52.51 odd 2
2496.2.c.o.961.3 6 104.51 odd 2
2496.2.c.o.961.4 6 8.3 odd 2
2496.2.c.p.961.3 6 104.77 even 2
2496.2.c.p.961.4 6 8.5 even 2
3744.2.c.l.3457.3 6 39.38 odd 2
3744.2.c.l.3457.4 6 3.2 odd 2
3744.2.c.m.3457.3 6 156.155 even 2
3744.2.c.m.3457.4 6 12.11 even 2