Properties

Label 1248.2.a.o.1.2
Level $1248$
Weight $2$
Character 1248.1
Self dual yes
Analytic conductor $9.965$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1248,2,Mod(1,1248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1248.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 1248.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} +0.622216 q^{5} -4.42864 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +0.622216 q^{5} -4.42864 q^{7} +1.00000 q^{9} -5.80642 q^{11} +1.00000 q^{13} -0.622216 q^{15} +2.00000 q^{17} +4.42864 q^{19} +4.42864 q^{21} +8.85728 q^{23} -4.61285 q^{25} -1.00000 q^{27} +2.00000 q^{29} +7.18421 q^{31} +5.80642 q^{33} -2.75557 q^{35} +0.755569 q^{37} -1.00000 q^{39} +3.37778 q^{41} +7.61285 q^{43} +0.622216 q^{45} -1.80642 q^{47} +12.6128 q^{49} -2.00000 q^{51} +4.75557 q^{53} -3.61285 q^{55} -4.42864 q^{57} -11.0509 q^{59} -8.10171 q^{61} -4.42864 q^{63} +0.622216 q^{65} -8.04149 q^{67} -8.85728 q^{69} +7.05086 q^{71} +7.24443 q^{73} +4.61285 q^{75} +25.7146 q^{77} +12.0000 q^{79} +1.00000 q^{81} +3.05086 q^{83} +1.24443 q^{85} -2.00000 q^{87} -1.86665 q^{89} -4.42864 q^{91} -7.18421 q^{93} +2.75557 q^{95} -0.755569 q^{97} -5.80642 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} + 2 q^{5} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{3} + 2 q^{5} + 3 q^{9} - 4 q^{11} + 3 q^{13} - 2 q^{15} + 6 q^{17} + 13 q^{25} - 3 q^{27} + 6 q^{29} + 8 q^{31} + 4 q^{33} - 8 q^{35} + 2 q^{37} - 3 q^{39} + 10 q^{41} - 4 q^{43} + 2 q^{45} + 8 q^{47} + 11 q^{49} - 6 q^{51} + 14 q^{53} + 16 q^{55} - 20 q^{59} + 2 q^{61} + 2 q^{65} + 16 q^{67} + 8 q^{71} + 22 q^{73} - 13 q^{75} + 24 q^{77} + 36 q^{79} + 3 q^{81} - 4 q^{83} + 4 q^{85} - 6 q^{87} - 6 q^{89} - 8 q^{93} + 8 q^{95} - 2 q^{97} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0.622216 0.278263 0.139132 0.990274i \(-0.455569\pi\)
0.139132 + 0.990274i \(0.455569\pi\)
\(6\) 0 0
\(7\) −4.42864 −1.67387 −0.836934 0.547304i \(-0.815654\pi\)
−0.836934 + 0.547304i \(0.815654\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −5.80642 −1.75070 −0.875351 0.483487i \(-0.839370\pi\)
−0.875351 + 0.483487i \(0.839370\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) −0.622216 −0.160655
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 4.42864 1.01600 0.508000 0.861357i \(-0.330385\pi\)
0.508000 + 0.861357i \(0.330385\pi\)
\(20\) 0 0
\(21\) 4.42864 0.966408
\(22\) 0 0
\(23\) 8.85728 1.84687 0.923435 0.383754i \(-0.125369\pi\)
0.923435 + 0.383754i \(0.125369\pi\)
\(24\) 0 0
\(25\) −4.61285 −0.922570
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 7.18421 1.29032 0.645161 0.764047i \(-0.276790\pi\)
0.645161 + 0.764047i \(0.276790\pi\)
\(32\) 0 0
\(33\) 5.80642 1.01077
\(34\) 0 0
\(35\) −2.75557 −0.465776
\(36\) 0 0
\(37\) 0.755569 0.124215 0.0621074 0.998069i \(-0.480218\pi\)
0.0621074 + 0.998069i \(0.480218\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 3.37778 0.527521 0.263761 0.964588i \(-0.415037\pi\)
0.263761 + 0.964588i \(0.415037\pi\)
\(42\) 0 0
\(43\) 7.61285 1.16095 0.580474 0.814279i \(-0.302867\pi\)
0.580474 + 0.814279i \(0.302867\pi\)
\(44\) 0 0
\(45\) 0.622216 0.0927544
\(46\) 0 0
\(47\) −1.80642 −0.263494 −0.131747 0.991283i \(-0.542059\pi\)
−0.131747 + 0.991283i \(0.542059\pi\)
\(48\) 0 0
\(49\) 12.6128 1.80184
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 0 0
\(53\) 4.75557 0.653228 0.326614 0.945158i \(-0.394092\pi\)
0.326614 + 0.945158i \(0.394092\pi\)
\(54\) 0 0
\(55\) −3.61285 −0.487156
\(56\) 0 0
\(57\) −4.42864 −0.586588
\(58\) 0 0
\(59\) −11.0509 −1.43870 −0.719349 0.694648i \(-0.755560\pi\)
−0.719349 + 0.694648i \(0.755560\pi\)
\(60\) 0 0
\(61\) −8.10171 −1.03732 −0.518659 0.854981i \(-0.673569\pi\)
−0.518659 + 0.854981i \(0.673569\pi\)
\(62\) 0 0
\(63\) −4.42864 −0.557956
\(64\) 0 0
\(65\) 0.622216 0.0771764
\(66\) 0 0
\(67\) −8.04149 −0.982424 −0.491212 0.871040i \(-0.663446\pi\)
−0.491212 + 0.871040i \(0.663446\pi\)
\(68\) 0 0
\(69\) −8.85728 −1.06629
\(70\) 0 0
\(71\) 7.05086 0.836783 0.418391 0.908267i \(-0.362594\pi\)
0.418391 + 0.908267i \(0.362594\pi\)
\(72\) 0 0
\(73\) 7.24443 0.847897 0.423948 0.905686i \(-0.360644\pi\)
