Defining parameters
Level: | \( N \) | = | \( 124 = 2^{2} \cdot 31 \) |
Weight: | \( k \) | = | \( 1 \) |
Nonzero newspaces: | \( 1 \) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(960\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(124))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 82 | 32 | 50 |
Cusp forms | 7 | 4 | 3 |
Eisenstein series | 75 | 28 | 47 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 4 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(124))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
124.1.b | \(\chi_{124}(63, \cdot)\) | None | 0 | 1 |
124.1.c | \(\chi_{124}(61, \cdot)\) | None | 0 | 1 |
124.1.h | \(\chi_{124}(37, \cdot)\) | None | 0 | 2 |
124.1.i | \(\chi_{124}(67, \cdot)\) | 124.1.i.a | 4 | 2 |
124.1.k | \(\chi_{124}(29, \cdot)\) | None | 0 | 4 |
124.1.l | \(\chi_{124}(35, \cdot)\) | None | 0 | 4 |
124.1.n | \(\chi_{124}(7, \cdot)\) | None | 0 | 8 |
124.1.o | \(\chi_{124}(13, \cdot)\) | None | 0 | 8 |
Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(124))\) into lower level spaces
\( S_{1}^{\mathrm{old}}(\Gamma_1(124)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(62))\)\(^{\oplus 2}\)