Properties

Label 1248.2.a.d.1.1
Level $1248$
Weight $2$
Character 1248.1
Self dual yes
Analytic conductor $9.965$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1248 = 2^{5} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1248.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(9.96533017226\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1248.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} +2.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} +2.00000 q^{7} +1.00000 q^{9} +4.00000 q^{11} +1.00000 q^{13} -6.00000 q^{17} +6.00000 q^{19} -2.00000 q^{21} -5.00000 q^{25} -1.00000 q^{27} -2.00000 q^{29} -6.00000 q^{31} -4.00000 q^{33} +10.0000 q^{37} -1.00000 q^{39} +8.00000 q^{41} +12.0000 q^{43} +12.0000 q^{47} -3.00000 q^{49} +6.00000 q^{51} -6.00000 q^{53} -6.00000 q^{57} +2.00000 q^{61} +2.00000 q^{63} +2.00000 q^{67} -8.00000 q^{71} +14.0000 q^{73} +5.00000 q^{75} +8.00000 q^{77} +4.00000 q^{79} +1.00000 q^{81} +8.00000 q^{83} +2.00000 q^{87} +4.00000 q^{89} +2.00000 q^{91} +6.00000 q^{93} +14.0000 q^{97} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 0 0
\(33\) −4.00000 −0.696311
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) 0 0
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.0000 1.75038 0.875190 0.483779i \(-0.160736\pi\)
0.875190 + 0.483779i \(0.160736\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −6.00000 −0.794719
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 2.00000 0.251976
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 0 0
\(75\) 5.00000 0.577350
\(76\) 0 0
\(77\) 8.00000 0.911685
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 8.00000 0.878114 0.439057 0.898459i \(-0.355313\pi\)
0.439057 + 0.898459i \(0.355313\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.00000 0.214423
\(88\) 0 0
\(89\) 4.00000 0.423999 0.212000 0.977270i \(-0.432002\pi\)
0.212000 + 0.977270i \(0.432002\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 6.00000 0.622171
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) 0 0
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) −18.0000 −1.79107 −0.895533 0.444994i \(-0.853206\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) −10.0000 −0.949158
\(112\) 0 0
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.00000 0.0924500
\(118\) 0 0
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 0 0
\(123\) −8.00000 −0.721336
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) −12.0000 −1.05654
\(130\) 0 0
\(131\) 20.0000 1.74741 0.873704 0.486458i \(-0.161711\pi\)
0.873704 + 0.486458i \(0.161711\pi\)
\(132\) 0 0
\(133\) 12.0000 1.04053
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.00000 0.683486 0.341743 0.939793i \(-0.388983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) −12.0000 −1.01058
\(142\) 0 0
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 3.00000 0.247436
\(148\) 0 0
\(149\) −12.0000 −0.983078 −0.491539 0.870855i \(-0.663566\pi\)
−0.491539 + 0.870855i \(0.663566\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 18.0000 1.43656 0.718278 0.695756i \(-0.244931\pi\)
0.718278 + 0.695756i \(0.244931\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 10.0000 0.783260 0.391630 0.920123i \(-0.371911\pi\)
0.391630 + 0.920123i \(0.371911\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 6.00000 0.458831
\(172\) 0 0
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) −10.0000 −0.755929
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) −2.00000 −0.147844
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −24.0000 −1.75505
\(188\) 0 0
\(189\) −2.00000 −0.145479
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −6.00000 −0.431889 −0.215945 0.976406i \(-0.569283\pi\)
