Properties

Label 124.1.i.a
Level 124
Weight 1
Character orbit 124.i
Analytic conductor 0.062
Analytic rank 0
Dimension 4
Projective image \(A_{4}\)
CM/RM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 124 = 2^{2} \cdot 31 \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 124.i (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.0618840615665\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image \(A_{4}\)
Projective field Galois closure of 4.0.15376.1
Artin image $\SL(2,3):C_2$
Artin field Galois closure of \(\mathbb{Q}[x]/(x^{16} - \cdots)\)

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q -\zeta_{12}^{3} q^{2} -\zeta_{12} q^{3} - q^{4} -\zeta_{12}^{2} q^{5} + \zeta_{12}^{4} q^{6} + \zeta_{12} q^{7} + \zeta_{12}^{3} q^{8} +O(q^{10})\) \( q -\zeta_{12}^{3} q^{2} -\zeta_{12} q^{3} - q^{4} -\zeta_{12}^{2} q^{5} + \zeta_{12}^{4} q^{6} + \zeta_{12} q^{7} + \zeta_{12}^{3} q^{8} + \zeta_{12}^{5} q^{10} -\zeta_{12}^{5} q^{11} + \zeta_{12} q^{12} + \zeta_{12}^{2} q^{13} -\zeta_{12}^{4} q^{14} + \zeta_{12}^{3} q^{15} + q^{16} + \zeta_{12}^{4} q^{17} -\zeta_{12} q^{19} + \zeta_{12}^{2} q^{20} -\zeta_{12}^{2} q^{21} -\zeta_{12}^{2} q^{22} -\zeta_{12}^{4} q^{24} -\zeta_{12}^{5} q^{26} + \zeta_{12}^{3} q^{27} -\zeta_{12} q^{28} + q^{30} + \zeta_{12}^{3} q^{31} -\zeta_{12}^{3} q^{32} - q^{33} + \zeta_{12} q^{34} -\zeta_{12}^{3} q^{35} + \zeta_{12}^{4} q^{37} + \zeta_{12}^{4} q^{38} -\zeta_{12}^{3} q^{39} -\zeta_{12}^{5} q^{40} -\zeta_{12}^{2} q^{41} + \zeta_{12}^{5} q^{42} -\zeta_{12} q^{43} + \zeta_{12}^{5} q^{44} -\zeta_{12} q^{48} -\zeta_{12}^{5} q^{51} -\zeta_{12}^{2} q^{52} + \zeta_{12}^{2} q^{53} + q^{54} -\zeta_{12} q^{55} + \zeta_{12}^{4} q^{56} + \zeta_{12}^{2} q^{57} + \zeta_{12} q^{59} -\zeta_{12}^{3} q^{60} + q^{62} - q^{64} -\zeta_{12}^{4} q^{65} + \zeta_{12}^{3} q^{66} -\zeta_{12}^{5} q^{67} -\zeta_{12}^{4} q^{68} - q^{70} + \zeta_{12}^{5} q^{71} -\zeta_{12}^{2} q^{73} + \zeta_{12} q^{74} + \zeta_{12} q^{76} + q^{77} - q^{78} + \zeta_{12} q^{79} -\zeta_{12}^{2} q^{80} -\zeta_{12}^{4} q^{81} + \zeta_{12}^{5} q^{82} + \zeta_{12}^{5} q^{83} + \zeta_{12}^{2} q^{84} + q^{85} + \zeta_{12}^{4} q^{86} + \zeta_{12}^{2} q^{88} + \zeta_{12}^{3} q^{91} -\zeta_{12}^{4} q^{93} + \zeta_{12}^{3} q^{95} + \zeta_{12}^{4} q^{96} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{4} - 2q^{5} - 2q^{6} + O(q^{10}) \) \( 4q - 4q^{4} - 2q^{5} - 2q^{6} + 2q^{13} + 2q^{14} + 4q^{16} - 2q^{17} + 2q^{20} - 2q^{21} - 2q^{22} + 2q^{24} + 4q^{30} - 4q^{33} - 2q^{37} - 2q^{38} - 2q^{41} - 2q^{52} + 2q^{53} + 4q^{54} - 2q^{56} + 2q^{57} + 4q^{62} - 4q^{64} + 2q^{65} + 2q^{68} - 4q^{70} - 2q^{73} + 4q^{77} - 4q^{78} - 2q^{80} + 2q^{81} + 2q^{84} + 4q^{85} - 2q^{86} + 2q^{88} + 2q^{93} - 2q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/124\mathbb{Z}\right)^\times\).