0.423948 + 0.905686i \(0.360644\pi\)
\(74\) 0 0
\(75\) 4.61285 0.532646
\(76\) 0 0
\(77\) 25.7146 2.93045
\(78\) 0 0
\(79\) 12.0000 1.35011 0.675053 0.737769i \(-0.264121\pi\)
0.675053 + 0.737769i \(0.264121\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 3.05086 0.334875 0.167437 0.985883i \(-0.446451\pi\)
0.167437 + 0.985883i \(0.446451\pi\)
\(84\) 0 0
\(85\) 1.24443 0.134978
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) −1.86665 −0.197864 −0.0989321 0.995094i \(-0.531543\pi\)
−0.0989321 + 0.995094i \(0.531543\pi\)
\(90\) 0 0
\(91\) −4.42864 −0.464248
\(92\) 0 0
\(93\) −7.18421 −0.744968
\(94\) 0 0
\(95\) 2.75557 0.282715
\(96\) 0 0
\(97\) −0.755569 −0.0767164 −0.0383582 0.999264i \(-0.512213\pi\)
−0.0383582 + 0.999264i \(0.512213\pi\)
\(98\) 0 0
\(99\) −5.80642 −0.583568
\(100\) 0 0
\(101\) −15.7146 −1.56366 −0.781828 0.623494i \(-0.785713\pi\)
−0.781828 + 0.623494i \(0.785713\pi\)
\(102\) 0 0
\(103\) 18.1017 1.78361 0.891807 0.452416i \(-0.149438\pi\)
0.891807 + 0.452416i \(0.149438\pi\)
\(104\) 0 0
\(105\) 2.75557 0.268916
\(106\) 0 0
\(107\) −15.3461 −1.48357 −0.741784 0.670639i \(-0.766020\pi\)
−0.741784 + 0.670639i \(0.766020\pi\)
\(108\) 0 0
\(109\) 15.7146 1.50518 0.752591 0.658488i \(-0.228804\pi\)
0.752591 + 0.658488i \(0.228804\pi\)
\(110\) 0 0
\(111\) −0.755569 −0.0717154
\(112\) 0 0
\(113\) 14.4701 1.36124 0.680618 0.732639i \(-0.261712\pi\)
0.680618 + 0.732639i \(0.261712\pi\)
\(114\) 0 0
\(115\) 5.51114 0.513916
\(116\) 0 0
\(117\) 1.00000 0.0924500
\(118\) 0 0
\(119\) −8.85728 −0.811945
\(120\) 0 0
\(121\) 22.7146 2.06496
\(122\) 0 0
\(123\) −3.37778 −0.304565
\(124\) 0 0
\(125\) −5.98126 −0.534981
\(126\) 0 0
\(127\) 20.8573 1.85078 0.925392 0.379011i \(-0.123736\pi\)
0.925392 + 0.379011i \(0.123736\pi\)
\(128\) 0 0
\(129\) −7.61285 −0.670274
\(130\) 0 0
\(131\) 10.3684 0.905893 0.452946 0.891538i \(-0.350373\pi\)
0.452946 + 0.891538i \(0.350373\pi\)
\(132\) 0 0
\(133\) −19.6128 −1.70065
\(134\) 0 0
\(135\) −0.622216 −0.0535518
\(136\) 0 0
\(137\) −19.8479 −1.69572 −0.847861 0.530219i \(-0.822110\pi\)
−0.847861 + 0.530219i \(0.822110\pi\)
\(138\) 0 0
\(139\) −6.75557 −0.573000 −0.286500 0.958080i \(-0.592492\pi\)
−0.286500 + 0.958080i \(0.592492\pi\)
\(140\) 0 0
\(141\) 1.80642 0.152128
\(142\) 0 0
\(143\) −5.80642 −0.485558
\(144\) 0 0
\(145\) 1.24443 0.103344
\(146\) 0 0
\(147\) −12.6128 −1.04029
\(148\) 0 0
\(149\) −2.13335 −0.174771 −0.0873855 0.996175i \(-0.527851\pi\)
−0.0873855 + 0.996175i \(0.527851\pi\)
\(150\) 0 0
\(151\) −1.67307 −0.136153 −0.0680763 0.997680i \(-0.521686\pi\)
−0.0680763 + 0.997680i \(0.521686\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 4.47013 0.359049
\(156\) 0 0
\(157\) 15.1240 1.20703 0.603513 0.797353i \(-0.293767\pi\)
0.603513 + 0.797353i \(0.293767\pi\)
\(158\) 0 0
\(159\) −4.75557 −0.377141
\(160\) 0 0
\(161\) −39.2257 −3.09142
\(162\) 0 0
\(163\) 15.7748 1.23558 0.617788 0.786345i \(-0.288029\pi\)
0.617788 + 0.786345i \(0.288029\pi\)
\(164\) 0 0
\(165\) 3.61285 0.281260
\(166\) 0 0
\(167\) −7.31756 −0.566250 −0.283125 0.959083i \(-0.591371\pi\)
−0.283125 + 0.959083i \(0.591371\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 4.42864 0.338667
\(172\) 0 0
\(173\) 7.51114 0.571061 0.285531 0.958370i \(-0.407830\pi\)
0.285531 + 0.958370i \(0.407830\pi\)
\(174\) 0 0
\(175\) 20.4286 1.54426
\(176\) 0 0
\(177\) 11.0509 0.830633
\(178\) 0 0
\(179\) −14.7556 −1.10288 −0.551441 0.834214i \(-0.685922\pi\)
−0.551441 + 0.834214i \(0.685922\pi\)
\(180\) 0 0
\(181\) 4.10171 0.304878 0.152439 0.988313i \(-0.451287\pi\)
0.152439 + 0.988313i \(0.451287\pi\)
\(182\) 0 0
\(183\) 8.10171 0.598896
\(184\) 0 0
\(185\) 0.470127 0.0345644
\(186\) 0 0
\(187\) −11.6128 −0.849216
\(188\) 0 0
\(189\) 4.42864 0.322136
\(190\) 0 0
\(191\) 0.266706 0.0192982 0.00964909 0.999953i \(-0.496929\pi\)
0.00964909 + 0.999953i \(0.496929\pi\)
\(192\) 0 0
\(193\) −26.2034 −1.88616 −0.943082 0.332561i \(-0.892087\pi\)
−0.943082 + 0.332561i \(0.892087\pi\)
\(194\) 0 0
\(195\) −0.622216 −0.0445578
\(196\) 0 0
\(197\) 15.8479 1.12912 0.564558 0.825393i \(-0.309046\pi\)