−0.215945 + 0.976406i \(0.569283\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) −2.00000 −0.141069
\(202\) 0 0
\(203\) −4.00000 −0.280745
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 24.0000 1.66011
\(210\) 0 0
\(211\) −28.0000 −1.92760 −0.963800 0.266627i \(-0.914091\pi\)
−0.963800 + 0.266627i \(0.914091\pi\)
\(212\) 0 0
\(213\) 8.00000 0.548151
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −12.0000 −0.814613
\(218\) 0 0
\(219\) −14.0000 −0.946032
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) 26.0000 1.74109 0.870544 0.492090i \(-0.163767\pi\)
0.870544 + 0.492090i \(0.163767\pi\)
\(224\) 0 0
\(225\) −5.00000 −0.333333
\(226\) 0 0
\(227\) 4.00000 0.265489 0.132745 0.991150i \(-0.457621\pi\)
0.132745 + 0.991150i \(0.457621\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) −8.00000 −0.526361
\(232\) 0 0
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −4.00000 −0.259828
\(238\) 0 0
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.00000 0.381771
\(248\) 0 0
\(249\) −8.00000 −0.506979
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.0000 0.873296 0.436648 0.899632i \(-0.356166\pi\)
0.436648 + 0.899632i \(0.356166\pi\)
\(258\) 0 0
\(259\) 20.0000 1.24274
\(260\) 0 0
\(261\) −2.00000 −0.123797
\(262\) 0 0
\(263\) −32.0000 −1.97320 −0.986602 0.163144i \(-0.947836\pi\)
−0.986602 + 0.163144i \(0.947836\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −4.00000 −0.244796
\(268\) 0 0
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) 0 0
\(273\) −2.00000 −0.121046
\(274\) 0 0
\(275\) −20.0000 −1.20605
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 0 0
\(279\) −6.00000 −0.359211
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 16.0000 0.944450
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) −12.0000 −0.701047 −0.350524 0.936554i \(-0.613996\pi\)
−0.350524 + 0.936554i \(0.613996\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −4.00000 −0.232104
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 24.0000 1.38334
\(302\) 0 0
\(303\) 18.0000 1.03407
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 22.0000 1.25561 0.627803 0.778372i \(-0.283954\pi\)
0.627803 + 0.778372i \(0.283954\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) 4.00000 0.223258
\(322\) 0 0
\(323\) −36.0000 −2.00309
\(324\) 0 0
\(325\) −5.00000 −0.277350
\(326\) 0 0
\(327\) 2.00000 0.110600
\(328\) 0 0
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) −14.0000 −0.769510 −0.384755 0.923019i \(-0.625714\pi\)
−0.384755 + 0.923019i \(0.625714\pi\)
\(332\) 0 0
\(333\) 10.0000 0.547997
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 0 0
\(339\) 10.0000 0.543125
\(340\) 0 0
\(341\) −24.0000 −1.29967
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.00000 0.214731 0.107366 0.994220i \(-0.465758\pi\)
0.107366 + 0.994220i \(0.465758\pi\)
\(348\) 0 0
\(349\) 18.0000 0.963518 0.481759 0.876304i \(-0.339998\pi\)
0.481759 + 0.876304i \(0.339998\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) −8.00000 −0.425797 −0.212899 0.977074i \(-0.568290\pi\)
−0.212899 + 0.977074i \(0.568290\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 12.0000 0.635107
\(358\) 0 0
\(359\) 36.0000 1.90001 0.950004 0.312239i \(-0.101079\pi\)
0.950004 + 0.312239i \(0.101079\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) −5.00000 −0.262432
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) 8.00000 0.416463
\(370\) 0 0
\(371\) −12.0000 −0.623009
\(372\) 0 0
\(373\) −26.0000 −1.34623 −0.673114 0.739538i \(-0.735044\pi\)
−0.673114 + 0.739538i \(0.735044\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2.00000 −0.103005
\(378\) 0 0
\(379\) −18.0000 −0.924598 −0.462299 0.886724i \(-0.652975\pi\)
