Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [124,2,Mod(99,124)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(124, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("124.99");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 124 = 2^{2} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 124.g (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.990144985064\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
99.1 | −1.40363 | − | 0.172732i | −1.45188 | − | 2.51473i | 1.94033 | + | 0.484902i | 1.26737 | − | 2.19514i | 1.60352 | + | 3.78053i | −2.57513 | + | 1.48675i | −2.63973 | − | 1.01578i | −2.71592 | + | 4.70411i | −2.15808 | + | 2.86225i |
99.2 | −1.40363 | + | 0.172732i | 1.45188 | + | 2.51473i | 1.94033 | − | 0.484902i | 1.26737 | − | 2.19514i | −2.47227 | − | 3.27895i | 2.57513 | − | 1.48675i | −2.63973 | + | 1.01578i | −2.71592 | + | 4.70411i | −1.39974 | + | 3.30008i |
99.3 | −1.32920 | − | 0.482923i | 0.532147 | + | 0.921706i | 1.53357 | + | 1.28381i | −1.27521 | + | 2.20873i | −0.262219 | − | 1.48212i | −3.66546 | + | 2.11625i | −1.41845 | − | 2.44704i | 0.933638 | − | 1.61711i | 2.76166 | − | 2.32003i |
99.4 | −1.32920 | + | 0.482923i | −0.532147 | − | 0.921706i | 1.53357 | − | 1.28381i | −1.27521 | + | 2.20873i | 1.15245 | + | 0.968150i | 3.66546 | − | 2.11625i | −1.41845 | + | 2.44704i | 0.933638 | − | 1.61711i | 0.628370 | − | 3.55169i |
99.5 | −0.724491 | − | 1.21454i | 0.333793 | + | 0.578147i | −0.950226 | + | 1.75985i | 1.39289 | − | 2.41255i | 0.460354 | − | 0.824268i | −0.0661639 | + | 0.0381998i | 2.82584 | − | 0.120905i | 1.27716 | − | 2.21211i | −3.93928 | + | 0.0561512i |
99.6 | −0.724491 | + | 1.21454i | −0.333793 | − | 0.578147i | −0.950226 | − | 1.75985i | 1.39289 | − | 2.41255i | 0.944014 | + | 0.0134561i | 0.0661639 | − | 0.0381998i | 2.82584 | + | 0.120905i | 1.27716 | − | 2.21211i | 1.92101 | + | 3.43960i |
99.7 | −0.184509 | − | 1.40213i | 1.25766 | + | 2.17833i | −1.93191 | + | 0.517409i | −1.98995 | + | 3.44669i | 2.82224 | − | 2.16532i | 2.69419 | − | 1.55549i | 1.08193 | + | 2.61332i | −1.66341 | + | 2.88111i | 5.19986 | + | 2.15421i |
99.8 | −0.184509 | + | 1.40213i | −1.25766 | − | 2.17833i | −1.93191 | − | 0.517409i | −1.98995 | + | 3.44669i | 3.28634 | − | 1.36148i | −2.69419 | + | 1.55549i | 1.08193 | − | 2.61332i | −1.66341 | + | 2.88111i | −4.46553 | − | 3.42610i |
99.9 | 0.409944 | − | 1.35349i | −0.815109 | − | 1.41181i | −1.66389 | − | 1.10971i | 0.174129 | − | 0.301600i | −2.24503 | + | 0.524482i | −0.151691 | + | 0.0875788i | −2.18409 | + | 1.79715i | 0.171194 | − | 0.296516i | −0.336830 | − | 0.359321i |
99.10 | 0.409944 | + | 1.35349i | 0.815109 | + | 1.41181i | −1.66389 | + | 1.10971i | 0.174129 | − | 0.301600i | −1.57673 | + | 1.68201i | 0.151691 | − | 0.0875788i | −2.18409 | − | 1.79715i | 0.171194 | − | 0.296516i | 0.479596 | + | 0.112043i |
