Newspace parameters
| Level: | \( N \) | = | \( 124 = 2^{2} \cdot 31 \) |
| Weight: | \( k \) | = | \( 1 \) |
| Character orbit: | \([\chi]\) | = | 124.i (of order \(6\) and degree \(2\)) |
Newform invariants
| Self dual: | No |
| Analytic conductor: | \(0.0618840615665\) |
| Analytic rank: | \(0\) |
| Dimension: | \(4\) |
| Relative dimension: | \(2\) over \(\Q(\zeta_{6})\) |
| Coefficient field: | \(\Q(\zeta_{12})\) |
| Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
| Coefficient ring index: | \( 1 \) |
| Projective image | \(A_{4}\) |
| Projective field | Galois closure of 4.0.15376.1 |
| Artin image size | \(48\) |
| Artin image | $\SL(2,3):C_2$ |
| Artin field | Galois closure of \(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character Values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/124\mathbb{Z}\right)^\times\).
| \(n\) | \(63\) | \(65\) |
| \(\chi(n)\) | \(-1\) | \(-\zeta_{12}^{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 67.1 |
|
− | 1.00000i | −0.866025 | − | 0.500000i | −1.00000 | −0.500000 | − | 0.866025i | −0.500000 | + | 0.866025i | 0.866025 | + | 0.500000i | 1.00000i | 0 | −0.866025 | + | 0.500000i | |||||||||||||||||||
| 67.2 | 1.00000i | 0.866025 | + | 0.500000i | −1.00000 | −0.500000 | − | 0.866025i | −0.500000 | + | 0.866025i | −0.866025 | − | 0.500000i | − | 1.00000i | 0 | 0.866025 | − | 0.500000i | ||||||||||||||||||||
| 87.1 | − | 1.00000i | 0.866025 | − | 0.500000i | −1.00000 | −0.500000 | + | 0.866025i | −0.500000 | − | 0.866025i | −0.866025 | + | 0.500000i | 1.00000i | 0 | 0.866025 | + | 0.500000i | ||||||||||||||||||||
| 87.2 | 1.00000i | −0.866025 | + | 0.500000i | −1.00000 | −0.500000 | + | 0.866025i | −0.500000 | − | 0.866025i | 0.866025 | − | 0.500000i | − | 1.00000i | 0 | −0.866025 | − | 0.500000i | ||||||||||||||||||||
Inner twists
| Char. orbit | Parity | Mult. | Self Twist | Proved |
|---|---|---|---|---|
| 1.a | Even | 1 | trivial | yes |
| 4.b | Odd | 1 | yes | |
| 31.c | Even | 1 | yes | |
| 124.i | Odd | 1 | yes |
Hecke kernels
There are no other newforms in \(S_{1}^{\mathrm{new}}(124, [\chi])\).