−0.462299 + 0.886724i \(0.652975\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) −36.0000 −1.83951 −0.919757 0.392488i \(-0.871614\pi\)
−0.919757 + 0.392488i \(0.871614\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 12.0000 0.609994
\(388\) 0 0
\(389\) 2.00000 0.101404 0.0507020 0.998714i \(-0.483854\pi\)
0.0507020 + 0.998714i \(0.483854\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −20.0000 −1.00887
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) −12.0000 −0.600751
\(400\) 0 0
\(401\) −12.0000 −0.599251 −0.299626 0.954057i \(-0.596862\pi\)
−0.299626 + 0.954057i \(0.596862\pi\)
\(402\) 0 0
\(403\) −6.00000 −0.298881
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 40.0000 1.98273
\(408\) 0 0
\(409\) −2.00000 −0.0988936 −0.0494468 0.998777i \(-0.515746\pi\)
−0.0494468 + 0.998777i \(0.515746\pi\)
\(410\) 0 0
\(411\) −8.00000 −0.394611
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 0 0
\(423\) 12.0000 0.583460
\(424\) 0 0
\(425\) 30.0000 1.45521
\(426\) 0 0
\(427\) 4.00000 0.193574
\(428\) 0 0
\(429\) −4.00000 −0.193122
\(430\) 0 0
\(431\) 28.0000 1.34871 0.674356 0.738406i \(-0.264421\pi\)
0.674356 + 0.738406i \(0.264421\pi\)
\(432\) 0 0
\(433\) −34.0000 −1.63394 −0.816968 0.576683i \(-0.804347\pi\)
−0.816968 + 0.576683i \(0.804347\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −4.00000 −0.190910 −0.0954548 0.995434i \(-0.530431\pi\)
−0.0954548 + 0.995434i \(0.530431\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 12.0000 0.567581
\(448\) 0 0
\(449\) −20.0000 −0.943858 −0.471929 0.881636i \(-0.656442\pi\)
−0.471929 + 0.881636i \(0.656442\pi\)
\(450\) 0 0
\(451\) 32.0000 1.50682
\(452\) 0 0
\(453\) 10.0000 0.469841
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −34.0000 −1.59045 −0.795226 0.606313i \(-0.792648\pi\)
−0.795226 + 0.606313i \(0.792648\pi\)
\(458\) 0 0
\(459\) 6.00000 0.280056
\(460\) 0 0
\(461\) 32.0000 1.49039 0.745194 0.666847i \(-0.232357\pi\)
0.745194 + 0.666847i \(0.232357\pi\)
\(462\) 0 0
\(463\) 34.0000 1.58011 0.790057 0.613033i \(-0.210051\pi\)
0.790057 + 0.613033i \(0.210051\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 28.0000 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) −18.0000 −0.829396
\(472\) 0 0
\(473\) 48.0000 2.20704
\(474\) 0 0
\(475\) −30.0000 −1.37649
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) 40.0000 1.82765 0.913823 0.406112i \(-0.133116\pi\)
0.913823 + 0.406112i \(0.133116\pi\)
\(480\) 0 0
\(481\) 10.0000 0.455961
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −6.00000 −0.271886 −0.135943 0.990717i \(-0.543406\pi\)
−0.135943 + 0.990717i \(0.543406\pi\)
\(488\) 0 0
\(489\) −10.0000 −0.452216
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) 12.0000 0.540453
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −16.0000 −0.717698
\(498\) 0 0
\(499\) −22.0000 −0.984855 −0.492428 0.870353i \(-0.663890\pi\)
−0.492428 + 0.870353i \(0.663890\pi\)
\(500\) 0 0
\(501\) 12.0000 0.536120
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.00000 −0.0444116
\(508\) 0 0
\(509\) 24.0000 1.06378 0.531891 0.846813i \(-0.321482\pi\)
0.531891 + 0.846813i \(0.321482\pi\)
\(510\) 0 0
\(511\) 28.0000 1.23865
\(512\) 0 0
\(513\) −6.00000 −0.264906
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 48.0000 2.11104
\(518\) 0 0
\(519\) 18.0000 0.790112
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) −40.0000 −1.74908 −0.874539 0.484955i \(-0.838836\pi\)
−0.874539 + 0.484955i \(0.838836\pi\)
\(524\) 0 0
\(525\) 10.0000 0.436436
\(526\) 0 0
\(527\) 36.0000 1.56818
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8.00000 0.346518
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −12.0000 −0.517838
\(538\) 0 0
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) −2.00000 −0.0859867 −0.0429934 0.999075i \(-0.513689\pi\)