0.564558 + 0.825393i \(0.309046\pi\)
\(198\) 0 0
\(199\) −10.3684 −0.734998 −0.367499 0.930024i \(-0.619786\pi\)
−0.367499 + 0.930024i \(0.619786\pi\)
\(200\) 0 0
\(201\) 8.04149 0.567203
\(202\) 0 0
\(203\) −8.85728 −0.621659
\(204\) 0 0
\(205\) 2.10171 0.146790
\(206\) 0 0
\(207\) 8.85728 0.615623
\(208\) 0 0
\(209\) −25.7146 −1.77871
\(210\) 0 0
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) 0 0
\(213\) −7.05086 −0.483117
\(214\) 0 0
\(215\) 4.73683 0.323049
\(216\) 0 0
\(217\) −31.8163 −2.15983
\(218\) 0 0
\(219\) −7.24443 −0.489533
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) 4.69535 0.314424 0.157212 0.987565i \(-0.449749\pi\)
0.157212 + 0.987565i \(0.449749\pi\)
\(224\) 0 0
\(225\) −4.61285 −0.307523
\(226\) 0 0
\(227\) 5.80642 0.385386 0.192693 0.981259i \(-0.438278\pi\)
0.192693 + 0.981259i \(0.438278\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) −25.7146 −1.69189
\(232\) 0 0
\(233\) 7.24443 0.474598 0.237299 0.971437i \(-0.423738\pi\)
0.237299 + 0.971437i \(0.423738\pi\)
\(234\) 0 0
\(235\) −1.12399 −0.0733207
\(236\) 0 0
\(237\) −12.0000 −0.779484
\(238\) 0 0
\(239\) −10.6637 −0.689778 −0.344889 0.938644i \(-0.612083\pi\)
−0.344889 + 0.938644i \(0.612083\pi\)
\(240\) 0 0
\(241\) −5.73329 −0.369314 −0.184657 0.982803i \(-0.559117\pi\)
−0.184657 + 0.982803i \(0.559117\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 7.84791 0.501385
\(246\) 0 0
\(247\) 4.42864 0.281788
\(248\) 0 0
\(249\) −3.05086 −0.193340
\(250\) 0 0
\(251\) −23.6128 −1.49043 −0.745215 0.666824i \(-0.767653\pi\)
−0.745215 + 0.666824i \(0.767653\pi\)
\(252\) 0 0
\(253\) −51.4291 −3.23332
\(254\) 0 0
\(255\) −1.24443 −0.0779293
\(256\) 0 0
\(257\) −11.2444 −0.701408 −0.350704 0.936486i \(-0.614058\pi\)
−0.350704 + 0.936486i \(0.614058\pi\)
\(258\) 0 0
\(259\) −3.34614 −0.207919
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) −4.38715 −0.270523 −0.135262 0.990810i \(-0.543188\pi\)
−0.135262 + 0.990810i \(0.543188\pi\)
\(264\) 0 0
\(265\) 2.95899 0.181769
\(266\) 0 0
\(267\) 1.86665 0.114237
\(268\) 0 0
\(269\) 7.51114 0.457962 0.228981 0.973431i \(-0.426461\pi\)
0.228981 + 0.973431i \(0.426461\pi\)
\(270\) 0 0
\(271\) 6.06022 0.368132 0.184066 0.982914i \(-0.441074\pi\)
0.184066 + 0.982914i \(0.441074\pi\)
\(272\) 0 0
\(273\) 4.42864 0.268033
\(274\) 0 0
\(275\) 26.7841 1.61514
\(276\) 0 0
\(277\) 0.488863 0.0293729 0.0146865 0.999892i \(-0.495325\pi\)
0.0146865 + 0.999892i \(0.495325\pi\)
\(278\) 0 0
\(279\) 7.18421 0.430107
\(280\) 0 0
\(281\) 13.0923 0.781024 0.390512 0.920598i \(-0.372298\pi\)
0.390512 + 0.920598i \(0.372298\pi\)
\(282\) 0 0
\(283\) −23.3461 −1.38778 −0.693892 0.720079i \(-0.744106\pi\)
−0.693892 + 0.720079i \(0.744106\pi\)
\(284\) 0 0
\(285\) −2.75557 −0.163226
\(286\) 0 0
\(287\) −14.9590 −0.883001
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0.755569 0.0442922
\(292\) 0 0
\(293\) 13.0923 0.764863 0.382431 0.923984i \(-0.375087\pi\)
0.382431 + 0.923984i \(0.375087\pi\)
\(294\) 0 0
\(295\) −6.87601 −0.400337
\(296\) 0 0
\(297\) 5.80642 0.336923
\(298\) 0 0
\(299\) 8.85728 0.512230
\(300\) 0 0
\(301\) −33.7146 −1.94327
\(302\) 0 0
\(303\) 15.7146 0.902778
\(304\) 0 0
\(305\) −5.04101 −0.288647
\(306\) 0 0
\(307\) 32.0415 1.82870 0.914352 0.404920i \(-0.132701\pi\)
0.914352 + 0.404920i \(0.132701\pi\)
\(308\) 0 0
\(309\) −18.1017 −1.02977
\(310\) 0 0
\(311\) −24.0830 −1.36562 −0.682810 0.730596i \(-0.739242\pi\)
−0.682810 + 0.730596i \(0.739242\pi\)
\(312\) 0 0
\(313\) 27.7146 1.56652 0.783260 0.621695i \(-0.213556\pi\)
0.783260 + 0.621695i \(0.213556\pi\)
\(314\) 0 0
\(315\) −2.75557 −0.155259
\(316\) 0 0
\(317\) −17.0923 −0.960002 −0.480001 0.877268i \(-0.659364\pi\)
−0.480001 + 0.877268i \(0.659364\pi\)
\(318\) 0 0
\(319\) −11.6128 −0.650195
\(320\) 0 0
\(321\) 15.3461 0.856538
\(322\) 0 0
\(323\) 8.85728 0.492832
\(324\) 0 0
\(325\) −4.61285 −0.255875
\(326\) 0 0
\(327\) −15.7146 −0.869017
\(328\) 0 0
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) 7.18421 0.394880 0.197440 0.980315i \(-0.436737\pi\)
0.197440 + 0.980315i \(0.436737\pi\)
\(332\) 0 0
\(333\) 0.755569 0.0414049
\(334\) 0 0
\(335\) −5.00354 −0.273373