\(n\) \(63\) \(65\)
\(\chi(n)\) \(-1\) \(-\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
1.00000i −0.866025 0.500000i −1.00000 −0.500000 0.866025i −0.500000 + 0.866025i 0.866025 + 0.500000i 1.00000i 0 −0.866025 + 0.500000i
67.2 1.00000i 0.866025 + 0.500000i −1.00000 −0.500000 0.866025i −0.500000 + 0.866025i −0.866025 0.500000i 1.00000i 0 0.866025 0.500000i
87.1 1.00000i 0.866025 0.500000i −1.00000 −0.500000 + 0.866025i −0.500000 0.866025i −0.866025 + 0.500000i 1.00000i 0 0.866025 + 0.500000i
87.2 1.00000i −0.866025 + 0.500000i −1.00000 −0.500000 + 0.866025i −0.500000 0.866025i 0.866025 0.500000i 1.00000i 0 −0.866025 0.500000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
31.c even 3 1 inner
124.i odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 124.1.i.a 4
3.b odd 2 1 1116.1.x.a 4
4.b odd 2 1 inner 124.1.i.a 4
5.b even 2 1 3100.1.z.a 4
5.c odd 4 1 3100.1.t.a 4
5.c odd 4 1 3100.1.t.b 4
8.b even 2 1 1984.1.s.a 4
8.d odd 2 1 1984.1.s.a 4
12.b even 2 1 1116.1.x.a 4
20.d odd 2 1 3100.1.z.a 4
20.e even 4 1 3100.1.t.a 4
20.e even 4 1 3100.1.t.b 4
31.b odd 2 1 3844.1.i.d 4
31.c even 3 1 inner 124.1.i.a 4
31.c even 3 1 3844.1.b.d 2
31.d even 5 4 3844.1.n.e 16
31.e odd 6 1 3844.1.b.c 2
31.e odd 6 1 3844.1.i.d 4
31.f odd 10 4 3844.1.n.f 16
31.g even 15 4 3844.1.l.d 8
31.g even 15 4 3844.1.n.e 16
31.h odd 30 4 3844.1.l.c 8
31.h odd 30 4 3844.1.n.f 16
93.h odd 6 1 1116.1.x.a 4
124.d even 2 1 3844.1.i.d 4
124.g even 6 1 3844.1.b.c 2
124.g even 6 1 3844.1.i.d 4
124.i odd 6 1 inner 124.1.i.a 4
124.i odd 6 1 3844.1.b.d 2
124.j even 10 4 3844.1.n.f 16
124.l odd 10 4 3844.1.n.e 16
124.n odd 30 4 3844.1.l.d 8
124.n odd 30 4 3844.1.n.e 16
124.p even 30 4 3844.1.l.c 8
124.p even 30 4 3844.1.n.f 16
155.j even 6 1 3100.1.z.a 4
155.o odd 12 1 3100.1.t.a 4
155.o odd 12 1 3100.1.t.b 4
248.m odd 6 1 1984.1.s.a 4
248.p even 6 1 1984.1.s.a 4
372.p even 6 1 1116.1.x.a 4
620.o odd 6 1 3100.1.z.a 4
620.be even 12 1 3100.1.t.a 4
620.be even 12 1 3100.1.t.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
124.1.i.a 4 1.a even 1 1 trivial
124.1.i.a 4 4.b odd 2 1 inner
124.1.i.a 4 31.c even 3 1 inner
124.1.i.a 4 124.i odd 6 1 inner
1116.1.x.a 4 3.b odd 2 1
1116.1.x.a 4 12.b even 2 1
1116.1.x.a 4 93.h odd 6 1
1116.1.x.a 4 372.p even 6 1
1984.1.s.a 4 8.b even 2 1
1984.1.s.a 4 8.d odd 2 1
1984.1.s.a 4 248.m odd 6 1
1984.1.s.a 4 248.p even 6 1
3100.1.t.a 4 5.c odd 4 1
3100.1.t.a 4 20.e even 4 1
3100.1.t.a 4 155.o odd 12 1
3100.1.t.a 4 620.be even 12 1
3100.1.t.b 4 5.c odd 4 1
3100.1.t.b 4 20.e even 4 1
3100.1.t.b 4 155.o odd 12 1
3100.1.t.b 4 620.be even 12 1
3100.1.z.a 4 5.b even 2 1
3100.1.z.a 4 20.d odd 2 1
3100.1.z.a 4 155.j even 6 1
3100.1.z.a 4 620.o odd 6 1
3844.1.b.c 2 31.e odd 6 1
3844.1.b.c 2 124.g even 6 1
3844.1.b.d 2 31.c even 3 1
3844.1.b.d 2 124.i odd 6 1
3844.1.i.d 4 31.b odd 2 1
3844.1.i.d 4 31.e odd 6 1
3844.1.i.d 4 124.d even 2 1
3844.1.i.d 4 124.g even 6 1
3844.1.l.c 8 31.h odd 30 4
3844.1.l.c 8 124.p even 30 4
3844.1.l.d 8 31.g even 15 4
3844.1.l.d 8 124.n odd 30 4
3844.1.n.e 16 31.d even 5 4
3844.1.n.e 16 31.g even 15 4
3844.1.n.e 16 124.l odd 10 4
3844.1.n.e 16 124.n odd 30 4
3844.1.n.f 16 31.f odd 10 4
3844.1.n.f 16 31.h odd 30 4
3844.1.n.f 16 124.j even 10 4
3844.1.n.f 16 124.p even 30 4

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(124, [\chi])\).