Defining parameters
Level: | \( N \) | \(=\) | \( 1248 = 2^{5} \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1248.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 16 \) | ||
Sturm bound: | \(448\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1248))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 240 | 24 | 216 |
Cusp forms | 209 | 24 | 185 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(13\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(3\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(4\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(3\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(2\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(3\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(3\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(4\) |
Plus space | \(+\) | \(10\) | ||
Minus space | \(-\) | \(14\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1248))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1248))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1248)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(416))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(624))\)\(^{\oplus 2}\)