\(336\) 0 0
\(337\) 0.285442 0.0155490 0.00777451 0.999970i \(-0.497525\pi\)
0.00777451 + 0.999970i \(0.497525\pi\)
\(338\) 0 0
\(339\) −14.4701 −0.785909
\(340\) 0 0
\(341\) −41.7146 −2.25897
\(342\) 0 0
\(343\) −24.8573 −1.34217
\(344\) 0 0
\(345\) −5.51114 −0.296710
\(346\) 0 0
\(347\) 24.2034 1.29931 0.649654 0.760230i \(-0.274914\pi\)
0.649654 + 0.760230i \(0.274914\pi\)
\(348\) 0 0
\(349\) −12.7556 −0.682790 −0.341395 0.939920i \(-0.610899\pi\)
−0.341395 + 0.939920i \(0.610899\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) 21.0923 1.12263 0.561316 0.827602i \(-0.310295\pi\)
0.561316 + 0.827602i \(0.310295\pi\)
\(354\) 0 0
\(355\) 4.38715 0.232846
\(356\) 0 0
\(357\) 8.85728 0.468777
\(358\) 0 0
\(359\) 15.1338 0.798733 0.399366 0.916791i \(-0.369230\pi\)
0.399366 + 0.916791i \(0.369230\pi\)
\(360\) 0 0
\(361\) 0.612848 0.0322551
\(362\) 0 0
\(363\) −22.7146 −1.19221
\(364\) 0 0
\(365\) 4.50760 0.235938
\(366\) 0 0
\(367\) 18.9590 0.989651 0.494826 0.868992i \(-0.335232\pi\)
0.494826 + 0.868992i \(0.335232\pi\)
\(368\) 0 0
\(369\) 3.37778 0.175840
\(370\) 0 0
\(371\) −21.0607 −1.09342
\(372\) 0 0
\(373\) 2.97773 0.154181 0.0770904 0.997024i \(-0.475437\pi\)
0.0770904 + 0.997024i \(0.475437\pi\)
\(374\) 0 0
\(375\) 5.98126 0.308871
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) 14.1432 0.726487 0.363244 0.931694i \(-0.381669\pi\)
0.363244 + 0.931694i \(0.381669\pi\)
\(380\) 0 0
\(381\) −20.8573 −1.06855
\(382\) 0 0
\(383\) 25.8064 1.31865 0.659323 0.751860i \(-0.270843\pi\)
0.659323 + 0.751860i \(0.270843\pi\)
\(384\) 0 0
\(385\) 16.0000 0.815436
\(386\) 0 0
\(387\) 7.61285 0.386983
\(388\) 0 0
\(389\) −12.9590 −0.657047 −0.328523 0.944496i \(-0.606551\pi\)
−0.328523 + 0.944496i \(0.606551\pi\)
\(390\) 0 0
\(391\) 17.7146 0.895864
\(392\) 0 0
\(393\) −10.3684 −0.523017
\(394\) 0 0
\(395\) 7.46659 0.375685
\(396\) 0 0
\(397\) 3.24443 0.162833 0.0814167 0.996680i \(-0.474056\pi\)
0.0814167 + 0.996680i \(0.474056\pi\)
\(398\) 0 0
\(399\) 19.6128 0.981870
\(400\) 0 0
\(401\) −30.6035 −1.52826 −0.764132 0.645059i \(-0.776833\pi\)
−0.764132 + 0.645059i \(0.776833\pi\)
\(402\) 0 0
\(403\) 7.18421 0.357871
\(404\) 0 0
\(405\) 0.622216 0.0309181
\(406\) 0 0
\(407\) −4.38715 −0.217463
\(408\) 0 0
\(409\) −8.75557 −0.432935 −0.216468 0.976290i \(-0.569454\pi\)
−0.216468 + 0.976290i \(0.569454\pi\)
\(410\) 0 0
\(411\) 19.8479 0.979025
\(412\) 0 0
\(413\) 48.9403 2.40819
\(414\) 0 0
\(415\) 1.89829 0.0931834
\(416\) 0 0
\(417\) 6.75557 0.330822
\(418\) 0 0
\(419\) 23.8796 1.16659 0.583296 0.812259i \(-0.301763\pi\)
0.583296 + 0.812259i \(0.301763\pi\)
\(420\) 0 0
\(421\) −8.28544 −0.403808 −0.201904 0.979405i \(-0.564713\pi\)
−0.201904 + 0.979405i \(0.564713\pi\)
\(422\) 0 0
\(423\) −1.80642 −0.0878313
\(424\) 0 0
\(425\) −9.22570 −0.447512
\(426\) 0 0
\(427\) 35.8796 1.73633
\(428\) 0 0
\(429\) 5.80642 0.280337
\(430\) 0 0
\(431\) 14.0098 0.674830 0.337415 0.941356i \(-0.390447\pi\)
0.337415 + 0.941356i \(0.390447\pi\)
\(432\) 0 0
\(433\) 27.1240 1.30350 0.651748 0.758436i \(-0.274036\pi\)
0.651748 + 0.758436i \(0.274036\pi\)
\(434\) 0 0
\(435\) −1.24443 −0.0596659
\(436\) 0 0
\(437\) 39.2257 1.87642
\(438\) 0 0
\(439\) −4.59057 −0.219096 −0.109548 0.993982i \(-0.534940\pi\)
−0.109548 + 0.993982i \(0.534940\pi\)
\(440\) 0 0
\(441\) 12.6128 0.600612
\(442\) 0 0
\(443\) 10.3684 0.492618 0.246309 0.969191i \(-0.420782\pi\)
0.246309 + 0.969191i \(0.420782\pi\)
\(444\) 0 0
\(445\) −1.16146 −0.0550583
\(446\) 0 0
\(447\) 2.13335 0.100904
\(448\) 0 0
\(449\) 10.3368 0.487823 0.243911 0.969798i \(-0.421569\pi\)
0.243911 + 0.969798i \(0.421569\pi\)
\(450\) 0 0
\(451\) −19.6128 −0.923533
\(452\) 0 0
\(453\) 1.67307 0.0786077
\(454\) 0 0
\(455\) −2.75557 −0.129183
\(456\) 0 0
\(457\) 5.52987 0.258677 0.129338 0.991601i \(-0.458715\pi\)
0.129338 + 0.991601i \(0.458715\pi\)
\(458\) 0 0
\(459\) −2.00000 −0.0933520
\(460\) 0 0
\(461\) −17.8666 −0.832133 −0.416066 0.909334i \(-0.636592\pi\)
−0.416066 + 0.909334i \(0.636592\pi\)
\(462\) 0 0
\(463\) −38.6766 −1.79745 −0.898727 0.438508i \(-0.855507\pi\)
−0.898727 + 0.438508i \(0.855507\pi\)
\(464\) 0 0