−0.0429934 + 0.999075i \(0.513689\pi\)
\(542\) 0 0
\(543\) −10.0000 −0.429141
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) 0 0
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) 8.00000 0.340195
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −36.0000 −1.52537 −0.762684 0.646771i \(-0.776119\pi\)
−0.762684 + 0.646771i \(0.776119\pi\)
\(558\) 0 0
\(559\) 12.0000 0.507546
\(560\) 0 0
\(561\) 24.0000 1.01328
\(562\) 0 0
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2.00000 0.0839921
\(568\) 0 0
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) 0 0
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −22.0000 −0.915872 −0.457936 0.888985i \(-0.651411\pi\)
−0.457936 + 0.888985i \(0.651411\pi\)
\(578\) 0 0
\(579\) 6.00000 0.249351
\(580\) 0 0
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) −24.0000 −0.993978
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −36.0000 −1.48335
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 20.0000 0.821302 0.410651 0.911793i \(-0.365302\pi\)
0.410651 + 0.911793i \(0.365302\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 16.0000 0.654836
\(598\) 0 0
\(599\) 32.0000 1.30748 0.653742 0.756717i \(-0.273198\pi\)
0.653742 + 0.756717i \(0.273198\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 0 0
\(603\) 2.00000 0.0814463
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 40.0000 1.62355 0.811775 0.583970i \(-0.198502\pi\)
0.811775 + 0.583970i \(0.198502\pi\)
\(608\) 0 0
\(609\) 4.00000 0.162088
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) 0 0
\(613\) −46.0000 −1.85792 −0.928961 0.370177i \(-0.879297\pi\)
−0.928961 + 0.370177i \(0.879297\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 24.0000 0.966204 0.483102 0.875564i \(-0.339510\pi\)
0.483102 + 0.875564i \(0.339510\pi\)
\(618\) 0 0
\(619\) 30.0000 1.20580 0.602901 0.797816i \(-0.294011\pi\)
0.602901 + 0.797816i \(0.294011\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.00000 0.320513
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) −24.0000 −0.958468
\(628\) 0 0
\(629\) −60.0000 −2.39236
\(630\) 0 0
\(631\) 6.00000 0.238856 0.119428 0.992843i \(-0.461894\pi\)
0.119428 + 0.992843i \(0.461894\pi\)
\(632\) 0 0
\(633\) 28.0000 1.11290
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −3.00000 −0.118864
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.0000 −0.629025 −0.314512 0.949253i \(-0.601841\pi\)
−0.314512 + 0.949253i \(0.601841\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 12.0000 0.470317
\(652\) 0 0
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 14.0000 0.546192
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) −6.00000 −0.233373 −0.116686 0.993169i \(-0.537227\pi\)
−0.116686 + 0.993169i \(0.537227\pi\)
\(662\) 0 0
\(663\) 6.00000 0.233021
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −26.0000 −1.00522
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) 0 0
\(675\) 5.00000 0.192450
\(676\) 0 0
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 0 0
\(679\) 28.0000 1.07454
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) 0 0
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 10.0000 0.381524
\(688\) 0 0
\(689\) −6.00000 −0.228582
\(690\) 0 0
\(691\) −30.0000 −1.14125 −0.570627 0.821209i \(-0.693300\pi\)
−0.570627 + 0.821209i \(0.693300\pi\)
\(692\) 0 0
\(693\) 8.00000 0.303895
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −48.0000 −1.81813
\(698\) 0 0
\(699\) 18.0000 0.680823
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) 60.0000 2.26294
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −36.0000 −1.35392
\(708\) 0 0
\(709\) 22.0000 0.826227 0.413114 0.910679i \(-0.364441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) 0 0
