Properties

Label 124.2.g.a
Level $124$
Weight $2$
Character orbit 124.g
Analytic conductor $0.990$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [124,2,Mod(99,124)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(124, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("124.99");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 124 = 2^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 124.g (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.990144985064\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 28 q - 4 q^{2} - 2 q^{5} + 18 q^{6} - 16 q^{8} - 12 q^{9} - 4 q^{10} + 6 q^{12} - 18 q^{13} + 6 q^{14} + 8 q^{16} - 6 q^{17} + 6 q^{18} + 6 q^{20} - 6 q^{21} - 12 q^{22} + 6 q^{24} - 16 q^{25} - 24 q^{26}+ \cdots - 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1 −1.40363 0.172732i −1.45188 2.51473i 1.94033 + 0.484902i 1.26737 2.19514i 1.60352 + 3.78053i −2.57513 + 1.48675i −2.63973 1.01578i −2.71592 + 4.70411i −2.15808 + 2.86225i
99.2 −1.40363 + 0.172732i 1.45188 + 2.51473i 1.94033 0.484902i 1.26737 2.19514i −2.47227 3.27895i 2.57513 1.48675i −2.63973 + 1.01578i −2.71592 + 4.70411i −1.39974 + 3.30008i
99.3 −1.32920 0.482923i 0.532147 + 0.921706i 1.53357 + 1.28381i −1.27521 + 2.20873i −0.262219 1.48212i −3.66546 + 2.11625i −1.41845 2.44704i 0.933638 1.61711i 2.76166 2.32003i
99.4 −1.32920 + 0.482923i −0.532147 0.921706i 1.53357 1.28381i −1.27521 + 2.20873i 1.15245 + 0.968150i 3.66546 2.11625i −1.41845 + 2.44704i 0.933638 1.61711i 0.628370 3.55169i
99.5 −0.724491 1.21454i 0.333793 + 0.578147i −0.950226 + 1.75985i 1.39289 2.41255i 0.460354 0.824268i −0.0661639 + 0.0381998i 2.82584 0.120905i 1.27716 2.21211i −3.93928 + 0.0561512i
99.6 −0.724491 + 1.21454i −0.333793 0.578147i −0.950226 1.75985i 1.39289 2.41255i 0.944014 + 0.0134561i 0.0661639 0.0381998i 2.82584 + 0.120905i 1.27716 2.21211i 1.92101 + 3.43960i
99.7 −0.184509 1.40213i 1.25766 + 2.17833i −1.93191 + 0.517409i −1.98995 + 3.44669i 2.82224 2.16532i 2.69419 1.55549i 1.08193 + 2.61332i −1.66341 + 2.88111i 5.19986 + 2.15421i
99.8 −0.184509 + 1.40213i −1.25766 2.17833i −1.93191 0.517409i −1.98995 + 3.44669i 3.28634 1.36148i −2.69419 + 1.55549i 1.08193 2.61332i −1.66341 + 2.88111i −4.46553 3.42610i
99.9 0.409944 1.35349i −0.815109 1.41181i −1.66389 1.10971i 0.174129 0.301600i −2.24503 + 0.524482i −0.151691 + 0.0875788i −2.18409 + 1.79715i 0.171194 0.296516i −0.336830 0.359321i
99.10 0.409944 + 1.35349i 0.815109 + 1.41181i −1.66389 + 1.10971i 0.174129 0.301600i −1.57673 + 1.68201i 0.151691 0.0875788i −2.18409 1.79715i 0.171194 0.296516i 0.479596 + 0.112043i
99.11 0.965261 1.03357i 1.41049 + 2.44304i −0.136541 1.99533i 0.855573 1.48190i 3.88655 + 0.900330i −4.34999 + 2.51147i −2.19412 1.78489i −2.47896 + 4.29369i −0.705794 2.31471i
99.12 0.965261 + 1.03357i −1.41049 2.44304i −0.136541 + 1.99533i 0.855573 1.48190i 1.16357 3.81601i 4.34999 2.51147i −2.19412 + 1.78489i −2.47896 + 4.29369i 2.35750 0.546121i
99.13 1.26662 0.629017i 0.108864 + 0.188557i 1.20867 1.59346i −0.924797 + 1.60180i 0.256495 + 0.170354i 0.987210 0.569966i 0.528624 2.77859i 1.47630 2.55702i −0.163813 + 2.61059i
99.14 1.26662 + 0.629017i −0.108864 0.188557i 1.20867 + 1.59346i −0.924797 + 1.60180i −0.0192835 0.307308i −0.987210 + 0.569966i 0.528624 + 2.77859i 1.47630 2.55702i −2.17893 + 1.44716i
119.1 −1.40363 0.172732i 1.45188 2.51473i 1.94033 + 0.484902i 1.26737 + 2.19514i −2.47227 + 3.27895i 2.57513 + 1.48675i −2.63973 1.01578i −2.71592 4.70411i −1.39974 3.30008i
119.2 −1.40363 + 0.172732i −1.45188 + 2.51473i 1.94033 0.484902i 1.26737 + 2.19514i 1.60352 3.78053i −2.57513 1.48675i −2.63973 + 1.01578i −2.71592 4.70411i −2.15808 2.86225i
119.3 −1.32920 0.482923i −0.532147 + 0.921706i 1.53357 + 1.28381i −1.27521 2.20873i 1.15245 0.968150i 3.66546 + 2.11625i −1.41845 2.44704i 0.933638 + 1.61711i 0.628370 + 3.55169i
119.4 −1.32920 + 0.482923i 0.532147 0.921706i 1.53357 1.28381i −1.27521 2.20873i −0.262219 + 1.48212i −3.66546 2.11625i −1.41845 + 2.44704i 0.933638 + 1.61711i 2.76166 + 2.32003i
119.5 −0.724491 1.21454i −0.333793 + 0.578147i −0.950226 + 1.75985i 1.39289 + 2.41255i 0.944014 0.0134561i 0.0661639 + 0.0381998i 2.82584 0.120905i 1.27716 + 2.21211i 1.92101 3.43960i
119.6 −0.724491 + 1.21454i 0.333793 0.578147i −0.950226 1.75985i 1.39289 + 2.41255i 0.460354 + 0.824268i −0.0661639 0.0381998i 2.82584 + 0.120905i 1.27716 + 2.21211i −3.93928 0.0561512i
See all 28 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 99.14
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
31.e odd 6 1 inner
124.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 124.2.g.a 28
4.b odd 2 1 inner 124.2.g.a 28
31.e odd 6 1 inner 124.2.g.a 28
124.g even 6 1 inner 124.2.g.a 28
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
124.2.g.a 28 1.a even 1 1 trivial
124.2.g.a 28 4.b odd 2 1 inner
124.2.g.a 28 31.e odd 6 1 inner
124.2.g.a 28 124.g even 6 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(124, [\chi])\).