\(465\) −4.47013 −0.207297
\(466\) 0 0
\(467\) −10.1017 −0.467451 −0.233726 0.972303i \(-0.575092\pi\)
−0.233726 + 0.972303i \(0.575092\pi\)
\(468\) 0 0
\(469\) 35.6128 1.64445
\(470\) 0 0
\(471\) −15.1240 −0.696876
\(472\) 0 0
\(473\) −44.2034 −2.03248
\(474\) 0 0
\(475\) −20.4286 −0.937330
\(476\) 0 0
\(477\) 4.75557 0.217743
\(478\) 0 0
\(479\) 30.8671 1.41035 0.705177 0.709031i \(-0.250867\pi\)
0.705177 + 0.709031i \(0.250867\pi\)
\(480\) 0 0
\(481\) 0.755569 0.0344510
\(482\) 0 0
\(483\) 39.2257 1.78483
\(484\) 0 0
\(485\) −0.470127 −0.0213474
\(486\) 0 0
\(487\) −25.7560 −1.16712 −0.583559 0.812071i \(-0.698340\pi\)
−0.583559 + 0.812071i \(0.698340\pi\)
\(488\) 0 0
\(489\) −15.7748 −0.713360
\(490\) 0 0
\(491\) −27.8163 −1.25533 −0.627665 0.778483i \(-0.715989\pi\)
−0.627665 + 0.778483i \(0.715989\pi\)
\(492\) 0 0
\(493\) 4.00000 0.180151
\(494\) 0 0
\(495\) −3.61285 −0.162385
\(496\) 0 0
\(497\) −31.2257 −1.40066
\(498\) 0 0
\(499\) −0.815792 −0.0365199 −0.0182599 0.999833i \(-0.505813\pi\)
−0.0182599 + 0.999833i \(0.505813\pi\)
\(500\) 0 0
\(501\) 7.31756 0.326925
\(502\) 0 0
\(503\) −26.8385 −1.19667 −0.598336 0.801245i \(-0.704171\pi\)
−0.598336 + 0.801245i \(0.704171\pi\)
\(504\) 0 0
\(505\) −9.77784 −0.435108
\(506\) 0 0
\(507\) −1.00000 −0.0444116
\(508\) 0 0
\(509\) −6.60348 −0.292694 −0.146347 0.989233i \(-0.546752\pi\)
−0.146347 + 0.989233i \(0.546752\pi\)
\(510\) 0 0
\(511\) −32.0830 −1.41927
\(512\) 0 0
\(513\) −4.42864 −0.195529
\(514\) 0 0
\(515\) 11.2632 0.496314
\(516\) 0 0
\(517\) 10.4889 0.461300
\(518\) 0 0
\(519\) −7.51114 −0.329702
\(520\) 0 0
\(521\) 35.9813 1.57637 0.788184 0.615440i \(-0.211022\pi\)
0.788184 + 0.615440i \(0.211022\pi\)
\(522\) 0 0
\(523\) 34.9590 1.52865 0.764325 0.644831i \(-0.223072\pi\)
0.764325 + 0.644831i \(0.223072\pi\)
\(524\) 0 0
\(525\) −20.4286 −0.891579
\(526\) 0 0
\(527\) 14.3684 0.625898
\(528\) 0 0
\(529\) 55.4514 2.41093
\(530\) 0 0
\(531\) −11.0509 −0.479566
\(532\) 0 0
\(533\) 3.37778 0.146308
\(534\) 0 0
\(535\) −9.54861 −0.412822
\(536\) 0 0
\(537\) 14.7556 0.636750
\(538\) 0 0
\(539\) −73.2355 −3.15448
\(540\) 0 0
\(541\) 19.5111 0.838849 0.419425 0.907790i \(-0.362232\pi\)
0.419425 + 0.907790i \(0.362232\pi\)
\(542\) 0 0
\(543\) −4.10171 −0.176021
\(544\) 0 0
\(545\) 9.77784 0.418837
\(546\) 0 0
\(547\) 4.26671 0.182431 0.0912156 0.995831i \(-0.470925\pi\)
0.0912156 + 0.995831i \(0.470925\pi\)
\(548\) 0 0
\(549\) −8.10171 −0.345773
\(550\) 0 0
\(551\) 8.85728 0.377333
\(552\) 0 0
\(553\) −53.1437 −2.25990
\(554\) 0 0
\(555\) −0.470127 −0.0199558
\(556\) 0 0
\(557\) 5.86665 0.248578 0.124289 0.992246i \(-0.460335\pi\)
0.124289 + 0.992246i \(0.460335\pi\)
\(558\) 0 0
\(559\) 7.61285 0.321989
\(560\) 0 0
\(561\) 11.6128 0.490295
\(562\) 0 0
\(563\) 27.4924 1.15867 0.579333 0.815091i \(-0.303313\pi\)
0.579333 + 0.815091i \(0.303313\pi\)
\(564\) 0 0
\(565\) 9.00354 0.378782
\(566\) 0 0
\(567\) −4.42864 −0.185985
\(568\) 0 0
\(569\) −13.4924 −0.565631 −0.282815 0.959174i \(-0.591268\pi\)
−0.282815 + 0.959174i \(0.591268\pi\)
\(570\) 0 0
\(571\) −23.8796 −0.999328 −0.499664 0.866219i \(-0.666543\pi\)
−0.499664 + 0.866219i \(0.666543\pi\)
\(572\) 0 0
\(573\) −0.266706 −0.0111418
\(574\) 0 0
\(575\) −40.8573 −1.70387
\(576\) 0 0
\(577\) 32.4514 1.35097 0.675485 0.737374i \(-0.263935\pi\)
0.675485 + 0.737374i \(0.263935\pi\)
\(578\) 0 0
\(579\) 26.2034 1.08898
\(580\) 0 0
\(581\) −13.5111 −0.560536
\(582\) 0 0
\(583\) −27.6128 −1.14361
\(584\) 0 0
\(585\) 0.622216 0.0257255
\(586\) 0 0
\(587\) 17.3363 0.715546 0.357773 0.933809i \(-0.383536\pi\)
0.357773 + 0.933809i \(0.383536\pi\)
\(588\) 0 0
\(589\) 31.8163 1.31097
\(590\) 0 0
\(591\) −15.8479 −0.651896
\(592\) 0 0
\(593\) −18.8069 −0.772307 −0.386153 0.922435i \(-0.626196\pi\)
−0.386153 + 0.922435i \(0.626196\pi\)
\(594\) 0 0
\(595\) −5.51114 −0.225935
\(596\) 0 0
\(597\) 10.3684 0.424351
\(598\) 0 0
\(599\) −31.8163 −1.29998 −0.649989 0.759944i \(-0.725226\pi\)
−0.649989 + 0.759944i \(0.725226\pi\)
\(600\) 0 0
\(601\) −4.28544 −0.174807 −0.0874034 0.996173i \(-0.527857\pi\)
−0.0874034 + 0.996173i \(0.527857\pi\)
\(602\) 0 0