\(711\) 4.00000 0.150012
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 16.0000 0.597531
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) 10.0000 0.371904
\(724\) 0 0
\(725\) 10.0000 0.371391
\(726\) 0 0
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −72.0000 −2.66302
\(732\) 0 0
\(733\) −42.0000 −1.55131 −0.775653 0.631160i \(-0.782579\pi\)
−0.775653 + 0.631160i \(0.782579\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) −10.0000 −0.367856 −0.183928 0.982940i \(-0.558881\pi\)
−0.183928 + 0.982940i \(0.558881\pi\)
\(740\) 0 0
\(741\) −6.00000 −0.220416
\(742\) 0 0
\(743\) 40.0000 1.46746 0.733729 0.679442i \(-0.237778\pi\)
0.733729 + 0.679442i \(0.237778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 8.00000 0.292705
\(748\) 0 0
\(749\) −8.00000 −0.292314
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) 12.0000 0.437304
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 10.0000 0.363456 0.181728 0.983349i \(-0.441831\pi\)
0.181728 + 0.983349i \(0.441831\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 24.0000 0.869999 0.435000 0.900431i \(-0.356748\pi\)
0.435000 + 0.900431i \(0.356748\pi\)
\(762\) 0 0
\(763\) −4.00000 −0.144810
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) −14.0000 −0.504198
\(772\) 0 0
\(773\) 12.0000 0.431610 0.215805 0.976436i \(-0.430762\pi\)
0.215805 + 0.976436i \(0.430762\pi\)
\(774\) 0 0
\(775\) 30.0000 1.07763
\(776\) 0 0
\(777\) −20.0000 −0.717496
\(778\) 0 0
\(779\) 48.0000 1.71978
\(780\) 0 0
\(781\) −32.0000 −1.14505
\(782\) 0 0
\(783\) 2.00000 0.0714742
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 22.0000 0.784215 0.392108 0.919919i \(-0.371746\pi\)
0.392108 + 0.919919i \(0.371746\pi\)
\(788\) 0 0
\(789\) 32.0000 1.13923
\(790\) 0 0
\(791\) −20.0000 −0.711118
\(792\) 0 0
\(793\) 2.00000 0.0710221
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) −72.0000 −2.54718
\(800\) 0 0
\(801\) 4.00000 0.141333
\(802\) 0 0
\(803\) 56.0000 1.97620
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 10.0000 0.352017
\(808\) 0 0
\(809\) 14.0000 0.492214 0.246107 0.969243i \(-0.420849\pi\)
0.246107 + 0.969243i \(0.420849\pi\)
\(810\) 0 0
\(811\) −34.0000 −1.19390 −0.596951 0.802278i \(-0.703621\pi\)
−0.596951 + 0.802278i \(0.703621\pi\)
\(812\) 0 0
\(813\) −2.00000 −0.0701431
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 72.0000 2.51896
\(818\) 0 0
\(819\) 2.00000 0.0698857
\(820\) 0 0
\(821\) 20.0000 0.698005 0.349002 0.937122i \(-0.386521\pi\)
0.349002 + 0.937122i \(0.386521\pi\)
\(822\) 0 0
\(823\) −12.0000 −0.418294 −0.209147 0.977884i \(-0.567069\pi\)
−0.209147 + 0.977884i \(0.567069\pi\)
\(824\) 0 0
\(825\) 20.0000 0.696311
\(826\) 0 0
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) −38.0000 −1.31979 −0.659897 0.751356i \(-0.729400\pi\)
−0.659897 + 0.751356i \(0.729400\pi\)
\(830\) 0 0
\(831\) −22.0000 −0.763172
\(832\) 0 0
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 6.00000 0.207390
\(838\) 0 0
\(839\) −56.0000 −1.93333 −0.966667 0.256036i \(-0.917584\pi\)
−0.966667 + 0.256036i \(0.917584\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 10.0000 0.343604
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 18.0000 0.616308 0.308154 0.951336i \(-0.400289\pi\)
0.308154 + 0.951336i \(0.400289\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) 44.0000 1.50126 0.750630 0.660722i \(-0.229750\pi\)
0.750630 + 0.660722i \(0.229750\pi\)
\(860\) 0 0
\(861\) −16.0000 −0.545279
\(862\) 0 0
\(863\) −12.0000 −0.408485 −0.204242 0.978920i \(-0.565473\pi\)
−0.204242 + 0.978920i \(0.565473\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −19.0000 −0.645274
\(868\) 0 0
\(869\) 16.0000 0.542763
\(870\) 0 0
\(871\) 2.00000 0.0677674
\(872\) 0 0