99.11 | 0.965261 | − | 1.03357i | 1.41049 | + | 2.44304i | −0.136541 | − | 1.99533i | 0.855573 | − | 1.48190i | 3.88655 | + | 0.900330i | −4.34999 | + | 2.51147i | −2.19412 | − | 1.78489i | −2.47896 | + | 4.29369i | −0.705794 | − | 2.31471i |
99.12 | 0.965261 | + | 1.03357i | −1.41049 | − | 2.44304i | −0.136541 | + | 1.99533i | 0.855573 | − | 1.48190i | 1.16357 | − | 3.81601i | 4.34999 | − | 2.51147i | −2.19412 | + | 1.78489i | −2.47896 | + | 4.29369i | 2.35750 | − | 0.546121i |
99.13 | 1.26662 | − | 0.629017i | 0.108864 | + | 0.188557i | 1.20867 | − | 1.59346i | −0.924797 | + | 1.60180i | 0.256495 | + | 0.170354i | 0.987210 | − | 0.569966i | 0.528624 | − | 2.77859i | 1.47630 | − | 2.55702i | −0.163813 | + | 2.61059i |
99.14 | 1.26662 | + | 0.629017i | −0.108864 | − | 0.188557i | 1.20867 | + | 1.59346i | −0.924797 | + | 1.60180i | −0.0192835 | − | 0.307308i | −0.987210 | + | 0.569966i | 0.528624 | + | 2.77859i | 1.47630 | − | 2.55702i | −2.17893 | + | 1.44716i |
119.1 | −1.40363 | − | 0.172732i | 1.45188 | − | 2.51473i | 1.94033 | + | 0.484902i | 1.26737 | + | 2.19514i | −2.47227 | + | 3.27895i | 2.57513 | + | 1.48675i | −2.63973 | − | 1.01578i | −2.71592 | − | 4.70411i | −1.39974 | − | 3.30008i |
119.2 | −1.40363 | + | 0.172732i | −1.45188 | + | 2.51473i | 1.94033 | − | 0.484902i | 1.26737 | + | 2.19514i | 1.60352 | − | 3.78053i | −2.57513 | − | 1.48675i | −2.63973 | + | 1.01578i | −2.71592 | − | 4.70411i | −2.15808 | − | 2.86225i |
119.3 | −1.32920 | − | 0.482923i | −0.532147 | + | 0.921706i | 1.53357 | + | 1.28381i | −1.27521 | − | 2.20873i | 1.15245 | − | 0.968150i | 3.66546 | + | 2.11625i | −1.41845 | − | 2.44704i | 0.933638 | + | 1.61711i | 0.628370 | + | 3.55169i |
119.4 | −1.32920 | + | 0.482923i | 0.532147 | − | 0.921706i | 1.53357 | − | 1.28381i | −1.27521 | − | 2.20873i | −0.262219 | + | 1.48212i | −3.66546 | − | 2.11625i | −1.41845 | + | 2.44704i | 0.933638 | + | 1.61711i | 2.76166 | + | 2.32003i |
119.5 | −0.724491 | − | 1.21454i | −0.333793 | + | 0.578147i | −0.950226 | + | 1.75985i | 1.39289 | + | 2.41255i | 0.944014 | − | 0.0134561i | 0.0661639 | + | 0.0381998i | 2.82584 | − | 0.120905i | 1.27716 | + | 2.21211i | 1.92101 | − | 3.43960i |
119.6 | −0.724491 | + | 1.21454i | 0.333793 | − | 0.578147i | −0.950226 | − | 1.75985i | 1.39289 | + | 2.41255i | 0.460354 | + | 0.824268i | −0.0661639 | − | 0.0381998i | 2.82584 | + | 0.120905i | 1.27716 | + | 2.21211i | −3.93928 | − | 0.0561512i |
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
31.e | odd | 6 | 1 | inner |
124.g | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 124.2.g.a | ✓ | 28 |
4.b | odd | 2 | 1 | inner | 124.2.g.a | ✓ | 28 |
31.e | odd | 6 | 1 | inner | 124.2.g.a | ✓ | 28 |
124.g | even | 6 | 1 | inner | 124.2.g.a | ✓ | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
124.2.g.a | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
124.2.g.a | ✓ | 28 | 4.b | odd | 2 | 1 | inner |
124.2.g.a | ✓ | 28 | 31.e | odd | 6 | 1 | inner |
124.2.g.a | ✓ | 28 | 124.g | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(124, [\chi])\).