\(603\) −8.04149 −0.327475
\(604\) 0 0
\(605\) 14.1334 0.574603
\(606\) 0 0
\(607\) −17.2444 −0.699930 −0.349965 0.936763i \(-0.613807\pi\)
−0.349965 + 0.936763i \(0.613807\pi\)
\(608\) 0 0
\(609\) 8.85728 0.358915
\(610\) 0 0
\(611\) −1.80642 −0.0730801
\(612\) 0 0
\(613\) 23.9813 0.968594 0.484297 0.874904i \(-0.339075\pi\)
0.484297 + 0.874904i \(0.339075\pi\)
\(614\) 0 0
\(615\) −2.10171 −0.0847491
\(616\) 0 0
\(617\) 6.40006 0.257657 0.128828 0.991667i \(-0.458878\pi\)
0.128828 + 0.991667i \(0.458878\pi\)
\(618\) 0 0
\(619\) 8.04149 0.323215 0.161607 0.986855i \(-0.448332\pi\)
0.161607 + 0.986855i \(0.448332\pi\)
\(620\) 0 0
\(621\) −8.85728 −0.355430
\(622\) 0 0
\(623\) 8.26671 0.331199
\(624\) 0 0
\(625\) 19.3426 0.773704
\(626\) 0 0
\(627\) 25.7146 1.02694
\(628\) 0 0
\(629\) 1.51114 0.0602530
\(630\) 0 0
\(631\) −23.1842 −0.922949 −0.461474 0.887154i \(-0.652679\pi\)
−0.461474 + 0.887154i \(0.652679\pi\)
\(632\) 0 0
\(633\) −12.0000 −0.476957
\(634\) 0 0
\(635\) 12.9777 0.515005
\(636\) 0 0
\(637\) 12.6128 0.499739
\(638\) 0 0
\(639\) 7.05086 0.278928
\(640\) 0 0
\(641\) −3.51114 −0.138682 −0.0693408 0.997593i \(-0.522090\pi\)
−0.0693408 + 0.997593i \(0.522090\pi\)
\(642\) 0 0
\(643\) −49.7560 −1.96219 −0.981093 0.193535i \(-0.938005\pi\)
−0.981093 + 0.193535i \(0.938005\pi\)
\(644\) 0 0
\(645\) −4.73683 −0.186513
\(646\) 0 0
\(647\) 24.9403 0.980503 0.490251 0.871581i \(-0.336905\pi\)
0.490251 + 0.871581i \(0.336905\pi\)
\(648\) 0 0
\(649\) 64.1659 2.51873
\(650\) 0 0
\(651\) 31.8163 1.24698
\(652\) 0 0
\(653\) 11.7146 0.458426 0.229213 0.973376i \(-0.426385\pi\)
0.229213 + 0.973376i \(0.426385\pi\)
\(654\) 0 0
\(655\) 6.45139 0.252077
\(656\) 0 0
\(657\) 7.24443 0.282632
\(658\) 0 0
\(659\) 1.51114 0.0588656 0.0294328 0.999567i \(-0.490630\pi\)
0.0294328 + 0.999567i \(0.490630\pi\)
\(660\) 0 0
\(661\) −24.1847 −0.940675 −0.470338 0.882487i \(-0.655868\pi\)
−0.470338 + 0.882487i \(0.655868\pi\)
\(662\) 0 0
\(663\) −2.00000 −0.0776736
\(664\) 0 0
\(665\) −12.2034 −0.473228
\(666\) 0 0
\(667\) 17.7146 0.685910
\(668\) 0 0
\(669\) −4.69535 −0.181533
\(670\) 0 0
\(671\) 47.0420 1.81603
\(672\) 0 0
\(673\) −8.83854 −0.340701 −0.170350 0.985384i \(-0.554490\pi\)
−0.170350 + 0.985384i \(0.554490\pi\)
\(674\) 0 0
\(675\) 4.61285 0.177549
\(676\) 0 0
\(677\) 39.2444 1.50829 0.754143 0.656710i \(-0.228053\pi\)
0.754143 + 0.656710i \(0.228053\pi\)
\(678\) 0 0
\(679\) 3.34614 0.128413
\(680\) 0 0
\(681\) −5.80642 −0.222503
\(682\) 0 0
\(683\) 30.1561 1.15389 0.576946 0.816783i \(-0.304244\pi\)
0.576946 + 0.816783i \(0.304244\pi\)
\(684\) 0 0
\(685\) −12.3497 −0.471857
\(686\) 0 0
\(687\) −6.00000 −0.228914
\(688\) 0 0
\(689\) 4.75557 0.181173
\(690\) 0 0
\(691\) −21.5526 −0.819900 −0.409950 0.912108i \(-0.634454\pi\)
−0.409950 + 0.912108i \(0.634454\pi\)
\(692\) 0 0
\(693\) 25.7146 0.976815
\(694\) 0 0
\(695\) −4.20342 −0.159445
\(696\) 0 0
\(697\) 6.75557 0.255885
\(698\) 0 0
\(699\) −7.24443 −0.274010
\(700\) 0 0
\(701\) −0.755569 −0.0285374 −0.0142687 0.999898i \(-0.504542\pi\)
−0.0142687 + 0.999898i \(0.504542\pi\)
\(702\) 0 0
\(703\) 3.34614 0.126202
\(704\) 0 0
\(705\) 1.12399 0.0423317
\(706\) 0 0
\(707\) 69.5941 2.61736
\(708\) 0 0
\(709\) −1.22570 −0.0460320 −0.0230160 0.999735i \(-0.507327\pi\)
−0.0230160 + 0.999735i \(0.507327\pi\)
\(710\) 0 0
\(711\) 12.0000 0.450035
\(712\) 0 0
\(713\) 63.6325 2.38306
\(714\) 0 0
\(715\) −3.61285 −0.135113
\(716\) 0 0
\(717\) 10.6637 0.398243
\(718\) 0 0
\(719\) −11.3461 −0.423140 −0.211570 0.977363i \(-0.567858\pi\)
−0.211570 + 0.977363i \(0.567858\pi\)
\(720\) 0 0
\(721\) −80.1659 −2.98554
\(722\) 0 0
\(723\) 5.73329 0.213223
\(724\) 0 0
\(725\) −9.22570 −0.342634
\(726\) 0 0
\(727\) 49.0607 1.81956 0.909780 0.415090i \(-0.136250\pi\)
0.909780 + 0.415090i \(0.136250\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 15.2257 0.563143
\(732\) 0 0
\(733\) −53.4291 −1.97345 −0.986725 0.162402i \(-0.948076\pi\)
−0.986725 + 0.162402i \(0.948076\pi\)
\(734\) 0 0
\(735\) −7.84791 −0.289475
\(736\) 0 0
\(737\) 46.6923 1.71993
\(738\) 0 0
\(739\) 21.0192 0.773204 0.386602 0.922247i \(-0.373649\pi\)
0.386602 + 0.922247i \(0.373649\pi\)