\(873\) 14.0000 0.473828
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −14.0000 −0.472746 −0.236373 0.971662i \(-0.575959\pi\)
−0.236373 + 0.971662i \(0.575959\pi\)
\(878\) 0 0
\(879\) 12.0000 0.404750
\(880\) 0 0
\(881\) −2.00000 −0.0673817 −0.0336909 0.999432i \(-0.510726\pi\)
−0.0336909 + 0.999432i \(0.510726\pi\)
\(882\) 0 0
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 40.0000 1.34307 0.671534 0.740973i \(-0.265636\pi\)
0.671534 + 0.740973i \(0.265636\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.536623
\(890\) 0 0
\(891\) 4.00000 0.134005
\(892\) 0 0
\(893\) 72.0000 2.40939
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 12.0000 0.400222
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) −24.0000 −0.798670
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 48.0000 1.59381 0.796907 0.604102i \(-0.206468\pi\)
0.796907 + 0.604102i \(0.206468\pi\)
\(908\) 0 0
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) −32.0000 −1.06021 −0.530104 0.847933i \(-0.677847\pi\)
−0.530104 + 0.847933i \(0.677847\pi\)
\(912\) 0 0
\(913\) 32.0000 1.05905
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 40.0000 1.32092
\(918\) 0 0
\(919\) −36.0000 −1.18753 −0.593765 0.804638i \(-0.702359\pi\)
−0.593765 + 0.804638i \(0.702359\pi\)
\(920\) 0 0
\(921\) −22.0000 −0.724925
\(922\) 0 0
\(923\) −8.00000 −0.263323
\(924\) 0 0
\(925\) −50.0000 −1.64399
\(926\) 0 0
\(927\) 4.00000 0.131377
\(928\) 0 0
\(929\) −32.0000 −1.04989 −0.524943 0.851137i \(-0.675913\pi\)
−0.524943 + 0.851137i \(0.675913\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.589926
\(932\) 0 0
\(933\) 16.0000 0.523816
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 6.00000 0.195803
\(940\) 0 0
\(941\) 28.0000 0.912774 0.456387 0.889781i \(-0.349143\pi\)
0.456387 + 0.889781i \(0.349143\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −32.0000 −1.03986 −0.519930 0.854209i \(-0.674042\pi\)
−0.519930 + 0.854209i \(0.674042\pi\)
\(948\) 0 0
\(949\) 14.0000 0.454459
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −34.0000 −1.10137 −0.550684 0.834714i \(-0.685633\pi\)
−0.550684 + 0.834714i \(0.685633\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 8.00000 0.258603
\(958\) 0 0
\(959\) 16.0000 0.516667
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) −4.00000 −0.128898
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2.00000 0.0643157 0.0321578 0.999483i \(-0.489762\pi\)
0.0321578 + 0.999483i \(0.489762\pi\)
\(968\) 0 0
\(969\) 36.0000 1.15649
\(970\) 0 0
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 5.00000 0.160128
\(976\) 0 0
\(977\) −12.0000 −0.383914 −0.191957 0.981403i \(-0.561483\pi\)
−0.191957 + 0.981403i \(0.561483\pi\)
\(978\) 0 0
\(979\) 16.0000 0.511362
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) 0 0
\(983\) 32.0000 1.02064 0.510321 0.859984i \(-0.329527\pi\)
0.510321 + 0.859984i \(0.329527\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −24.0000 −0.763928
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) 14.0000 0.444277
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −50.0000 −1.58352 −0.791758 0.610835i \(-0.790834\pi\)
−0.791758 + 0.610835i \(0.790834\pi\)
\(998\) 0 0
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1248.2.a.d.1.1 1
3.2 odd 2 3744.2.a.i.1.1 1
4.3 odd 2 1248.2.a.h.1.1 yes 1
8.3 odd 2 2496.2.a.f.1.1 1
8.5 even 2 2496.2.a.y.1.1 1
12.11 even 2 3744.2.a.h.1.1 1
24.5 odd 2 7488.2.a.bg.1.1 1
24.11 even 2 7488.2.a.z.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1248.2.a.d.1.1 1 1.1 even 1 trivial
1248.2.a.h.1.1 yes 1 4.3 odd 2
2496.2.a.f.1.1 1 8.3 odd 2
2496.2.a.y.1.1 1 8.5 even 2
3744.2.a.h.1.1 1 12.11 even 2
3744.2.a.i.1.1 1 3.2 odd 2
7488.2.a.z.1.1 1 24.11 even 2
7488.2.a.bg.1.1 1 24.5 odd 2