\(740\) 0 0
\(741\) −4.42864 −0.162690
\(742\) 0 0
\(743\) 4.56199 0.167363 0.0836816 0.996493i \(-0.473332\pi\)
0.0836816 + 0.996493i \(0.473332\pi\)
\(744\) 0 0
\(745\) −1.32741 −0.0486324
\(746\) 0 0
\(747\) 3.05086 0.111625
\(748\) 0 0
\(749\) 67.9625 2.48330
\(750\) 0 0
\(751\) 21.8983 0.799080 0.399540 0.916716i \(-0.369170\pi\)
0.399540 + 0.916716i \(0.369170\pi\)
\(752\) 0 0
\(753\) 23.6128 0.860500
\(754\) 0 0
\(755\) −1.04101 −0.0378863
\(756\) 0 0
\(757\) −36.8385 −1.33892 −0.669460 0.742848i \(-0.733474\pi\)
−0.669460 + 0.742848i \(0.733474\pi\)
\(758\) 0 0
\(759\) 51.4291 1.86676
\(760\) 0 0
\(761\) 38.8069 1.40675 0.703375 0.710819i \(-0.251676\pi\)
0.703375 + 0.710819i \(0.251676\pi\)
\(762\) 0 0
\(763\) −69.5941 −2.51948
\(764\) 0 0
\(765\) 1.24443 0.0449925
\(766\) 0 0
\(767\) −11.0509 −0.399023
\(768\) 0 0
\(769\) 24.6923 0.890426 0.445213 0.895425i \(-0.353128\pi\)
0.445213 + 0.895425i \(0.353128\pi\)
\(770\) 0 0
\(771\) 11.2444 0.404958
\(772\) 0 0
\(773\) 7.58120 0.272677 0.136338 0.990662i \(-0.456467\pi\)
0.136338 + 0.990662i \(0.456467\pi\)
\(774\) 0 0
\(775\) −33.1397 −1.19041
\(776\) 0 0
\(777\) 3.34614 0.120042
\(778\) 0 0
\(779\) 14.9590 0.535961
\(780\) 0 0
\(781\) −40.9403 −1.46496
\(782\) 0 0
\(783\) −2.00000 −0.0714742
\(784\) 0 0
\(785\) 9.41038 0.335871
\(786\) 0 0
\(787\) 13.0192 0.464085 0.232042 0.972706i \(-0.425459\pi\)
0.232042 + 0.972706i \(0.425459\pi\)
\(788\) 0 0
\(789\) 4.38715 0.156187
\(790\) 0 0
\(791\) −64.0830 −2.27853
\(792\) 0 0
\(793\) −8.10171 −0.287700
\(794\) 0 0
\(795\) −2.95899 −0.104945
\(796\) 0 0
\(797\) 23.2444 0.823360 0.411680 0.911328i \(-0.364942\pi\)
0.411680 + 0.911328i \(0.364942\pi\)
\(798\) 0 0
\(799\) −3.61285 −0.127813
\(800\) 0 0
\(801\) −1.86665 −0.0659547
\(802\) 0 0
\(803\) −42.0642 −1.48441
\(804\) 0 0
\(805\) −24.4068 −0.860228
\(806\) 0 0
\(807\) −7.51114 −0.264405
\(808\) 0 0
\(809\) −36.9590 −1.29941 −0.649704 0.760187i \(-0.725107\pi\)
−0.649704 + 0.760187i \(0.725107\pi\)
\(810\) 0 0
\(811\) −8.54909 −0.300199 −0.150099 0.988671i \(-0.547959\pi\)
−0.150099 + 0.988671i \(0.547959\pi\)
\(812\) 0 0
\(813\) −6.06022 −0.212541
\(814\) 0 0
\(815\) 9.81532 0.343816
\(816\) 0 0
\(817\) 33.7146 1.17952
\(818\) 0 0
\(819\) −4.42864 −0.154749
\(820\) 0 0
\(821\) 2.07007 0.0722459 0.0361229 0.999347i \(-0.488499\pi\)
0.0361229 + 0.999347i \(0.488499\pi\)
\(822\) 0 0
\(823\) 40.5531 1.41359 0.706796 0.707417i \(-0.250140\pi\)
0.706796 + 0.707417i \(0.250140\pi\)
\(824\) 0 0
\(825\) −26.7841 −0.932504
\(826\) 0 0
\(827\) −36.4987 −1.26918 −0.634592 0.772847i \(-0.718832\pi\)
−0.634592 + 0.772847i \(0.718832\pi\)
\(828\) 0 0
\(829\) 40.8385 1.41838 0.709191 0.705017i \(-0.249061\pi\)
0.709191 + 0.705017i \(0.249061\pi\)
\(830\) 0 0
\(831\) −0.488863 −0.0169585
\(832\) 0 0
\(833\) 25.2257 0.874019
\(834\) 0 0
\(835\) −4.55310 −0.157567
\(836\) 0 0
\(837\) −7.18421 −0.248323
\(838\) 0 0
\(839\) 1.72345 0.0595001 0.0297500 0.999557i \(-0.490529\pi\)
0.0297500 + 0.999557i \(0.490529\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) −13.0923 −0.450924
\(844\) 0 0
\(845\) 0.622216 0.0214049
\(846\) 0 0
\(847\) −100.595 −3.45647
\(848\) 0 0
\(849\) 23.3461 0.801238
\(850\) 0 0
\(851\) 6.69228 0.229409
\(852\) 0 0
\(853\) 29.4924 1.00980 0.504900 0.863178i \(-0.331529\pi\)
0.504900 + 0.863178i \(0.331529\pi\)
\(854\) 0 0
\(855\) 2.75557 0.0942385
\(856\) 0 0
\(857\) 8.01874 0.273915 0.136957 0.990577i \(-0.456268\pi\)
0.136957 + 0.990577i \(0.456268\pi\)
\(858\) 0 0
\(859\) −55.4291 −1.89122 −0.945609 0.325307i \(-0.894532\pi\)
−0.945609 + 0.325307i \(0.894532\pi\)
\(860\) 0 0
\(861\) 14.9590 0.509801
\(862\) 0 0
\(863\) −25.6227 −0.872207 −0.436103 0.899897i \(-0.643642\pi\)
−0.436103 + 0.899897i \(0.643642\pi\)
\(864\) 0 0
\(865\) 4.67355 0.158905
\(866\) 0 0
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) −69.6771 −2.36363
\(870\) 0 0
\(871\) −8.04149 −0.272475
\(872\) 0 0
\(873\) −0.755569 −0.0255721
\(874\) 0 0
\(875\) 26.4889 0.895487
\(876\) 0 0
\(877\) 28.1847 0.951729 0.475865 0.879519i \(-0.342135\pi\)
0.475865 + 0.879519i \(0.342135\pi\)
\(878\) 0 0
\(879\) −13.0923 −0.441594
\(880\) 0 0
\(881\) −9.52987 −0.321070 −0.160535 0.987030i \(-0.551322\pi\)
−0.160535 + 0.987030i \(0.551322\pi\)
\(882\) 0 0
\(883\) −17.8350 −0.600196 −0.300098 0.953908i \(-0.597019\pi\)
−0.300098 + 0.953908i \(0.597019\pi\)
\(884\) 0 0
\(885\) 6.87601 0.231135
\(886\) 0 0
\(887\) −7.73329 −0.259659 −0.129829 0.991536i \(-0.541443\pi\)
−0.129829 + 0.991536i \(0.541443\pi\)
\(888\) 0 0
\(889\) −92.3694 −3.09797
\(890\) 0 0
\(891\) −5.80642 −0.194523
\(892\) 0 0
\(893\) −8.00000 −0.267710
\(894\) 0 0
\(895\) −9.18115 −0.306892
\(896\) 0 0
\(897\) −8.85728 −0.295736
\(898\) 0 0
\(899\) 14.3684 0.479214
\(900\) 0 0
\(901\) 9.51114 0.316862
\(902\) 0 0
\(903\) 33.7146 1.12195
\(904\) 0 0
\(905\) 2.55215 0.0848363
\(906\) 0 0
\(907\) 36.0830 1.19812 0.599058 0.800706i \(-0.295542\pi\)
0.599058 + 0.800706i \(0.295542\pi\)
\(908\) 0 0
\(909\) −15.7146 −0.521219
\(910\) 0 0
\(911\) 58.9215 1.95216 0.976078 0.217418i \(-0.0697636\pi\)
0.976078 + 0.217418i \(0.0697636\pi\)
\(912\) 0 0
\(913\) −17.7146 −0.586266
\(914\) 0 0
\(915\) 5.04101 0.166651
\(916\) 0 0
\(917\) −45.9180 −1.51635
\(918\) 0 0
\(919\) −12.5334 −0.413439 −0.206720 0.978400i \(-0.566279\pi\)
−0.206720 + 0.978400i \(0.566279\pi\)
\(920\) 0 0
\(921\) −32.0415 −1.05580
\(922\) 0 0
\(923\) 7.05086 0.232082
\(924\) 0 0
\(925\) −3.48532 −0.114597
\(926\) 0 0
\(927\) 18.1017 0.594538
\(928\) 0 0
\(929\) −45.0291 −1.47736 −0.738678 0.674059i \(-0.764549\pi\)
−0.738678 + 0.674059i \(0.764549\pi\)
\(930\) 0 0
\(931\) 55.8578 1.83066
\(932\) 0 0
\(933\) 24.0830 0.788441
\(934\) 0 0
\(935\) −7.22570 −0.236306
\(936\) 0 0
\(937\) 0.876015 0.0286182 0.0143091 0.999898i \(-0.495445\pi\)
0.0143091 + 0.999898i \(0.495445\pi\)
\(938\) 0 0
\(939\) −27.7146 −0.904430
\(940\) 0 0
\(941\) 0.888922 0.0289780 0.0144890 0.999895i \(-0.495388\pi\)
0.0144890 + 0.999895i \(0.495388\pi\)
\(942\) 0 0
\(943\) 29.9180 0.974263
\(944\) 0 0
\(945\) 2.75557 0.0896387
\(946\) 0 0
\(947\) −43.9911 −1.42952 −0.714759 0.699370i \(-0.753464\pi\)
−0.714759 + 0.699370i \(0.753464\pi\)
\(948\) 0 0
\(949\) 7.24443 0.235164
\(950\) 0 0
\(951\) 17.0923 0.554257
\(952\) 0 0
\(953\) −18.4701 −0.598306 −0.299153 0.954205i \(-0.596704\pi\)
−0.299153 + 0.954205i \(0.596704\pi\)
\(954\) 0 0
\(955\) 0.165949 0.00536998
\(956\) 0 0
\(957\) 11.6128 0.375390
\(958\) 0 0
\(959\) 87.8992 2.83841
\(960\) 0 0
\(961\) 20.6128 0.664931
\(962\) 0 0
\(963\) −15.3461 −0.494522
\(964\) 0 0
\(965\) −16.3042 −0.524850
\(966\) 0 0
\(967\) −50.2895 −1.61720 −0.808600 0.588359i \(-0.799774\pi\)
−0.808600 + 0.588359i \(0.799774\pi\)
\(968\) 0 0
\(969\) −8.85728 −0.284537
\(970\) 0 0
\(971\) 35.2257 1.13045 0.565223 0.824938i \(-0.308790\pi\)
0.565223 + 0.824938i \(0.308790\pi\)
\(972\) 0 0
\(973\) 29.9180 0.959126
\(974\) 0 0
\(975\) 4.61285 0.147729
\(976\) 0 0
\(977\) −58.8069 −1.88140 −0.940700 0.339240i \(-0.889830\pi\)
−0.940700 + 0.339240i \(0.889830\pi\)
\(978\) 0 0
\(979\) 10.8385 0.346401
\(980\) 0 0
\(981\) 15.7146 0.501727
\(982\) 0 0
\(983\) −47.2168 −1.50598 −0.752991 0.658031i \(-0.771390\pi\)
−0.752991 + 0.658031i \(0.771390\pi\)
\(984\) 0 0
\(985\) 9.86082 0.314192
\(986\) 0 0
\(987\) −8.00000 −0.254643
\(988\) 0 0
\(989\) 67.4291 2.14412
\(990\) 0 0
\(991\) 35.4924 1.12745 0.563727 0.825961i \(-0.309367\pi\)
0.563727 + 0.825961i \(0.309367\pi\)
\(992\) 0 0
\(993\) −7.18421 −0.227984
\(994\) 0 0
\(995\) −6.45139 −0.204523
\(996\) 0 0
\(997\) 49.4291 1.56544 0.782718 0.622377i \(-0.213833\pi\)
0.782718 + 0.622377i \(0.213833\pi\)
\(998\) 0 0
\(999\) −0.755569 −0.0239051
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.a.o.1.2 3
3.2 odd 2 3744.2.a.ba.1.2 3
4.3 odd 2 1248.2.a.p.1.2 yes 3
8.3 odd 2 2496.2.a.bk.1.2 3
8.5 even 2 2496.2.a.bl.1.2 3
12.11 even 2 3744.2.a.z.1.2 3
24.5 odd 2 7488.2.a.cx.1.2 3
24.11 even 2 7488.2.a.cy.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.2.a.o.1.2 3 1.1 even 1 trivial
1248.2.a.p.1.2 yes 3 4.3 odd 2
2496.2.a.bk.1.2 3 8.3 odd 2
2496.2.a.bl.1.2 3 8.5 even 2
3744.2.a.z.1.2 3 12.11 even 2
3744.2.a.ba.1.2 3 3.2 odd 2
7488.2.a.cx.1.2 3 24.5 odd 2
7488.2.a.cy.1.2 3 24.11 even 2